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This paper presents both analytical and numerical analyses of a fully developed unsteady/steady natural 
convection flow of a reactive viscous fluid in an open ended vertical annulus. Analytical expressions for velocity, 
temperature, skin-friction and rate of heat transfer are obtained after simplifying and solving the governing 
differential equations with reasonable approximations. The interesting result found in this study is that an increase 
in non-dimensional time ( )t , increases both temperature and velocity profiles until a steady-state value is attained. 
Subsequent results obtained by numerical calculations show excellent agreement with analytical results. 
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1. Introduction 
 
 An unsteady/steady natural convection flow in a vertical concentric annulus is of interest in several 
engineering applications such as geothermal energy extraction, oil recovery, food processing, casting and 
welding of manufacturing process, the dispersion of chemical contaminants in various process in the 
chemical industry and environment to mention but a few . 
 The annular geometry is also widely employed in the field of exchangers. A typical example is that 
of gas-cooled nuclear reactors, in which cylindrical fashionable fuel elements are placed axially in vertical 
coolant channels within the graphite moderator, the cooling gas flowing along the annulus parallel to the fuel 
elements. 
 Unsteady/steady flow formation problems have been studied by many authors, for example: Jha 
(2001) and Jha et al. (2003) and Singh et al. (1996). Recently, Jha and Ajibade (2010) studied flow 
formation between vertical parallel plates with one plate isothermally heated and the other thermally 
insulated. Related works on a steady laminar natural convection in vertical concentric annuli have been 
studied by El-Shaarawi and Sarhan (1981), El-shaarawi and Al-Nimr (1990) and Hosseini et al. (2005), 
many studies provided analytical solutions for steady fully developed free-convection flows in vertical annuli 
considering different thermal configurations. The formulation of reactive viscous fluids was first introduced 
by Frank-Kamenetskii (1969). Chao et al. (1996) investigated theoretically the heat transfer and reaction 
characteristics of a chemically reactive forced convection flow near the stagnation point of a catalytic porous 
bed with finite thickness. A single –reactant, first-order, one-step Arrhenius reaction is assumed to occur. 
Minto et al. (1998). Merkin and Chaudhary (1994) studied a free-convection boundary-layer flow of a pure, 
viscous fluid near a stagnation point and along a heated vertical surface. According to these authors there is a 
three-way coupling between the fluid flow, fluid/surface temperature and reactant species concentration. 
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Thus, an interaction between the homogeneous reactions occurring on a catalytic surface is very complex 
and therefore difficult to model. Makinde (2005; 2006; 2008) examined exothermic explosions in a heated 
cylindrical pipe under Biomolecular Arrhenus and sensitized reaction rates neglecting the consumption of the 
material. Similarly, Ayeni (1982) and Dainton (1960) studied a realistic mathematical desription of thermal 
expolosion which include the effects of Arrhenius temperature dependence with variable pre-exponential 
factor. Most recently, Jha et al. (2011) investigated a transient natural convection flow of a reactive viscous 
flow in a vertical channel formed by two infinite vertical parallel plates. They obtained the transient solution 
using numerical schemes and the steady-state solution by the perturbation technique. It was pointed out that 
the rate of heat transfer and skin-friction on both channel plates increase as the reactant consumption 
parameter increases. 
  In this study, special attention has been given to the combined effects of Frank-Kamenetskii, 
activation energy parameters and the Prandtl number on an unsteady/steady natural convection flow of a 
viscous reactive fluid in a vertical annulus.  
 
2. Mathematical analysis 
 
 We consider an unsteady fully developed natural convection flow inside a vertical annulus of an 
infinite length as shown in Fig.1 immersed in a fluid at a constant temperature 0T  for .t 0   At ,t 0   the 
fluid starts heat generation due to its reactive nature. The fluid is assumed to be Newtonian and obeys 
Boussinesq’s approximation. Under the above assumptions the energy and momentum equations in a 
dimensional form are 
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 It will be useful to obtain the solutions of Eqs (2.1) and (2.2) subject to condition (2.3) in non-
dimensional forms. To this end, we introduce the non-dimensional quantities 
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T   - dimensional temperature of the fluid, Q  - the heat of reaction, A  - the rate constant, E  - the activation 

energy, R  - the universal gas constant, 0C  - the initial concentration of the reactant species,   - kinematics 

viscosity, r  - radial co-ordinate, a - the radius of inner cylinder, b - the radius of the outer cylinder.  
 Using expression (2.4) in (2.1) and (2.2) the dimensionless momentum and energy equations are  
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Fig.1. Schematic diagram of the problem. 
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3. Analytical solution 
 
 Analytical solutions for the reactive viscous fluid are obtained for the temperature field and velocity 
field as well as the skin-friction and Nusselt number. Equation (2.6) is non-linear because of its reactive 
viscosity it is difficult to find a closed-form solution. Thus perturbation series method is employed. The 
governing equations of this problem in a closed-form are 
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 The solution of Eqs (3.1) and (3.2) subject to Eq.(3.3) can be expressed by the perturbation 
expansion 
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 Substituting Eqs (3.4) and (3.5) into Eqs (3.1) and (3.2) and equating the coefficients of like powers 
of  , the solution of the governing equations are obtained. The solutions for the velocity and temperature 
fields are   
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 Steady-state skin frictions on the boundaries are 
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 Due to the symmetric condition of the flow, the heat transfer on both boundaries is the same and 
therefore, the steady-state rate of heat transfer on the boundary plate is 
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where, , , ,1 2 3 4c c c c  are defined in the appendix. 
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4. Numerical solutions 
 
 The governing differential equations have been transformed into the corresponding finite 
difference equations. The implicit finite difference equations are derived using a second-order central 
difference scheme for the spatial derivatives. The convergence analysis of the present numerical scheme 
has been performed, and it is found that the derived finite difference equations resemble a consistence 
representation of the analytical solution. In each time step, firstly the temperature field has been solved 
and then the velocity field was evaluated using the already known values of the temperature field and the 
process of computation was continued until a steady state was reached. The analytical solution was 
employed as a check on the accuracy and effectiveness of the numerical solution. 
 
5. Results and discussion 
 
 For the numerical validation of our results, we have chosen physically meaningful values of the 
parameters entering the problem. The annulus model is more general than the model cylindrical pipe or 
two parallel planes. When    , the annulus approaches a cylindrical pipe. The effect associated with 
the outer cylinder can be ignored. On the other hand, as 1  , the annulus behaves like two parallel 
plates and therefore both cylinders play equally important roles. When the value of   is in between, the 
curvature differences between the inner and outer walls can lead to quite different behaviors. Also, it is 
important to note that   is essentially the viscous heating parameter. Typical variations of the fluid 
temperature profiles are shown in Fig.2 corresponding to air (Pr . )0 71  and ( . , . , . )0 1 0 2 0 3  . It is seen 
from the figure that the temperature increases with time and ultimately reaches its steady-state value. It is 
also seen that as the value of the viscous heating parameter ( )  increases the temperature increases until 

the steady-state value is reached. In Fig.3, the velocity profile is shown for an increasing value of ( )  and 

t  (Pr . )0 71 . Generally, the fluid velocity increases with increasing values of t  until they attain their 

steady-state values. Also, increasing  increases velocity. This is because increasing the viscous heating 
parameter means that heating is increased and density is reduced and the buoyancy effect is increased and 
as a result velocity increases. The variation of the skin-friction at the plates is shown in Figs 4 and 5 for 
different values of t  corresponding to the isothermal boundary ( )r 1  and ( )r b  for 
(Pr . , . , . , . , . )0 71 0 01 0 1 0 2 0 3     . It is clear from these figures that the skin-friction is directly 
proportional to time and finally attains its steady-state value. It is seen in Fig.5 that the steady-state is 
reached earlier as compared to Fig.4. This is because the friction is more on the isothermal boundary than 
at ( )r b . Figure 6 shows how the Nusselt number changes with time. It follows from the figure that the 

rate of heat transfer is directly proportional to the non-dimensional time. Also, an increase in   has the 
tendency to warm up the fluid and to reduce the heat transfer on the boundary. The skin-friction and 
Nusselt numbers are calculated using numerical simulation and these numerical values are compared with 
the steady-state values obtained.   
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Fig.2. Temperature profile  . , Pr .0 01 0 71   . 

 

Fig.3. Velocity profile  . , Pr .0 01 0 71   .  
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Fig.4. Skin friction at r=1 and  . , Pr . , . , . , .0 01 0 71 0 1 0 2 0 3     . 

 

 
 

Fig.5. Skin friction at r=b and  . , Pr . , . , . , .0 01 0 71 0 1 0 2 0 3     . 
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Fig.6. Nusselt number (Nu) and  . , Pr . , , ,0 01 0 71 1 2 3     . 

 
6. Conclusion 
 
 Analytical expressions for velocity, temperature, skin-friction and rate of heat transfer for a steady-
state fully developed natural convection flow of a viscous reactive fluid in a vertical annulus has been 
presented. Also time dependent non-linear problems are solved using implicit finite deference method. 
During the computation excellent agreement was found for the steady-state solution and numerical solution.  
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Nomenclature 
     
 a  – gap between the plates   

 a  – radius of inner cylinder 

 b  – ratio of outer to inner cylinder 

 b  – radius of outer cylinder  

 pC  – specific heat of the fluid at constant pressure 

 E  – activation energy 

 g  – acceleration due to gravity    

 Nu  – Nusselt number   

 Pr  – Prandtl number 

 Q  – heat reaction parameter 

 R  – universal gas constant 
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 r  – dimensionless radial co-ordinate 
 T   – dimensional temperature of the fluid 

 0T  – initial temperature of the fluid 

 t  – dimensionless time 

 t  – dimensional time 

 u  – dimensionless velocity of the fluid       

 u  – dimensional velocity of the fluid          

   – critical exponent 

   – volumetric coefficient of thermal expansion 

   – dimensionless temperature 

   – Frank-Kamenetskii parameter 

   – kinematic viscosity 

   – density of the fluid         

 1  – dimensionless skin friction at r 1  

 b   – dimensionless skin-friction at r b
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