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The paper presents an application of different formulations of the rigid finite element method (RFEM) to 
dynamic analysis of flexible beams. We discuss numerical effectiveness of the classical RFEM and an alternative 
approach in which continuity of displacements is preserved by means of constraint equations. The analysis is 
carried out for a benchmark problem of the spin-up motion in planar and spatial cases. Torsion is omitted for 
numerical simulations and two cases of the new approach are considered. The results obtained by means of these 
methods are compared with the results obtained using a nonlinear two-node superelement.  
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1. Introduction  

 
 Modeling dynamics of manipulators with flexible links remains an open field of research. Although 

researchers has been involved in this field for years (Dwivedy and Eberhard, 2006), there is still a need for 
numerically efficient models which account for nonlinear phenomena occurring during dynamic analysis of 
mechanism with highly flexible links. The rigid finite element method (RFEM) formulated by Kruszewski et 
al. (1975) has been widely used and developed so that new formulations of the method can be characterized 
either by new features like the modified formulation (MRFEM) presented by Adamiec-Wójcik and Wojciech 
(1993) or by a different notation which uses homogenous transformations (Wittbrodt et al., 2006).  

 This paper uses different formulations of the RFEM. A systematic approach by means of 
homogenous transformations is used for derivations of the equations of motion. However, since the 
numerical effectiveness is our aim, the resulting algorithms use explicit expressions of matrix and vector 
elements. Apart from the classical formulation, a new approach in which the rigid finite elements are 
connected by means of constraint equations is used. This new formulation was applied to modelling planar 
flexible ropes by Adamiec-Wójcik et al. (2012). The same approach was used in modelling risers in the 
paper (Adamiec-Wójcik et al., 2013) where additionally the influence of water environment has been taken 
into account. For the purpose of this paper the spatial model is considered and it will be shown that despite 
the necessity of solving constraint equations the method is very efficient and times of calculations are shorter 
than those for other approaches.  

 Simulations are carried out for a benchmark problem of a spinning beam with a spin-up 
movement and similar movement but with simultaneously excited vibrations in the out-of-plane direction. 
The results are compared with those presented by Boer et al. (2014) and the comparisons show very good 
agreement.  
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2. Models of a flexible link 
 

 Discretization by means of the rigid finite element method is carried out in two steps called primary 
and secondary divisions. First, a continuous beam-like flexible link with constant cross-section is divided 
into n equal elements and then spring-damping elements reflecting flexible features are placed in the middle 
of segments obtained during the first division. Finally, a system of n+1 rigid elements (rfe) connected by 
means of n spring-damping elements (sde) is obtained. The approaches described below differ in the manner 
of assigning the local coordinate systems and the choice of generalized coordinates describing the motion of 
elements.  

 
2.1. Classical rigid finite element method 

 
 Local coordinate systems {i}' are placed in the center of mass of the element (Fig.1) and the axes of 

the system coincide with the principal central axes of the element.  
 

 
 

Fig.1. Local coordinate systems and generalized coordinates (classical RFEM). 
 

 The position of the element is described with respect to the inertial coordinate system by six 
generalized coordinates which are the elements of the following vector 

 

   Ts
i Ci Ci Ci i i ix y z   q . (2.1) 

 
 When large deflections of a flexible link are considered, trigonometrical functions of angles 
, ,i i i    cannot be linearized. Since the axes of the local coordinate system of rfe i are chosen to coincide 

with the principal central axes of inertia the mass features of the element are described by the elements of the 
following vector 
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 The equations of motion of the flexible link are derived from the Lagrange equations and following 
the procedure described in Wittbrodt et al. (2006) the Lagrange operators can be written as 
 

    s s si i
i i i i is s

i i

E Ed
E

dt

 
   

 
ε M q h
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
 (2.3) 

 

where     , ,s s
i i i i i   M M ,               , , , , ,s s

i i i i i i i i      h h   . 

 
 The choice of the generalized coordinates as absolute angles is an advantage when deriving the parts 

of the equations of motion which result from the kinetic energy, yet, the calculations of expressions resulting 
from the energy of spring deformations are more complicated (Wittbrodt et al., 2013). The continuity of 
displacements is not ensured and the relation among rfes is described by sdes. Finally, the equations of 
motion take the following form 

 

  
s

s s s s
s

V
  


M q Q h

q
  (2.4) 

 

where 
Ts sT sT

0 n
   q q q , Ms is a block-diagonal mass matrix. 

 The equations of motion in this formulation have to be integrated using a small integration step due 
to large translational stiffness (shear and longitudinal) which results in high frequency vibrations.  

 
2.2. An alternative formulation 

 
 In this approach shear stiffness is eliminated. In order to consider longitudinal flexibility an 

additional spring-damping element responsible for elongation is placed in the middle of each rfe (Fig.2). 
 

 
 

 
Fig.2. Local coordinate systems and generalized coordinates (alternative approach). 

 
 The local coordinate system is placed at the preceding sde. The vector of generalized coordinates is 
defined as follows 
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   Tl
i i i i i i i ix y z    q  (2.5) 

 
 Having taken into account the different definition of translational displacements ( , ,i i ix y z  are 

coordinates of point Ai, not the center of the mass), the kinetic energy of the element can be calculated as 
 

  ( ) ( )1 2
i i iE E E   (2.6) 

 

where      ( ) ( ) ( ) ( ), , , , , ; , , , , , ,1 1 2 2
i i i i i i i i i i i i i i i i iE E x y z E E x y z         . 

 
 The Lagrange operators defined in Eq.(2.3) take the form 
 

    l l l
i i i i iE  M q hε  (2.7) 

 

where l
iM  is matrix 7x7 with elements dependent on l

iq , l
ih  is a vector with 7 elements dependent on l

iq  

and l
iq . 

In order to calculate forces and moments resulting from sdes, only forces of longitudinal deformations 
(dependent on i ) and moments dependent on subtractions of angles , ,i i i    and , ,i 1 i 1 i 1      or 

, ,i 1 i 1 i 1      are taken into account. The continuity of displacements at point Ai is ensured by means of 
constraints equations which can be written in the form 
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i
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Fig.3. Constraint reactions. 

 
 In this formulation constraint reactions (Fig.3) have to be introduced in the equations of motion and 
the resulting generalized forces can be written in the following form 
 
   ,i i i 1 i i i 1  Q R R DR D R  (2.9) 
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where   , , ,
T

i i x i y i zR R R   R ,              l
i i iD D q . 

 
 By double differentiation of the constraint equations the final form of the equations of motion 

(Adamiec-Wójcik and Brzozowska, 2013) can be obtained 
 

  
l

i l l l
l

V
   


M q DR Q h

q
 , (2.10.1) 

 

  T D q G . (2.10.2) 
 

 The Baumgart method is used for stabilisation of constraint equations. Due to a special structure of 
the matrix of constraint reactions and block-diagonal mass matrix, the problem can be replaced by the 
solution of reactions from a system of 3(n+1) linear algebraic equations with a band of less than 22 elements. 
Some additional multiplications of vectors and matrices enable us to calculate the acceleration vector at each 
integration step. 

 In the special case when longitudinal deformations can be neglected, vectors l l
iq q  have only six 

components. Thus all large values of translational stiffness can be omitted. In such a case the formulation is 
like the modification of the rigid finite element method presented in Adamiec-Wójcik and Wojciech (1993) 
but without its essential drawback which is the full mass matrix. 
 
3. Numerical simulations 
 

 In this section we consider two benchmark problems for examining numerical effectiveness of the 
different formulations of the Rigid Finite Element Method. The results obtained are also compared with 
those presented by Boer et al. (2014). The first example is a spinning planar beam very often used in 
literature for analysis of highly nonlinear motions. The second example allows us to consider full three-
dimensional motion and it is a spinning beam attached to a universal joint by means of which out-of-plane 
vibrations are excited.  

 In the simulations presented below torsion is omitted and the beam is discretized by means of the 
three formulations of the Rigid Finite Element Method denoted as follows: 

S - the model by the classical rigid finite element method described in section 2.1; the vector of 

generalized coordinates is  Ts
i Ci Ci Ci i ix y z  q ; three translational stiffness of sde: two shear 

and one longitudinal are considered; 
L - the model by the new approach with the additional spring element described in section 2.2; the vector 

of generalized coordinates is  Tl
i i i i i i ix y z   q ; shear stiffness is omitted but longitudinal 

one is taken into account; 
B - the model by the new approach but without longitudinal flexibility; the vector of generalized 

coordinates is  Tb
i i i i i ix y z  q ; all translational stiffness are omitted. 

 
3.1. Spinning beam 
 

 The flexible beam (Fig.4) with length l = 8 m, a constant rectangular cross-section axb, a = 0.03675 
m, b = 0.001986 m is considered. Material parameters of the beam are those of aluminum: Young modulus 
E = 6.895·1010 N/m2, density ρ = 2766 kg/m3, Poisson number  = 0.3. 
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Fig.4. Model of a spinning beam. 
 

 The motion of the beam is defined by the change of angle ψ by the following formula 
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
 (3.1) 

 

where Ω = 4 rad/s is the final angular velocity and T = 15 s is the spin-up time. 
 The change of the angle ψ and velocity in time are presented in Fig.5 
 

 

 
 

Fig.5. Spin-up motion. 
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 In order to check the correctness of the models, the results are compared with those presented by 

Boer et al. (2014) denoted as A (Fig.6). 
 

 
 

Fig.6. Course of the beam tip deflection. 
 

 It can be seen that the results obtained are in very good agreement with those presented in the 
mentioned paper, where the authors proposed a two-node super-element for modeling flexibility. They 
compared their results with a model using nonlinear planar beam elements with elongation modes 
suppressed. 

 Figure 7 shows a comparison of calculation times for a different number of rigid elements into 
which the beam is discretized. 
 

 
Fig.7. Comparison of calculation times for a different number of rfes. 
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 The shortest calculation time is obtained for the new approach of the RFEM when the elongation is 
omitted, which is due to elimination of vibrations with high free frequencies.  
 
3.2. Spinning beam with out-of-plane vibrations 
  

 The beam considered for the analysis of the spatial motion (Fig.8) has the same material properties 
as in the first examples. It has the same length of 8 m, but the constant cross-section is assumed as wxh, 
w = 0.02 m, h = 0.04 m. 
 

 
 
 

Fig.8. Model of the spatial beam. 
 

 The beam undergoes spin-up motion about z' axis defined by the change of angle ψ (3.1) and 
additional excitations about y' axis are defined by the formula 
 
  . sin( )0 01 15t  . (3.2) 

 
 The character of changes can be seen in Fig.9. 
 

 
 

Fig.9. Course of out-of plane motion. 
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 Figures 10 and 11 show the tip deflections Δy' and Δz' in horizontal and vertical directions. The 
results obtained with our models are compared with those presented in Boer et al. (2014) denoted as A. 
 

 
 

Fig.10. Tip deflection Δy'. 
 

 
 

Fig.11. Tip deflection Δz'. 
 
 The results obtained by the rigid finite element method (in all formulations) are in good agreement 

with those obtained by means of a different method. 



484  I.Adamiec-Wójcik, Ł.Drąg and S.Wojciech 

 Figure 12 presents a comparison of time of calculations for a different number of elements from 
discretization.  

 

 
 

Fig.12. Comparison of calculation time. 
 

 It can be observed that consideration of longitudinal flexibility increases the calculation time 
significantly. When the elongation is omitted, the new approach allows us to reduce almost by half the 
calculation time with comparison to the classical RFEM. This is due to elimination of the coefficients of the 
translational stiffness which are large and thus frequencies of free vibrations are low. This directly 
influences the length of the integration step for the equations of motion. It can be 10 times larger in case B 
than in cases S and L. 
 
4. Final remarks 
 

 The paper presents different formulations of the rigid finite element method with the emphasis on 
their numerical effectiveness. All approaches presented are characterized by similar exactness and the error 
with respect to the nonlinear finite element method is insignificant. Calculation time is shortest for the 
alternative approach when the elongation is omitted. The method presented in the paper can be especially 
effective in modeling of cables, ropes and risers and due to its numerical effectiveness can be used in 
problems connected with control.  
 
Nomenclature 
 
 D  – matrix with constant elements 
 iE  – kinetic energy 

 G  – vector of geometrical constraint equations 
 iH  – vectors of pseudo-inertial parameters of element i defined with respect to local coordinate systems 

 s
ih , l

ih   – vectors of components resulting from kinetic energy of element i 

 sh , lh  – vectors of components resulting from kinetic energy for the whole system 

 ,s l
i iM M  – mass matrix of element i 

 Ms,  Ml – block diagonal mass matrices of the whole system 
 mi  – mass of the i-th element 
 Qs, Ql – vectors of generalized forces resulting from external forces and moments 

 , ,s l b
i i iq q q  – vectors of generalised coordinates describing the motion of element i 
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 , ,s l bq q q  – vectors of generalised coordinates describing the motion of the whole system 

 R – vector of constraint reactions 
 Ri  – vector of reaction forces for element i 
 RFEM – rigid finite element method 
 rfe – rigid finite element 

 ( )
i

k
Ar  – position vector of point Ai with respect to coordinate system k 

 sde – spring damping element 
 V  – energy of spring deformation 
 , ,Ci Ci Cix y z  – coordinates of the center of the mass of element i 

 , ,i i ix y z  – coordinates of point Ai 

 i  – elongation of element i 

 iε  – Lagrange operator 

 , ,i i i    – ZYX Euler angles defined for element i in local coordinate system 

 
Superscripts 
 
 b – proposed approach in which the longitudinal flexibility is omitted 
 l  – proposed approach in which the longitudinal flexibility is considered 
 s – classical RFEM 
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