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The eigen value approach, following Laplace and Fourier transforms has been employed to find the general 
solution of the field equation in a micropolar elastic solid with voids for the plane strain problem. An application 
of an infinite space with impulsive force has been taken to illustrate the utility of the approach. The integral 
transformations have been inverted by using a numerical inversion technique to get result in physical domain. 
The result in the form of normal displacement, volume fraction, normal force stress, tangential force stress and 
tangential couple stress components has been obtained numerically and illustrated graphically to depict the effect 
of micropolarity and voids.   

  
 Key words: eigen value, voids, Laplace and Fourier transform, concentrated force, Romberg’s integration. 

 
1. Introduction 
 
 The linear theory of elastic materials with voids is one of the generalizations of the classical theory 
of elasticity. This theory has practical utility to investigate various types of geological, biological and 
synthetic porous materials for which the elastic theory is inadequate.  
 The mechanical behavior of granular masses is strongly affected by their microstructure, namely the 
relative arrangement of voids and particles, i.e., the granular fabric. The study of deformations in granular 
materials is important in many areas of the science and technology, such as powder metallurgy and 
earthquake engineering. In recent years, dynamic compaction of powders has been used to manufacture 
advance composite. A granular medium is composed of a large number of distinct particles as well as some 
heterogeneous inclusions and voids filled with gas or liquid at the boundaries of discontinuity. Mismatch and 
incident waves will produce both transmission and reflection waves of different modes. Wave propagation 
phenomenon in such media not only depends on the microstructure but on the existence of inclusions and 
voids.    
 A non-linear theory concerning solid elastic materials consisting of various pores (voids) distributed 
throughout the body has been formulated by Nunziato and Cowin (1979). Lewis and Isaak (1982) discussed 
the voids of minimum stress concentration. Later, Cowin and Nunziato (1983) developed a theory of linear 
elastic materials with voids, for the mathematical study of the mechanical behavior of porous solids. 
Chandersekharahaiah (1989) discussed the problems of complete solution in the theory of isotropic elastic 
materials with voids. Some theorems of uniqueness for linear elastic materials with voids was proved by 
Scarpetta (1995). Cowin and Nunziato (1983) introduced the presence of pores in the classical continuum 
model by assigning an additional degree of freedom to each material particle. Consequently, the bulk mass 
density of such materials is given by the product of two fields, the void volume fraction and the mass density 
of matrix material. Classical mechanics deals with the basic assumption that the effect of the microstructure 
of a material is not essential for describing mechanical behavior. Such an approximation has been shown in 
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many well-known cases. Often, however, discrepancies between the classical theory and experiments are 
observed, indicating that the microstructures might be important. For example, discrepancies have been 
found in the stress concentrations in the areas of holes, notches and cracks; elastic vibrations characterized 
by a high frequency and small wavelengths, particularly in granular composites consisting of stiff inclusions 
embedded in a weaker matrix, fibers or grains; and the mechanical behavior of complex fluids such as liquid 
crystals, polymeric suspensions, and animal blood.  
 Various degrees of freedom of a microstructure were considered by different authors, e.g., Cosserat 
and Cosserat (1909), Eringen and Suhubi (1964) and Mindlin (1964). The force at a point of a surface 
element of the body of these materials is completely characterized by a stress vector and a couple stress 
vector at that point. In the classical theory of elasticity, the effect of couple stress is neglected. Eringen 
(1966) modified his earlier theory and renamed it as the “Linear Theory of Micropolar Elasticity”.  
 Scarpetta (1990) worked on the fundamental solution in micropolar elasticity with voids. Marin 
(1996a) obtains the existence and uniqueness of solutions for boundary value problems in elasticity of 
micropolar materials with voids. Marin (1996b) discussed generalized solutions in elasticity of micropolar 
bodies with voids. Marin (1998) derived an evolutionary equation for a micropolar elastic body with voids. 
Kumar et al. (2002), discussed the surface wave propagation in a micropolar liquid saturated porous layer. 
Kumar and Ailawalia (2007) studied the interaction in a micropolar thermoelastic medium with voids due to 
distributed loads. Kumar and Ailawalia (2009) studied the influence of various sources in a micropolar 
thermoelastic medium with voids. Madeo and Gavrilyuk (2010) studied the propagation of acoustic waves in 
porous media and their reflection and transmission at a purefluid/ porous-medium permeable interface. 
Tomar and Khurana (2011) investigated the reflection and transmission phenomena of a plane longitudinal 
wave from a plane interface between two distinct micropolar porous elastic solid half spaces in welded 
contact. Kumar and Kumar (2011) studied the wave propagation in an orthotropic generalized thermoelastic 
half space with voids under initial stress. Singh and Singh (2013) investigated eigen value approach in a 
micropolar elastic medium with voids. 
  
2. Formulation and solution of the problem 

 
 We consider a homogeneous, isotropic micropolar elastic solid with voids. We take a Cartesian co-
ordinate system (x, y, z) and the z-axis is pointed into the medium. Following Eringen (1968) and Iesan 
(1985) the field equations and the constitutive relations in a micropolar elastic solid with voids in the absence 
of body forces are given by as  
 

       * ,
2

2
q 2 K K K

t


                 


u

u u                (2.1) 

 

      ,
2

2
K 2K j

t


             




                            (2.2) 

 

 
* *

* * * * * * * ,
2

2
2

q q
q q K

t t

 
          

 
u                                                                      (2.3) 

 

       * *
, , , ,ij rr ij i j j i i j ijr rt q u u u K u                                                        (2.4) 

 
  , , .ij rr ji j i j im      

                                                                                   
(2.5) 

 
 Since we are considering a two-dimensional axisymmetric problem, so we assume the components 
of the displacement vector u and microrotation vector   of the form 
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   , , ,1 3u 0 uu                     , , .20 0            (2.6) 

 
 Due to the symmetry about the z-axis all the quantities are independent of y.  
Using Eqs (2.6) the set of Eqs (2.1) - (2.3) reduces to  
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 Using Eqs (2.6) and introducing dimensionless quantities as 
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 The set of Eqs (2.7) - (2.10) reduces to (after suppressing the primes for convenience)  
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 Now applying the Laplace and Fourier transforms defined by 
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on the set of Eqs (2.13) - (2.16), we obtain,  
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 The system of Eqs (2.20) - (2.23) can be written in the vector matrix differential equation form as 
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and O is the null matrix and I is the unit matrix of order 4 
 To solve Eq.(2.24), we take 
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 For some parameter q, so we obtain  
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which leads to an eigen value problem. The characteristic equation corresponding to the matrix A is given by 
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which on expansion provides us 
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 The eigen values of the matrix A are characteristic roots of the (2.29). The eigen vectors  ,X p  

corresponding to the eigen value sq  can be determined by solving the homogenous equations 
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 Thus solution of Eq.(2.24) is as given by Sharma and Chand (1992)  
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where , , , , , ,1 2 3 4 5 6 7E E E E E E E  and 8E  are eight arbitrary constants. Equation (2.42) represents a general 
solution of the plane strain problem for an isotropic, micropolar elastic solid with voids and gives 
displacement, microrotation and volume fraction components in the transformed domain. 
 
3. Application 

 
Case-I Mechanical Normal Point Source 
 
 We consider an infinite micropolar elastic space with voids in which a concentrated force 

( ) ( )0F F x t     where 0F  is the magnitude of the force, acting in the direction of the z-axis at the origin of 
the Cartesian co-ordinate system as shown in Fig.1. The boundary conditions for the present problem on the 
plane z=0 are  
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Fig.1. Geometry of the problem. 
                      

  ( , , ) ( , , ) ,1 1u x 0 t u x 0 t 0                   , , , , ,3 3u x 0 t u x 0 t 0             (3.1) 

 

     , , , , ,2 2x 0 t x 0 t 0                    * *, , , , ,q x 0 t q x 0 t 0        (3.2) 

 

     , , , , ,31 31t x 0 t t x 0 t 0                  , , , , ( ) ( ),33 33 0t x 0 t t x 0 t F x t       (3.3) 

 

     , , , , ,32 32m x 0 t m x 0 t 0           
   * *, , , ,

.
q x 0 t q x 0 t

0
z z

  
 

         
(3.4) 

 

 Making use of Eqs (2.6), (2.12) and 0
0

F
F

K
 

 
on Eqs (2.4) - (2.5) and we get the stresses in the non-

dimensional form with primes. After suppressing the primes, we apply the Laplace and Fourier transforms 
defined by Eqs (2.18) and (2.19) on the resulting equations and from Eqs (3.1)-(3.4), we get the transformed 
components of displacement, microrotation, volume fraction, tangential force stress, normal force stress and 
tangential couple stress for z>0 which are given by  
 

   ( , , ) ,3 41 2 q z q zq z q z
1 1 1 5 2 2 6 3 3 7 4 4 8u z p a q E e a q E e a q E e a q E e      

 (3.5) 

 

  ( , , ) ,3 41 2 q z q zq z q z
3 1 5 2 6 3 7 4 8u z p b E e b E e b E e b E e        (3.6) 

 

   ( , , )  - ,3 41 2 q z q zq z q z
2 5 6 7 8z p E e E e E e E e          (3.7) 
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  * ( , , )  ,                       3 41 2 q z q zq z q z
1 5 2 6 3 7 4 8q z p c E e c E e c E e c E e        (3.8) 

 

  
   

   
( , , )    

   ,              

1 2

3 4

q z q z2 2
31 11 1 1 1 12 5 11 2 2 2 12 6

q z q z2 2
11 3 3 3 12 7 11 4 4 4 12 8

t z p s a q b s E e s a q b s E e

s a q b s E e s a q b s E e

 

 

           

         


 (3.9) 

 

  

 

   
 

( , , )  

  

 ,

1

32

4

q z
33 13 1 14 1 1 15 1 1 5

q zq z
13 2 14 2 2 15 2 2 6 13 3 14 3 3 15 3 3 7

q z
13 4 14 4 4 15 4 4 8

t z p s c s a q s b q E e

s c s a q s b q E e s c s a q s b q E e

s c s a q s b q E e







     

        

    



 (3.10) 

 

   ( , , ) ,        3 41 2 q z q zq z q z
32 1 1 2 6 3 7 4 8m z p q E e q E e q E e q E e       

                      (3.11) 
 
for z<0, the above expressions get suitably modified, e.g., 
 

   ( , , ) .                               3 41 2 q z q zq z q z
1 1 1 1 2 2 2 3 3 3 4 4 4u z p a q E e a q E e a q E e a q E e      

 (3.12) 
 
 Making use of the transformed displacements, microrotation, volume fraction and stress components 
given by Eqs (3.5)-(3.12) in the boundary conditions, we obtain eight linear relations between 

, , , , , ,1 2 3 4 5 6 7E E E E E E E  and 8E , which on solving give  
 

       *
 ,                                0

1 5 2 3 4 3 4 2 4 2 3
1 1

F
E E c a a c a a c a a

4 q
         

 (3.13) 

 

       *
 , 0

2 6 1 4 3 3 1 4 4 3 1
2 1

F
E E c a a c a a c a a

4 q
         

 (3.14) 

 

       *
 ,0

3 7 1 2 4 2 4 1 4 1 2
3 1

F
E E c a a c a a c a a

4 q
         

 

(3.15) 

 

       *
 , 0

4 8 1 3 2 2 1 3 3 2 1
4 1

F
E E c a a c a a c a a

4 q
         

 (3.16) 

 

where 
 

  

      
      
      
      

*

            

            

             .      

1 15 1 2 3 3 2 3 4 4 3 4 2 2 4

2 3 1 1 3 1 4 4 1 4 3 3 4

3 1 2 2 1 4 1 1 4 2 4 4 2

4 2 1 1 2 1 3 3 1 3 2 2 3

s c a b a b a b a b a b a b

c a b a b a b a b a b a b

c a b a b a b a b a b a b

c a b a b a b a b a b a b

       
      

      

        

(3.17) 

 
 Thus functions , , , , ,1 3 2 31 33u u T t t      and 32m have been determined in the transform domain and they 
enable us to find the displacements, microrotation, temperature field and stresses. 
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Case-II Mechanical Continuous Normal Point Source 
 
 When the plane boundary is subjected to continuous normal point force, the boundary conditions at 
the interface z=0 are 
 

                , , , , ,1 1u x 0 t u x 0 t 0                   , , , , ,3 3u x 0 t u x 0 t 0             (3.18) 

 

     , , , , ,2 2x 0 t x 0 t 0                   * *, , , , ,q x 0 t q x 0 t 0        (3.19) 

 

     , , , , ,32 32t x 0 t t x 0 t 0                     , , , , ,33 33 0t x 0 t t x 0 t F x H t      (3.20) 

 

     , , , , ,32 32m x 0 t m x 0 t 0           
   * *, , , ,

,
q x 0 t q x 0 t

0
z z

  
 

         
(3.21) 

 
where 0F  is the magnitude of the force applied and H(t) is Heaviside distribution. With the help of these 
boundary conditions (3.18) - (3.21), the expressions for the components of displacement, force stress, couple 

stress and volume fraction field are obtained by Eqs (3.5)–(3.12) replacing *
1  with * .1 p  

Particular Case I: Neglecting the influence of voids, i.e.,  * * * * *K 0         ; the expressions for 

the displacement components, force stresses and couple stress are obtained in a micropolar elastic medium. 
Particular Case II: If the effect of micropolarity is ignored, i.e.,  ;K j 0        the expressions for 

the displacement components, force stresses and volume fraction field are obtained in an elastic medium 
with voids. 
Particular Case III: If the effect of micropolarity and voids is neglected, i.e.,  K j 0         and

 * * * * *K 0         ; the expressions for the displacement components and force stresses are 

obtained in an elastic medium.  
 
4. Method for the inversion of transforms 

 
 The transformed solutions are the functions of the form ( , , )f z p , and to get the function ( , , )f r z p , 
first we invert the Fourier transform by using 
 

       , , , , .f z p f x z p e x dx




                                      (4.1) 

 
 The expression (4.1) gives us the Laplace transform ( , , )f z p  of the function ( , , )f z p . Now, for 

the fixed values of r and z the function ( , , )f z p  can be considered as the Laplace transform ( )g p  of some 
function ( )g t . Following Honig and Hirdes (1984), the Laplace transformed function ( )g p  can be inverted 
numerically as given below. 
 The function g(t) can be obtained from ( )g p  by using the inversion formula 
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  ( ) ( )
c

pt

c

1
g t e g p d

2





 
       (4.2)       

 
where C is an arbitrary real number greater than all the real parts of the singularities of ( )g p . The actual 

procedure to invert the Laplace transform consists of Eq.(4.2) together with the  -algorithm. The values of 
C and L are chosen according to the criteria outlined by Honig and Hirdes (1984). 
 The last step is to calculate the integral in Eq.(4.1).The method for evaluating this integral is 
described by Press et al. (1986), which involves the use of Romberg’s integration with adaptive step size. It 
also uses the results from successive refinements of the extended trapezoidal rule followed by extrapolation 
of the results to the limit when the step size tends to zero. 
 
5. Numerical results and discussion 
 
 Following Eringen (1984), we take the following values of relevant parameters for the magnesium 
crystal  
 

  . /10 29 4 10 N m   ,   /10 24 10 N m   ,   . / ,3 31 74 10 kg m      
. 90 779 10 N   ,      

 

  . 19 2j 0 2 10 m  ,       # . 93 688 10 N   ,         # . /10 21 138494 10 N m   , 
 

  # . /10 21 1475 10 N m   ,   # . sec/1 20 0787 10 N m    ,    
# . 19 2K 1 1753 10 m  . 

 
The computations were carried out for non-dimensional time t=0.1 at z=1 in the range 0 x 8  . The 

variations of non-dimensional normal displacement,  /3 3 0U 2u F  non-dimensional volume fraction, 

 * / 0Q 2q F  non-dimensional normal stress and  /33 33 0T 2t F  non-dimensional tangential couple stress 

with  /32 32 0M 2m F  non-dimensional distance ‘x’ are shown in Figs 2-5. The solid line gives the 

variations of components for a micropolar elastic solid with voids (MESV) whereas the very small dashed 
lines are for a micropolar elastic solid (MES), these lines correspond to the variations for a micropolar elastic 
solid with voids (ESV) and large dashed lines are for an elastic solid (ES).  
 
Mechanical normal point source 
 
 The variations of normal displacement, volume fraction field, normal force stress and tangential 
couple stress with distance ‘x’ for MESV, MES, EVS and ES when a mechanical normal point source is 
applied are shown in Figs 2, 3, 4,5, respectively.  
 The variations of normal displacement U

3
 with x for all four theories (MESV,MES, ESV, ES) are 

shown in Fig.2 and it is observed that the behavior of U
3
 for MES is opposite to MESV, ESV and ES. The 

values of U
3
 decrease sharply as r lies between 0 x 3   whereas for MES the values of U

3
 increase in the 

same range. Very near to the point of action of sources, the magnitude of values of U
3
 is larger for MESV 

and smallest for MES, as the source is very near to the point of action.  
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Fig.2. Variations of normal distance  3 3 0U 2u F  due to normal point source with distance x. 

 

 
 

Fig.3. Variations of volume fraction field  0Q 2q F  due to normal point source with distance x. 
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 Figure 3 depicts the variations of volume fraction Q  with ‘x’ for MESV and ESV. The values of Q 
decrease sharply in the range .0 x 2 5   The values for MESV are greater than these for ESV in the initial 
range .0 x 2 5   and then in the range 7 x 8  . 
 The variations of normal force stress T

33
 with r are shown in Fig.4. The values of T

33
 start with a 

sharp decrease for MESV, MES and ES whereas for the case of ESV they start with a small increase. The 
magnitude of values of T

33
 is largest for ES and smallest for MES.  

 

 
Fig.4. Variations of normal force stress  33 33 0T 2t F  due to normal point source with distance x. 

 
Fig.5. Variations of tangential couple stress  32 33 0M 2m F  due to normal point source with distance x. 
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 Figure 5 depicts the variations of M
32

 with ‘x’. Beginning with a small decrease in the range 

.0 x 1 5  , the value of couple stress for MESV and MES start to grow up with a small variation. The 
behavior of variation of M32 for both the cases is same whereas their corresponding values are different. 
 
Conclusion 
 
 A significant effect of voids and micropolarity has been observed from the above numerical 
discussion. The magnitude of variations of normal displacement, normal force stress and tangential couple 
stress is observed for a mechanical normal point source. The void effect is appreciable in the mechanical 
sources. It is observed that the components of displacement, force stress, volume fraction field have large 
values which become smaller and smaller with the increase in the value of distance ‘x’.   
 
Nomenclature 
 
 j – micro-inertia 
 mij – couple stress tensor 
 tij – force stress tensor 
 u  – displacement vector 

 q  – volume fraction 

 , , , K – micropolar material constants 
   – gradient operator 
 ij  – Kronecker delta 

 ijr – alternating tensor 
 ,  – Lame’s constants 

* * * * * *, , , , ,K      – void constants 
   – density 
   – microrotation vector 
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