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The evolution of linearized perturbations in a magnetohydrodynamic shear flow is studied using the initial 
value problem approach. Here the resulting equation in time posed by using the Fourier transform is solved for 
the Fourier amplitudes for modeled boundary layer for different initial disturbances. The shear flow prototype 
here is a piecewise linear approximation of a magnetohydrodynamic boundary layer. The initial disturbances that 
are considered are a point source of the field of transverse velocity and magnetic field. Solutions are obtained for 
small values of Alfve’n velocity. The velocity plots are drawn for different values of Alfve’n velocity. 
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1. Introduction 
 
 The stability of an electrically conducting shear flow is of interest to both geophysicists and 
astrophysicists.  
 The dynamics and stability of large-scale shear flows in a parallel magnetic field are of interest in 
astrophysical fluid dynamics. Anamalous transport rates are generally ascribed to turbulence, although in 
most of the presence of turbulence has not been established.  
 Stuart (1954) investigated the stability of a plane Poiseuille flow with the assumption that the mean 
magnetic field is everywhere constant. In this case the stability equation is similar to that of Orr-Sommerfeld 
equation with only one new term. Hains (1965) studied the influence of a coplanar magnetic field on the 
stability of a conducting fluid flowing between parallel planes. After deriving the general stability equation 
for small values of the magnetic Reynolds number, numerical results were obtained for the case where the 
initial perturbations of the magnetic field vanish. Hunt (1965) proved that when a uniform magnetic field is 
parallel to the flow and sufficiently large, the wave number vector of the most unstable disturbance is not, in 
general, parallel to the flow i.e., it is a three – dimensional disturbance. Lerner and Knobloch (1984) using 
the method of separation of variables studied the stability of a dissipative magnetohydrodynamic shear flow 
in a parallel magnetic field for the unbounded plane Couette flow. The finite conductivity and molecular 
viscosity were found to be stabilising. Venkatachalappa and Soward (1990) showed that the addition of small 
diffusivity, dissipation is strongly stabilising and there is an eventual collapse of all the modes. Kumari and 
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Nath (1999) studied numerically the MHD Boundary layer flow of a non- Newtonian fluid over a 
continuously moving surface with a parallel free stream. Ruderman and Brevdo (2006) studied the stability 
of an MHD shear flow with piecewise linear velocity profile. They combined the analytical and numerical 
approaches to obtain the neutral stability curves in the case of both magnetic free flow and magnetic flow. 
Newton and Kim (2007) investigated numerically the dual role of shear flow in 2D MHD turbulence and the 
results indicated that the absence of resonance is responsible for the most catastropic reductions in transport. 
Douglas et al. (2008) studied the effects of flow shear and Alfven waves on two – dimensional 
magnetohydrodynamic turbulence and numerically found the underlying physical mechanisms for the 
reduction of turbulent transport and turbulence level by shear flow and magnetic field. Ruderman and Belov 
(2010) investigated the stability of MHD shear flows with application to space physics by considering 
heliopause stability and the stability of the Earth’s magnetopause. Núñez, Manuel (2012) studied MHD shear 
flows with non – constant transverse magnetic field. They investigated the evolution of the flow and the 
magnetic field both near the plate and far from it by analyzing the possibility of reverse flow and the 
instability of the solutions. Mishnov et al. (2013) illustrated by numerical calculations and by exact solutions 
the time dependence of the magnetic field in a shear flow. Uddin (2013) studied numerically the MHD 
forced convective laminar Boundary layer flow from a convectively heated moving vertical plate with 
radiation and transpiration effect. 
 In the present paper, we have extended the work of Criminale and Drazin (1990) to 
magnetohydrodynamic shear flow. We have investigated the magnetohydrodynamic boundary layer, with 
unit pulse of velocity and magnetic field as initial conditions. The essence of the approach is as given below: 
For a multilayered basic flow with piecewise linear velocity profile, the complete general solution to the 
linearized equations of motion is obtained as a function of all space variables and time. The disturbances are 
resolved into rotational and irrotational components. The rotational solution is the solution for the 
hypothetical initial-value problem for which the mean flow is unbounded but coincides with the actual flow 
in the layer. The irrotational solution in each layer is specified uniquely by satisfying the interfacial 
conditions and boundary conditions at a wall or at infinity. 
 
2. Mathematical formulation 
 
 We consider an electrically conducting fluid of density , moving with velocity q  in the presence of 
a magnetic field H . Gravity is ignored. The governing equations of motion of an inviscid, incompressible, 
magnetohydrodynamic and Boussinesq fluid are 
 
  0 q ,  (2.1) 
 
  0 H ,  (2.2) 
 

        P mt

 
        

q
q q H H ,   (2.3) 

 

       
t


   


H

q H H q    (2.4) 

 

where 
2

mH
P p

2


  , is the total pressure, m  is the magnetic permeability. 

 The basic state of the system is     , , 0 U y y 0 0  q ,  , ,0 0H 0 0H ,   0P P y , where  is 

the shear of the mean flow. The quantities  and 0H  are assumed to be constants.  
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 In the study of linear stability, we superimpose a small wave like perturbation upon the mean flow 
i.e.,  0  q q q ,  0  H H H , 0P P P  , where q , H , P  are the perturbed quantities of velocity, 
magnetic field and pressure respectively. 
 We linearize the above set of equations about the basic state then by employing (i) moving co-
ordinates transformation, the frame of reference by defining ,      , , T t x y t y z         (ii) three - 

dimensional Fourier transformation given by       ˆ ; ; ; ; ; ;  iu T u T e d d d
  

   

  

             

with similar expressions for v̂ , ŵ , ˆ
xH , ˆ

yH , ˆ
zH  and P̂  (iii) Squire transformation defined by 

 
1

2 2 2      and   = arctan  
 , the velocity and magnetic field components in the   and   

directions are given by 
ˆ ˆu w

u
  




ˆ ˆ
, ,

u w
w

  




ˆ ˆ
,x z

x
H H

H
  




ˆ ˆ
x zH H

Hz
  




. The resulting 

equations are 
 

    ˆˆ    ,2 2 2
A y

d
K v i V K H 0

dT
                                          (2.5) 

 

  
ˆ

ˆyd H
i v

d T
                                                       (2.6) 

 

where 
2

2 m 0
A

0

H
V





, AV  is the Alfve n  velocity, 0  is the equilibrium density. 

 

   22 2K T             and          2 2 2     . 

 

 The pressure amplitude P̂  is obtained by taking the divergence of the momentum equations. It is 

found that 
ˆ    ˆ

2

i2 v
P

K

 
 when .2K 0  

 Equation (2.5) admits two sets of solutions for v̂ , first, for 2K 0 , when the disturbance is 

rotational and second for 2K 0 , when the disturbance is irrotational, since the vanishing of the product 

ˆ2k v  is equivalent to the Laplace equation ˆ2v 0   in real space. But for ˆ
yH  a solution exists for only 

2K 0 , since for 2K 0 , ˆ2
yK H 0  corresponds to ˆ

y
2H 0  which is equivalent to 0 H  and 

0 H , which implies that H  is a force free magnetic field, i.e., there is no magnetic field. Hence 

ˆ2
yH 0   which corresponds to the irratational solution, is not taken into account. 

 Now considering the case 2K 0 , we assume a perturbation solution for ˆRv , the rotational 

component of v̂  for small values of 2
AV   Alfve n velocity  in the form 

 

           ˆ ˆ ˆ ˆ, , , , , ,  , , ,  , , , ...
22 2

R 0 A 1 A 2v T v T V v T V v T                ,  (2.7) 

 

           ˆ ˆ ˆ ˆ, , , , , ,  , , ,  , , , ...
22 2

y y0 A y1 A y2H T H T V H T V H T                .      (2.8) 
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 We find that 
 

  
 
 

ˆ , ,
ˆ 0
0 22

v
T

   

   

,                                 (2.9) 

 

  

 ˆ
ˆ tan log 

tan tan

3 22
1

1 2

2
1

TT T 10v
3

31 T T 1 T1
3 6





                               
                           

 (2.10) 

  
 

ˆ 33
1

22

i T 1 T 1

3 T

                        
,  

 

  
 ˆ

ˆ tan log 
5 23 22

1
2 3 2

7 TT T T0v
18


                                              

 

  
 ˆ ˆ ˆ

log 
25 425 5 5

0 0 0
3 2 3 3

T5 T T

36 10 6

                                                     
 

  
ˆ ˆˆ ˆ3 5 55 5

0 01 1
3 2 3 2

2 25i 8iT T

3 27 9

                                            
 (2.11) 

  
ˆ ˆˆ

tan tan
5 55

1 10 01
3 2 3

2 28iT T T

9 3
                                            

 

  
 ˆ

 log
25 3 25

1
2 2

TiT T T                                                
 

  
 

ˆ 
.

5
1

2 22

2i 1

3 T

   
        

 

 

 The solution for 2K 0  is found by considering the perturbation equations where a two – 
dimensional Fourier transform is used instead of the full three – dimensional decomposition. Using the 

moving co-ordinate transformation, ˆ2K v 0  corresponds to  
 

    
2

2 2 2 2I I
I2

v v
2i T T v 0

 
       



  
                         (2.12) 

where 

       , , ; , , ,  ,i
I I Iv v T v T e d d

 


 

           
  (2.13) 

 
is the irrotational part of v. The solution of Eq.(2.12) is found to be  
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         i T i T
Iv A T e B T e      

  (2.14) 

 
where A (T) and B(T) are constants of integration . 
 In order to combine ˆRv  and Iv


 to obtain the complete solution and satisfy the matching condition ˆRv

must be inverted once to obtain  , , ;Rv T  
, i.e., 

 

       ˆ, , ; , , ; i
R R

1
v T v T e d

2


 



       
 


.   (2.15) 

 
 With the initial velocity and initial magnetic field given by  
 
          , , ,   0 0 0 0v x y z 0 V x x y y z z       ,                                       (2.16) 

 
         , , ,   .y 0 0 0 0H x y z 0 H x x y y z z                                         (2.17) 

 
 In terms of moving co-ordinates and the three-dimensional Fourier transform 
 

       , ,  , , ,0 0 0i x y z
0 0 0v V e          

 (2.18) 

 

       , , , , ,0 0 0i x y z
y0 1 0H H e           
   (2.19) 

 

Rv


 is found to be 
 

      
 

0 0
2 3 4 5 2 3 4 5

i x z T A A A A
R 0 03 3

V V 2V 5V
v e V 1 e V

36 36 18

     
                         


 

  
 

2 3 4 5
A A

0 3

V 5Ve e
d V d

3 36

         

 

          
       

   (2.20) 

  
 3 5 3 5 5

0 0 0 0 0
3 2 3 2

2i H 4 V 46i H 2 V 8i Hi
e

3 23 27 9

 
                              

  
 

  

 

 

-    
.

   

5 5
0 0

3 2

V 4 i He e
i d i d

210 9

         

 

                              
 


 

 

 Now the complete solution will be  
 

  R Iv v v   
  (2.21) 

 

Rv


 and Iv


 are given by Eqs (2.19) and (2.14). 
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3. Magnetohydrodynamic boundary layer flow  
 
 This problem consists of both the plane Couette flow and the layered infinite flow, i.e., wall layer (or 

shear layer) and the free stream. The model of the magnetohydrodynamic boundary layer is as shown in 
Fig.1. 
 

 

 

σ for

for

, 0,

0

0 0

y y H
U y

U y H

H H 0


  



 

 
Fig.1. Sketch of magnetohydrodynamic boundary layer flow on a wall. 

 
 In the free stream, the moving co-ordinate system for a constant mean flow 0U  is given by  
 
    ,     ,  ,  0T t x U t y z        . (3.1) 
 
 The Fourier transforms and inversions follow as it has been done before. Thus 
 

    
SI Sv A T e

,                                  (3.2) 

 

     
.0 0

S

3 4 22 2
i x z A 0A

R 0
i V T Vi V T

v e V e
2 24

  
  

        


                   (3.3) 

 
 The subscript s denotes the quantities in the free stream. In the wall layer, Rv


 and Iv


 are given by 

Eqs (2.20) and (2.14). 
 We have v


 = 0 at the solid boundary   = 0. Thus, 

 

        0 0 0i x z Ty
11A B A e      . (3.4) 

 
 We make use of the kinematic condition and pressure matching conditions. 
Velocity v


 must be continuous at the interface = H, i.e.,    s HH

v v   
 gives 
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         
 0 0 0

2 2 3 4 3
i x z H yH A A

s 0
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 Pressure P̂ must be continuous at the interface = H, i.e.,  free stream wall layerH H
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5F e   . 

 
 From Eqs (3.5) and (3.6), we obtain 
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Using B (0) = 0, 3D  is found to be 
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   (3.8) 

 
 Equation (3.4) yields 
 

       0 0 0i x z Ty
11A A e B     . (3.9) 

 
 The values of the coefficients are given in Appendix. 
 
4. Results and discussions 
 

 In this problem, we have studied the evolution of linearized perturbations of a basic flow of an 
inviscid magnetohydrodynamic shear flow using piecewise linear velocity profiles. We have used unit pulse 
for velocity and magnetic field as initial distributions. The systematic development is in principle can be 
applicable to any basic flow with piecewise linear velocity profile, but we have concentrated on 
magnetohydrodynamic boundary layer flow. 
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 In these broken line (piecewise linear) profiles, we have resolved the perturbations into rotational 
and irrotational components. Plots are drawn to observe the variation of amplitude of rotational velocity ˆRv  

and magnetic field ˆ
yH  with time. Figures 2a-2d are plots of ˆRv  Vs T for different values of AV

 , . , .AV 0 0 2 0 5  and   , , ,0 0 0 00 45 90 180  . As time increases there is a decay in ˆRv .  
 

 
 

(a) (b) 

 

             (c)                                                                              (d) 
 

Fig.2.  Curves of ˆRv  versus T for (a) 00  , 00  , (b) 045  , (c) 090  and (d) 0180   for different 

values of AV . 
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Nomenclature 
 
 H  – magnetic field of the fluid 
 0H  – externally imposed constant magnetic field 

 q  – velocity of the fluid 
 AV  – Alfve’n velocity 

  0  – equilibrium density 
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