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The paper deals with an unsteady two dimensional laminar slip flow of a viscous incompressible 
magnetomicropolar fluid past a semi infinite porous plate embedded in a porous medium. The flow is under the 
influence of a transverse magnetic field and heat source/sink. The free stream velocity follows an exponentially 
increasing or decreasing small perturbation law. The porous surface absorbs the fluid with time varying suction 
velocity. Expressions are obtained for velocity and temperature fields, mean angular velocity, skin friction and 
the Nusselt number. 
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1. Introduction 
 
 In the literatures, extensive research has been mode on a steady/unsteady free convection heat 
transfer flow in a porous medium. Details of the flow of Newtonion fluids through a porous medium were 
given in Kokac et al. (1991), Nield and Bejan (1992). Yamamoto and Yoshidha (1976) considered a flow 
with convection acceleration on a plane porous wall specifically for the flow outside the vortex layer. 
Chawala and Singh (1979), Raptis et al. (1981) studied flows through a porous medium considering 
generalized Darcy’s law. 
 In all the above-mentioned research papers generalized Darcy’s law is derived without taking into 
account the angular velocity of the fluid particles. Aero et al. (1965) derived and solved the flow equations 
of the fluid in which angular velocity of the fluid particles was considered. These fluids are known as polar 
fluids in the literature and are more general than ordinary fluids (Lukaszewicz, 1999). Micropolar fluids are 
fluids with microstructure and belong to a class of fluids with asymmetrical stress tensor. Physically, they 
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represent fluids consisting of randomly oriented particles suspended in a viscous medium. Ahmedi (1976) 
studied the flow of a micropolar fluid. Recently, Kim (2001) studied the basic problem of a viscous 
incompressible micropolar fluid with fluctuating stream velocity which was also studied by Stokes (1851) 
for a Newtonion fluid. Because of their practical importance the unsteady flow problems were studied 
extensively by a number of researchers. Soundelgeker (1973) studied the time dependent flow problems on 
an infinite vertical plate, when it is cooled or heated by free convection currents. El Arabawy and Hassen 
(2003) studied the effects of suction/injection on a flow of a micropolar fluid past a continuously moving 
plate in the presence of radiation. Chu et al. (2002) solved the problems of micropolar fluid flows along a 
vertical wavy surface with a discontinuous temperature profile. Perhaps the most widely known aspects of 
non equilibrium gas flow in the fact that the velocity of a gas close to a surface describing slip accurately, 
however is still an active area of research. 
 In this paper it is proposed to study an unsteady two dimensional laminar slip flow of a viscous 
incompressible magnetomicropolar fluid past a semi infinite porous plate embedded in a porous medium. We 
consider the free stream to consist of a mean velocity and temperature with a superimposed exponentially 
small variation with time.   
 
2. Formulation of the problem 
 
 Consider an unsteady two dimensional slip flow of a laminar, incompressible, magnetomicropolar 
fluid past a semi infinite porous plate embedded in a porous medium and subjected to the presence of an 
applied pressure gradient. The permeability of the porous medium is assumed as constant. 

 

 
 

Fig. Physical model and coordinate system of the problem 
 
 Under the assumptions the flow field is governed by the following equations 
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x  is the dimensional distance along the plate and y  is normal to the plate, u  and v  are the dimensional 

velocity components along x  and y , respectively, ρ is the density,   is the kinematic viscosity, r  is the 

kinematic rotational viscosity, f  is the coefficient of volumetric expansion of the working fluid, K   is an 

empirical constant called permeability of the porous medium, j  is the micro inertia density,  is the 

component of angular velocity vector normal to the xy-plane,  is the spin gradient viscosity, S is the heat 
source parameter, 0B  is the magnetic field, T is the temperature , and  is the fluid thermal diffusivity.  
The boundary conditions are as follows 
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 Equation of continuity Eq.(2.1), shows that the suction velocity normal to the plate is a function of 
time only and we shall take it in the form 
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where A is any real constant, A 1   and there is small variation with time. 0V  is the scale of suction 
velocity which has a non zero positive constant.  
Outside the boundary layer, Eq.(2.2) gives 
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Now, we introduce the dimensionless quantities as 
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and the spin gradient viscosity γ is defined as 
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 
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 is the dimensionless viscosity ratio and   is the coefficient of gyro viscosity (or vortex 

viscosity) management. 
In view of Eqs (2.6) and (2.7), the governing Eq.(2.2) to Eq.(2.4) reduce to the following non-

dimensional form 
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with the corresponding boundary conditions  
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3. Solution of the problem 
 

 To solve the partial differential Eqs (2.9) to (2.11), we assume for small ε 
 

  ( , ) ( ) ( ) ...nt
0 1f y t f y e f y     (3.1) 

 
where f stands for u,  and .  
 Substituting expressions (3.1) in Eqs (2.8) to (2.10) and equating the harmonic and non 

harmonic terms and neglecting the coefficient of o  2 , we get the following sets of ordinary 

differential equations. 
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The relevant boundary conditions are given as 
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The prime denotes differentiation with respect to y. 
 On solving Eqs (3.2) to (3.7) with the help of boundary conditions (3.8), we get the following 
results 
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 Using Eq.(3.1), we obtain the main, angular velocity and temperature as  
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4. Skin friction and Nusselt number 
 
 After obtaining velocity distribution, the important parameter of skin friction at the plate can now be 
obtained as 
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 From Eq.(3.17), we calculate the rate of heat transfer in terms of the Nusselt number as 
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5. Discussions and conclusion 
 
 The effects of suction velocity varying exponentially in time about a non zero constant mean value on the 
flow and heat transfer of an incompressible magnetomicropolar fluid along a vertical porous plate were 
determined for different values of β (rotational parameter), K (permeability parameter), S (heat source parameter), 
h (slip parameter) and Gr (Grashof number) fixing ε = 0.1,  = 0.1, A = 0.5, n = 0.1, t = 1. 

In Fig.1, the velocity distribution is plotted against y taking air (Pr = 0.71) as a fluid. It is observed that 
the velocity increases with the increase of h, S, M, and K, but when the rotational parameter is increased the 
velocity has decreases. 

Moreover, the velocity increases for an increase in Gr but a fall in velocity is observed for negative 
values of Gr. We may deduce that these results are consistent with the physical observations for the case of 
cooling or heating of the surface by natural convection. 

The variation of temperature against y is illustrated in Fig.2. Here, it is interesting to note that for the 
case of air an increase in the source parameter increases the temperature but for water the temperature decreases 
with an increase of the source parameter.   
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Fig.1.Velocity distribution plotted against y for different values of β, M, K, S, h and Gr. 
 

 
 

Fig.2. Temperature distribution plotted against y for different values of S and Pr. 
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Moreover, an increase in Pr decreases the temperature of the fluid. The reason is that smaller values of 
the Prandtl number are equivalent to increasing thermal conductivity and therefore heat is able to diffuse away 
from the heated surface more rapidly. 
 In Fig.3, the non dimensional angular velocity vector is plotted for different values of S and Gr. 

 

 
 

Fig.3. Angular velocity  plotted against y for different values of S and Gr. 
 
 It is noted that angular velocity decreases with the increase of S and Gr. 
 The skin friction  is plotted against β at the cooling plate in Fig.4.  
 

 
 

Fig.4. Skin friction () plotted against β for different values of S, M and Gr. 
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 It is observed that an increase in M and Gr increases , but an increase in S decreases the skin friction. 
For the Nusselt number (Nu) at the plate y = 0, we observed from Fig.5, that it increases with the increase of S, 
and decreases with the increase of Pr. 
 

 
 

Fig.5. Nusselt Number Nu plotted against t for different values of S and Pr. 
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Nomenclature 
 
 A  – suction velocity amplitude 
 0B   – magnetic field 

 pC   – specific heat at constant pressure 

 Ε  – scalar constant  1  

 Gr  – Grashof number 
 g  – acceleration due to gravity 
 K  – permeability of the porous medium 
 Nu  – Nusselt number 
 n  – dimensionless exponential index 
 Pr  – Prandtl number 
 S  – heat source parameter 
 T  – temperature 
 t  – dimensionless time 
 0U   – scale of free stream velocity 

 u, v  – component of velocity along and perpendicular to the plate, respectively 
 0V   – scale of suction velocity 
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 x, y  – distances along and perpendicular to the plate, respectively 
   – fluid thermal diffusivity 
    – dimensionless viscosity ratio 
 f   – coefficient of volumetric expansion of the working fluid 

   – spin gradient viscosity 
   – dimensionless temperature 
    – thermal conductivity 
 µ  – fluid dynamic viscosity 
    – fluid kinematic viscosity 
 r   – fluid kinematic rotational viscosity 

    – fluid density 

   – angular velocity vector 
    – coefficient of gyro viscosity 
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