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Abstract

The purpose of this study is to develop an effective computational scheme to solve the
optimal tracking control problem for repeated trials in distributed-parameter system in the
situation where quantity under control cannot be observed directly. In such situations, the
reliability of model predictions becomes more important than the accuracy of model param-
eters, because the ultimate objective in model-based control is the prediction or forecast of
the system states. Particularly, given a finite number of possible spatial locations at which
sensors may reside, we select gaged sites so as maximize the prediction accuracy. For that
purpose, an suitable output criterion is proposed as a measure of the prediction accuracy and
the sensor selection problem formulated in terms of optimization task. To solve it, a special-
ized technique is adopted based on relaxation of the original discrete optimization problem
which amounts to operating on the density of sensors in lieu of their individual positions. As
a result, a simple and effective exchange algorithm is outlined to select the gaged sites. Then,
the measurement schedule providing the most informative system observations is further in-
corporated into the adaptive control scheme based on iterative learning control technique
for effective solution of underlying tracking control problem. The proposed approach is veri-
fied by numerical experiments on the model of the friction welding process of two aluminum
plates.

1 Introduction

Distributed parameter systems (DPSs) form a wide range of complex real-world processes of a great
practical importance. In recent years, due to the constantly growing demands on the control quality
for dynamic systems, the strong interest is observed in extending the modeling and control design to
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the framework of spatio-temporal systems. This leads directly to the complex infinite-dimensional
mathematical description usually using partial differential equations (PDEs) [2, 4, 9]. Although,
more sophisticated level of modeling, the significance of this design has been widely recognized,
e.g., in air quality control, fluid dynamics, heat transfer or numerous industrial processes [7, 18,
23, 24, 26, 27]. The existing solutions usually require some extensive and complex computational
methods. This discourages their use as in industrial applications a relatively simple implementation
is preferred allowing for lower cost and easier maintenance of the control process.

To address this issue, in this work we provide a new results making use of iterative learning
control (ILC) which emerged in the context of systems that repeat the same finite duration task
over and over again. This form of data-driven repetitive control was first proposed in the mid 80s
and since then it has been a very active area of research and applications [1, 3, 5, 6, 12, 17,25,29].

However, in the case of repetitive DPSs there is still no general theory for the control synthesis
of ILC, despite the fact that such processes are quite frequent in industrial production. A great
difficulty here is the inability to provide the simultaneous actuation and sensing action over the
entire spatial domain. This leads to the question of how to properly distribute sensing and actu-
ating over the spatial domain so as the information content of the resulting measurements will be
sufficient to perform the arbitrarily defined control task. Therefore the contributions to this field
are rather limited. Some successful attempts in terms of boundary control for parabolic PDEs
were reported in [10, 13, 14] but are dedicated to to one spatial dimension and fixed measurement
locations. The ILC for hyperbolic PDEs in multidimensional case based on different type of spatial
discretizations were developed in [8,22] but there are strictly dependent on spatial mesh resolution.
Recently, the optimal reference tracking approach has been proposed by the authors based on the
concept of distributed sensing and actuation [19,20] with a decentralized control update strategy.

In many applications, however, the controlled quantity is quite often unavailable for direct
measurement what may be a significant impediment to effectively apply the ILC, e.g., when some
spatial area is inaccessible to measurement transducers or we have to control the state of the
DPS in hand via indirect observations of its output. In such a way, the reliability of model
predictions is sometimes more important than the accuracy of model parameters, because the
ultimate objective in control and modelling is the prediction or forecast of the system states [15].
The topic was discussed to some extent in [27], but without connection to control of DPS. This
gap constitutes the main motivation for the study undertaken here in order to extend approach
set forth in [20]. For that purpose, the suitable output criterion related to the variance of the
controlled variable as measure of the prediction accuracy is proposed. The setting examined here
corresponds to situations where given a finite number of possible spatial sites at which sensors may
take observations, we select some subset where the measurements provide the most informative
data for the prediction. The resulting discrete optimization problem is then approximated based on
relaxation which amounts to operating on the density of sensors in lieu of their individual positions.
In particular the Fedorov’s idea of directly constrained design measures [11] is used resulting in a
simple and effective exchange algorithm being a dedicated adaptation of the techniques reported
in [18,21,27].

The main contribution of this work is as follows: (1) the proposal of the appropriate criterion to
quantify the prediction accuracy, (2) adaptation of the ingenious exchange algorithm for efficient
approximation of the solution for sensor selection problem, (3) the extension of the ILC scheme
developed in [20] to the prediction-based measurement strategy, (4) verification on the highly
non-trivial three-dimensional example of friction welding of two aluminium plates.



2 Sensor selection problem in context

2.1 Model of system and measurements

Let us consider a bounded spatial domain Ω ⊂ Rd with sufficiently smooth boundary Γ, a bounded
time interval T = (0, tf ], and a DPS whose scalar state at a spatial point x ∈ Ω̄ ⊂ Rd and time
instant t ∈ T̄ is denoted by y(x, t). Mathematically, the system state can be described by PDE

∂y

∂t
= F

(
x, t, y, θ

)
in Ω × T , (1)

where F is a well-posed, linear, differential operator which involves first- and second-order spatial
derivatives and may include terms accounting for forcing inputs specified a priori. The equation
(1) is accompanied by the appropriate boundary and initial conditions

B(x, t, y, θ) = u(x, t) on Γ × T, (2)

y = y0(x) in Ω × {t = 0}, (3)

respectively, B being an operator acting on the boundary Γ and y0 a given function. Here, u(x, t)
denotes the external control action on the boundary being the result of actuation using R devices.
Further, it is assumed to be implemented in the form of a control-affine approximation, i.e.,

u(x, t) =
R∑
i=1

qi(x)ui(t), (4)

where ui(t) is the control signal of the i-th actuator and qi(x) denotes a spatial distribution of
actuation, which is nonnegative integrable function satisfying the normalization condition, i.e.∫
Γ
qi(x)ds = 1. Such actuation field is very convenient as it covers a wide variety of practical

situations (from pointwise actuation to fully distributed control).
Conditions (2) and (3) complement (1) such that the existence of a sufficiently smooth and

unique solution is guaranteed. We assume that the forms of F and B are given explicitly up
to an m-dimensional vector of unknown constant parameters θ which must be estimated using
observations of the system. The implicit dependence of the state y on the parameter vector θ will
be denoted as y(x, t; θ).

In what follows, we consider the observations provided by the network of n stationary pointwise
sensors taking measurements continuously in time in consecutive trials of the process, i.e.

zjk(t) = yk(xj, t; θ) + εk(xℓ, t), t ∈ T, (5)

where k is the trial number, zjk(t) is the scalar output and xj ∈ X stands for the location of the
jth sensor (ℓ = 1, . . . , n), X signifies the part of the spatial domain Ω where the measurements
can be made. The control input vector at kth trial is denoted as uk(t) = [uk1(t), . . . , ukm(t)]T

and the respective system response as yk(x, t; θ). Finally, εk( · , · ) denotes the measurement noise
customarily assumed to be zero-mean, spatially uncorrelated and white Gaussian process [16, 27].

2.2 Iterative learning control

In the setting considered here, the control objective is to modify the input signal vector uk(t) in
each subsequent trial in order to make the system output zk(t)⋆ at some spatial location x⋆ ∈ Ω\X
follow some differentiable reference trajectory zref(t) with arbitrary accuracy.



The effect of this procedure is to be able to estimate the value of the point measurement
q(x, t; θ) from the measurement prohibited zone. Such a zone may, for example, be inaccessible to
the sensor by being covered with tool elements or by a restricted working space.

In the many applications, however, the controlled quantity is quite often unavailable for direct
measurement what may be a significant impediment to effectively apply the ILC, e.g., when some
spatial area is inaccessible to measurement transducers or we have to control the state of the DPS
in hand via indirect observations of its output. In such a way, the reliability of model predictions is
sometimes more important than the accuracy of model parameters, because the ultimate objective
in control and modelling is the prediction or forecast of the system states

The control objective is to modify the input signal vector uk(t) in each subsequent trial in
order to make the measurement output vector zk(t) = [z1k(t), . . . , znk (t)]T follow some differentiable
reference trajectory zref(t) with arbitrary accuracy. In this way, it is expected to improve the
tracking error norm iteratively in the trial domain:

∥ek(t)∥ = ∥zk(t) − zref(t)∥

i.e. to converge uniformly as close to zero as possible when k → ∞.
Here, to achieve this control goal we adopt a feedforward ILC scheme, where measurement

data gathered at the previous trial can be effectively used to update the control input based on
the tracking error [3, 19, 22]. Taking into account a specificity of the dynamics of DPS in context
(??)–(??) we propose to apply the following control update:

uk+1(t) = uk(t) + Λkėk(t) + Υkek(t) (6)

where Λk,Υk ∈ Rm×n are learning coefficients matrices. Such update rule keeps the control design
on relatively simple level on one hand, and provides efficient reaction on information included in
tracking error on the other hand. Thus, we are flexible in choosing the proper source of learning
information:

� the anticipatory update for Υk = 0 (so called D-type update rule),

� the proportional update for Λk = 0 (so called P-type update rule),

in order to speed up the convergence.

2.3 Optimal sensor location

The purpose of the selected measurement strategy is to find such a subset of measurement points
to estimate the parameters vector θ of the selected DPS with the greatest possible accuracy in each
trail. The effect of this procedure is to be able to estimate the value of the point measurement
q(x, t; θ) from the measurement prohibited zone. Such a zone may, for example, be inaccessible to
the sensor by being covered with tool elements or by a restricted working space. For this reason,
we are interested in such a subset of measurement points that leads to the maximization of the
accuracy of q mapping, hence the choice of the method presented in [28], assuming that the sensors
are not mobile. Therefore, the variance of q for the assumed initial parameter vector θ0 has the
form

var(q(t; θ̂)) = E
{

[q(t; θ − q(t; θ̂)]2
}

≈ ∂q(t; θ0)

∂θ
cov(θ̂)

(∂q(t; θ0)

∂θ

)T

.
(7)



It is worth mentioning that in each subsequent iteration the initial vector of θ0 parameters is equal
to θ̂ from the last trial. Under certain assumptions, cov(θ̂) can be approximated using the inverse
of the Fisher’s Information Matrix (FIM), which can be represented as

M(s) =
1

Ntf

N∑
j=1

tf∑
t=0

g(xj, t)gT(xj, t), (8)

where N is number of spatial points and s(t) has following form

s = (x1, x2, . . . , xN). (9)

The function g (x, t), on the other hand, is a partial derivative with respect to the parameters

g(x, t) =
(∂y(x, t; θ0)

∂θ

)T

. (10)

Hence, on the basis of the equations x and y, we consequently obtained

var(q(t; θ̂)) ∼ ∂q(t; θ0)

∂θ
M−1(s)

(∂q(t; θ0)

∂θ

)T

. (11)

In order to determine the sensor subset that maximizes information about the process, the following
objective function should be minimized

J = min tr {A(t)M−1(s)} (12)

where

A(t) =
(∂q(t; θ0)

∂θ

)T∂q(t; θ0)

∂θ
. (13)

2.4 Clusterization-Free Design for choosing sensors locations

In order to minimize the mentioned objective function, a modification of the so-called clusterization-
free scanning. This method consists in exchanging points from a spatial grid between two subsets
of Q one to one. The assumption is that the entire set of measurement points has been divided
into two parts. The first subset X1 includes a predetermined number of measurements, while the
second one X2 is its complement. In the spirit of this strategy, the variance var(q(t; θ̂)) is computed
for each point on the spatial grid. Then, elements in each of the members are selected based on
the set. For X1 the representative will be the point with the greatest variance, while for X2 the
point with the smallest variance. The condition for the exchange is the fulfillment of the condition
of minimizing the variance for a measurement set with some assumed ϵ. The algorithm ends after
obtaining the lowest variance for X1 or when it reaches the given number of iterations.

3 NUMERICAL EXAMPLE

Let us consider a process of friction welding of two aluminium plates shown in the figure 1. Two
symmetrically arranged plates with a thickness of 12.7 mm are welded. The rotating arm and
pin of the tool touch the surfaces of both aluminium plates, giving off heat to both. The tool
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Figure 1: Friction stir welding of an aluminum plate - explanatory figure

moves in a uniform, rectilinear motion along the joint of the plates, creating an assumed uniform
weld. To simplify the model, the coordinate system is movable and its origin is at the centre
of the pin. In addition to said transformation, it is also assumed that said plates are infinitely
long. Such a procedure allows omitting the analysis of the influence of the emission from the edge
surface on the thermal processes. Another simplification is the neglect of the mass flow of the
melted material. Due to the computational complexity and the assumed symmetry of the system,
the area of consideration was also limited to one board. The upper surface of the aluminum is
responsible for the natural convection and radiation of the surface to the environment, and the
side surfaces are insulated.

Based on the process modelling assumptions presented above, the equation takes the following
form:

ρCp
∂ȳ(x, t)

∂t
+ ρCpv(x) · ∇ȳ(x, t)

−∇ · κ∇ȳ(x, t) = 0,
. (14)

where κ represents thermal conductivity equal 238[W/(mK)], ρ = 2700[kg/m3] is the density,
Cp = 900[J/(kgK)] denotes specific heat capacity, and v(x)is the linear speed of the tool along the
x-axis. The speed value is fixed at 1.6[mm/s] in the opposite direction to the pin movement.

The heat source is generated as the friction of the pin and tool shoulder against the workpiece.
These impacts can be considered separately by creating the following relationships:

qp(T ) =
µ√

3(1 + µ2
rpω(t)Ȳ (T ), (15)

qs(r, T ) =

{
µ(Fn/As)ω(t)r(x), if T < Tmelt

0, if T ≥ Tmelt,
(16)

where µ = 0.4 is the friction coefficient, rp = 6[mm] denotes the pin radius, ω is the angular
velocity of the pin, Ȳ (T ) refers to average shear stress of aluminium approximated by the equation
Ȳ (T ) = 229/(1+exp(1/30(T −465)))+12[MPa] shown in Fig.2, Fn = 16[kN ] is the normal force,
As = 0.0018504[m2] represents the shoulder surface area and Tmelt = 933K is aluminium melting
temperature. r denotes distance in xy-plane from tool center axis.

Both the lower and upper surfaces emit thermal radiation and natural convection, which is the
same as the heat loss of aluminum plates. They can be modeled as two separate heat fluxes:

qu(T ) = hu(T0 − T + σϵ(T 4
amb − T 4)), (17)
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Figure 2: Approximation of Ȳ (T )

qd(T ) = hd(T0 − T + σϵ(T 4
amb − T 4)) (18)

here hu = 12.25W/(m2K) and hd = 6.25W/(m2K) denote heat transfer coefficient for natural
convection, T0 refers to associated reference temperature (300K), ϵ is the surface emissivity, σ is
the Stefan-Boltzmann constant and Tamb = 300K denotes ambient temperature. To illustrate the

qs

qp

Thermal insulation

(a) Boundary conditions qp, qs and thermal insulation
Top

Bottom

(b) Boundary conditions qu(top) and qd(bottom)

Figure 3: Illustration of boundary conditions.

problem of boundary conditions, Fig. 3 shows their graphical interpretation. Fig. 3(a) shows
the boundary conditions related to the effect of the actuator on the aluminium plates and the
conditions related to the thermal insulation. On the other hand, on fig 3(b) can be seen the
conditions related to the emissivity of the surface to the environment from the upper and lower
surfaces of the plate, respectively.

The purpose of the control is to follow the reference temperature profile at the selected point.

zref(t) = 633/(1 + exp(−t + 7.5)) + 300, (19)

Moreover, in order to melt the material, the arm and the pin have to generate the appropriate
temperature by friction, it is not possible to simply measure the temperature under the tool.
Measurement of the temperature at the point located under the tool arm on the upper surface



of the plate is not physically possible, therefore the temperature should be estimated first. For
this purpose, the equation describing the temperature evolution with respect to the µ parameter
was determined using the partial derivative. The form of heat sources and fluxes are described as
follow:

∂qp(T, µ)

∂µ
=

(∂Ȳ (T, µ)

∂µ
+ Ȳ (T, µ)

) µω(t)rp√
3(1 + µ2)

− µ2ω(t)rpȲ (T, µ)√
3(1 + µ2)3

,

(20)

∂qs(r, T, µ)

∂µ
=

{
(Fn/As)ω(t)r(x), if T < Tmelt

0, if T ≥ Tmelt,
(21)

∂qu(T, µ)

∂µ
= −hu(

∂T (µ)

∂µ
+ 4σϵT (µ)3), (22)

∂qd(T, µ)

∂µ
= −hd(

∂T (µ)

∂µ
+ 4σϵT (µ)3) (23)

Such a procedure simplifies the determination of the variance, thus allowing us to find the optimal
position of the sensors on the spatial grid. The set of these sensors simultaneously enables the
estimation of temperature measurements in a forbidden place. Hence it is possible to follow the
reference temperature.

The simulations were carried out using a PC with Intel Core i7 1.99 GHz and 16 GB RAM.
On the software side, Comsol Multiphisics 5.4 and Matlab 2016b were used. The model
consists of 668 spatial points and 1758 triangular and quadratic prisms, and 501 time intervals
t ∈ [0; 50]. In the figure showing the spatial grid, the area forbidden for measurement, due to the
tool operation, and modelling simplifications (such as infinite domains) are marked with light gray.
Additionally, a red x-marker indicates a point that is interesting to measure.

It is assumed that the number of sensors participating in the experiment cannot exceed 10%
of the points allowed for measurement. At the same time, the greater their number, the more
accurate the knowledge about the dynamics of the process. However, there is a limited number at
which the quality of information slightly improves. The following shows how the position of the
measurement points changes during the first iteration (from blue to green).First, a set of input
points is drawn. Then, to find the minimum variance, clustering-free scanning is used. As you
can see in the figure 6 the set change its points (green points). Interestingly, from an engineering
point of view, it would seem that the best solution to obtain the best information about the
process should be to distribute the measurement grid evenly. However, what can be seen about
the dynamics of the process can be found by taking measurements near the forbidden zone. This is
due to the fact that the friction parameter µ affects the tool environment. In a similar experiment,
when the parameters describing the emissivity were taken into account, the measurement could was
moved to another area. It is strongly related to the distribution of ratios described by derivative
instruments in terms of parameters (see Fig. 7). Determining the place of measurement is not
an obvious task as mentioned above, on the contrary, it is a non-trivial task that often requires
solving very difficult equations with often very conservative assumptions.

An experiment scenario was assumed that shows the influence of the number of parameters as
indicators used in the measurement strategy. Table x proposes combinations of parameters and



Figure 4: Search for optimal measurement points for µ.

Figure 5: Search for optimal measurement points for µ and hu.

Figure 6: Search for optimal measurement points for µ, hu and hd.

Figure 7: Distribution of µ.



Parameters MSE for last iteration
µ 0.60430
µ, hu 0.01213
µ, hu, hd 0.01215
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Figure 8: Convegence of ILC

the mean square errors obtained for them from the last ILC trials. Such a comparison can clearly
demonstrate the quality of the estimation in terms of the number and selection of parameters.

The next step is to determine the value of the parameters for the model estimating the temper-
ature at the point from the forbidden zone. Using mentioned measurement strategy it is possible
to find a parameters that allow a fairly accurate temperature estimation in chosen point. In order
to obtain the melting point of aluminium allowing for welding of two plates, the tool rotational
speed was used as a control value, while the tuning of this value was taken over by the control
algorithm with iterative learning of the P-type.

In order to confirm the correctness of choosing the parameters and their number, an analysis
of the convergence of the ILC algorithm with a constant learning coefficient λ = 0.256 determined
using optimization methods was performed, the results are shown in Fig. 8. As can be seen, in the
case of a single parameter in the form of the friction coefficient, there is a tendency to minimize the
error. However, the use of additional information related to the emissivity from the top surface hu

improves the estimation of the measurement value and at the same time translates into acceleration
and improvement of convergence. Moreover, the use of the third piece of information, which at
the same time has the smallest impact on the measurement at the point of interest to us, does not
significantly improve the convergence rate, but also slightly worsens it.

For this reason, the best version with two parameters was adopted in further consideration.
As can be seen in Fig. 9, the evolution of temperature for subsequent selected trials is presented.
Already on the fifth trial, the algorithm begins to do very well with trajectory tracking. It is
worth noting that the error in the last iteration is only less than 0.11 [K] which is much less than
0.1%. It is also worth noting that despite the large overshoot of 43%, the maximum rotational
speed is significantly lower than the permissible rotational speeds for spindles in such applications,
permissible in the literature



0 5 10 15 20 25 30 35 40 45 50

time[s]

300

400

500

600

700

800

900

1000

1100
te

m
pe

ra
tu

re
 [K

]

k=1
k=2
k=5
k=7
k=15
reference

Figure 9: Temperature in trials.

0 5 10 15 20 25 30 35 40 45 50

time[s]

0

20

40

60

80

100

120

140

160

u(
t)

 [r
ad

/s
]

k=1
k=15

Figure 10: Control signal.



References

[1] Hyo-Sung Ahn, YangQuan Chen, and Kevin L Moore. Iterative learning control: brief survey
and categorization. IEEE Transactions on Systems Man and Cybernetics Part C Applications
and Reviews, 37(6):1099, 2007.

[2] William F Ames. Numerical methods for partial differential equations. Academic press, 2014.

[3] Suguru Arimoto, Sadao Kawamura, and Fumio Miyazaki. Bettering operation of robots by
learning. Journal of Robotic systems, 1(2):123–140, 1984.

[4] Alain Bensoussan, Giuseppe Da Prato, Michel C Delfour, and Sanjoy K Mitter. Representation
and control of infinite dimensional systems, volume 1. Birkhäuser Boston, 1992.
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