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Thermosolutal instability in a compressible Walters B’ viscoelastic fluid with suspended particles through a 
porous medium is considered. Following the linearized stability theory and normal mode analysis, the dispersion 
relation is obtained. For stationary convection, the Walters B’ viscoelastic fluid behaves like a Newtonian fluid 
and it is found that suspended particles and medium permeability have a destabilizing effect whereas the stable 
solute gradient and compressibility have a stabilizing effect on the system. Graphs have been plotted by giving 
numerical values to the parameters to depict the stability characteristics. The stable solute gradient and 
viscoelasticity are found to introduce oscillatory modes in the system which are non-existent in their absence. 
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1. Introduction 

 
 The theoretical and experimental results of the onset of thermal instability (Bénard convection) in a 
fluid layer under varying assumptions of hydrodynamics have been discussed in detail by Chandrasekhar 
(1961) in his celebrated monograph. The problem of thermohaline convection in a layer of a fluid heated 
from below and subjected to a stable salinity gradient was considered by Veronis (1965). The physics is 
quite similar in the stellar case in which helium acts like salt in raising the density and in diffusing more 
slowly than heat. The conditions under which convective motions are important in stellar atmospheres are 
usually far removed from consideration of a single component fluid and rigid boundaries, and therefore it is 
desirable to consider a fluid acted on by a solute gradient and free boundaries. The problem of thermosolutal 
instability in fluids through a porous medium is of importance in geophysics, soil sciences, ground-water 
hydrology and astrophysics. The development of geothermal power resources holds increased general 
interest in the study of the properties of convection in a porous medium. The scientific importance of the 
field has also increased because hydrothermal circulation is the dominant heat transfer mechanism in the 
development of young oceanic crust (Lister, 1972). Generally it is accepted that comets consists of a dusty 
“snowball” of a mixture of frozen gases which, in the process of their journey, changes from solid to gas and 
vice-versa. The physical properties of comets, meteorites and interplanetary dust strongly suggest the 
importance of porosity in the astrophysical context. Mounting evidence, both theoretical and experimental, 
suggests that Darcy’s equation provides an unsatisfactory description of the hydrodynamic conditions, 
particularly near the boundaries of a porous medium. Beavers et al. (1970) demonstrated experimentally the 
existence of shear within the porous medium near surface, where the porous medium is exposed to a freely 
flowing fluid, thus forming a zone of shear-induced flow field. Darcy’s equation however, cannot predict the 
existence of such a boundary zone, since no macroscopic shear term is included in this equation (Joseph and 
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Tao, 1964). To be mathematically compatible with the Navier-Stokes equations and physically consistent 
with the experimentally observed boundary shear zone mentioned above, Brinkman proposed the 

introduction of the term 2



q  in addition to 

1k

 
 
 

q  in the equations of fluid motion. Stommel and 

Fedorov (1967) and Linden (1974) remarked that the length scales characteristic of double-diffusive 
convecting layers in the oceans could be sufficiently large for the Earth’s rotation to become important in 
their formation. Moreover, the rotation of the Earth distorts the boundaries of a hexagonal convection cell in 
a fluid through a porous medium, and distortion plays an important role in the extraction of energy in 
geothermal regions. Brakke (1955) explained a double-diffusive instability that occurs when a solution of a 
slowly diffusing protein is laid over a denser solution of more rapidly diffusing source. Nason et al. (1969) 
found that this instability, which is deleterious to certain biochemical separations, can be suppressed by 
rotation in the ultracentrifuge.  
 In geophysical situations, the fluid is often not pure but contains suspended particles. Scanlon and 
Segel (1973) considered the effects of suspended particles on the onset of Bénard convection and found that 
the critical Rayleigh number is reduced because of the heat capacity of the particles. The suspended particles 
were thus found to destabilize the layer. Palaniswamy and Purushotham (1981) studied the stability of shear 
flow of stratified fluids with fine dust and found the effects of fine dust to increase the region of instability 
 The Boussinesq approximation is used throughout the paper. It states that variations of density in the 
equations of motion can safely be ignored everywhere except its association with the external force. The 
approximation is well justified in the case of incompressible fluids. When the fluids are compressible, the 
equations governing the system become quite complicated. To simplify them, Boussinesq tried to justify the 
approximation for compressible fluids when the density variations arise principally from thermal effects. 
Spiegel and Veronis’ (1960) simplified the set of equations governing the flow of compressible fluids under 
the following assumptions: 
(a) the depth of the fluid layer is much less than the scale-height, and 
(b) the fluctuations in temperature, density and pressure, introduced due to motion, do not exceed their total 
static variations. 
 There is growing importance of non-Newtonian fluids in geophysical fluid dynamics, chemical 
technology and petroleum industry. Bhatia and Steiner (1972) studied the problem of thermal instability of a 
Maxwellian viscoelastic fluid in the presence of rotation and found that rotation has a destabilizing influence 
in contrast to the stabilizing effect on an ordinary viscous (Newtonian) fluid. The thermal instability of an 
Oldroydian viscoelastic fluid acted on by a uniform rotation was studied by Sharma (1976). There are many 
elastico-viscous fluids that cannot be characterized by Maxwell’s or Oldroyd’s constitutive relations. One 
such class of viscoelastic fluids is the Walters B’ fluid (1960) having relevance and importance in 
geophysical fluid dynamics, chemical technology, and petroleum industry. Walters’ (1962) reported that the 
mixture of polymethyl methacrylate and pyridine at 250C containing 30.5g of polymer per litre with density 
0.98g per litre behaves very nearly as the Walters B’ viscoelastic fluid. Polymers are used in the manufacture 
of spacecrafts, aeroplanes, tyres, belt conveyers, ropes, cushions, seats, foams, plastics engineering 
equipments, contact lens, etc. Walters B’ viscoelastic fluids form the basis for the manufacture of many 
important and useful products. Chakraborty and Sengupta (1994) studied the flow of an unsteady viscoelastic 
(Walters B’ liquid) conducting fluid through two porous concentric non-conducting infinite circular 
cylinders rotating with different angular velocities in the presence of a uniform axial magnetic field. Sharma 
and Kumar (1997) studied the stability of the plane interface separating two viscoelastic (Walters B’) 
superposed fluids of uniform densities. In another study, Sharma and Kumar (1998) studied Rayleigh-Taylor 
instability of superposed conducting Walters B’ viscoelastic fluids in hydromagnetics. Kumar (2001) 
considered the thermal instability of a layer of a Walters B’ viscoelastic fluid acted on by a uniform rotation 
and found that for stationary convection, rotation has a stabilizing effect. Kumar et al. (2006) considered the 
stability of plane interface separating the Walters B’ viscoelastic superposed fluids of uniform densities in 
the presence of suspended particles.  
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 Keeping in mind the importance in geophysics, astrophysics and various applications mentioned 
above, the thermosolutal instability in a compressible Walters B’ viscoelastic fluid with suspended particles 
through a porous medium is considered in the paper.  
 
2. Formulation of the problem and perturbation equations 

 
 Here we consider an infinite horizontal, compressible Walters B’ viscoelastic fluid-particle layer of 
thickness d bounded by the planes andz 0 z d   in a porous medium of porosity   and permeability 1k . 
This layer is heated from below and subjected to a stable solute gradient such that the steady adverse 

temperature gradient  dT
dz   and a solute concentration gradient  dC

dz
   are maintained. 

 Let  , , , and , ,p u v w   q  denote respectively the density, viscosity, viscoelasticity, pressure and 

filter velocity of the pure fluid;  ,d x tq  and  ,N x t  denote filter velocity and number density of the 

particles, respectively. If g is acceleration due to gravity, K 6   where   is the particle radius, 

   , , , , ,d l r s x x y z q and  , ,1 0 0 1 , then the equations of motion and continuity for the Walters B’ 

viscoelastic fluid permeated with suspended particles in a porous medium are 
 

     . ,2
1 d

1

1 1 1 KN
p g

t t k

                             

q
q q q q qλ     (2.1) 

 

  .0
t

          
q q                                                                                   (2.2) 

 
 Since the distances between particles are assumed to be quite large compared with their diameter, the 
interparticle relations, buoyancy force, Darcian force and pressure force on the particles are ignored. 
Therefore, the equations of motion and continuity for the particles are 
 

                    ,d
d d d

1
mN KN

t

       

q
q q q q                                                   (2.3) 

                

    .d
N

N 0
t


   


q                                                                                (2.4) 

 
 Let , , , , andv p pt cC C C T C k  denote respectively the heat capacity of the fluid at constant volume, 

heat capacity of the fluid at constant pressure, heat capacity of particles, temperature, solute concentration 
and “effective thermal conductivity” of the fluid. Let , andv pt cC C k    denote the analogous solute 

coefficients. When particles and the fluid are in thermal and solute equilibrium, the equations of heat and 
solute conduction give 
 

      ,2
v S S v pt d c

T
C C 1 C T mNC T k T

t t

                      
q q             (2.5) 

 

      2
v S S v pt d c

C
C C 1 C C mNC C k C

t t

                          
q q          (2.6) 
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where ,S SC  are the density and heat capacity of the solid matrix, respectively. 
 Spiegel and Veronis (1960) expressed any state variable (pressure, density or temperature), say X, in 
the form 
 
     , , ,m oX X X z X x y z t                                                (2.7) 

 
where mX  stands for the constant space distribution of , oX X is the variation in X in the absence of motion, 

and  , , ,X x y z t  stands for the fluctuations in X due to the motion of the fluid. Following Spiegel and 

Veronis (1960), we have  
 

    ,0T z z T    
 

      ,
z

m m 0

0

p z p g dz      

 

  

        ,

, , .

m m m mx 1 T T C C p p

1 1 1

T C p

              

                            

 

 
 Here ,m mp   stand for the space distribution of p and  , and ,0 0T   stand for the temperature and 
density of the fluid at the lower boundary (and in the absence of motion). 
 Since density variations are mainly due to variations in temperature and solute concentrations, Eqs 
(2.1)-(2.6) must be supplemented by the equation of state 
 

       m m mz 1 T T C C          .                                            (2.8) 

 
 Let , , , , , anddp N    q q  denote the perturbations in fluid density  , pressure p, temperature T, 

solute concentration C, fluid velocity  , ,0 0 0 , particles velocity  , ,0 0 0  and particle number density 0N , 

respectively. Then the linearized perturbation equations, under the Spiegel and Veronis (1960) assumptions, are 
 

    ,2 0
1 d

m m 1 m

KN1 1 1 1
p g

t t k

                               

q
q q q           (2.9) 

 
  . ,0 q                                                                                          (2.10) 
 

    ,d
0 0 dmN KN

t


 


q

q q  (2.11) 

 

   0 d
N

N 0
t


   


q , (2.12) 

 

      ,2

p

g
E h w hs

t C

 
            

                                                              (2.13) 
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      2E h w h s
t

            


.                                                                   (2.14) 
 

 Here  
 

  

   

 

, ,

, , , ,

and .

S S S S

m v m v

pt pt 0 c c

v v m m v m v

m

C C
E 1 E 1

C C

fC fC mN k k
h h f

C C C C

          
 

 
       

   

     

 

 

 Using , , , , and
2

2
dd d dd d

    to denote the length, time, velocity, pressure, 

temperature and solute concentration scale factors, respectively, the linearized perturbation equations 
become 
 

   
*

* * * * * * * *
*

,
*

1 2
1 1 1 d

1 1
p p R S 1 A

t Pt
                      

q
q q q    (2.15) 

 

  * * ,0  q                                                                       (2.16) 
 

  * *
*

,d1
t

     
q q                                                                    (2.17) 

 

  * *
*

,d
M

0
t

     
q                                                                       (2.18) 

 

     
*

* * * *
*

,2G 1
E h w hs

Gt

 
     


                                                                 (2.19) 

 

     
*

* * * *
*

21
E h w h s

t

        


                                                                    (2.20) 
 

where  
 

             

, , , , , ,

, , , and ,

4 4
p1

12
0

2
0 0

2 2
m m

Ck g d g d N
P G p R S M

g Nd

KN d mNm
f p A

Kd d

      
     

  

                    

 

 

and starred (*) quantities are expressed in a dimensionless form. Hereafter, we suppress the stars for 
convenience. 
 Eliminating dq  from Eq.(2.15) with the help of Eq.(2.17) and then eliminating , ,u v p  from the 
three scalar Eqs of (2.15), and using (2.16), we obtain 
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        ,2 2 2 2
1 2 2 1 1

1 1
L L 1 A w L R S

t P

                    
                              (2.21) 

 

    ,2
2

G 1
L E h H w

t G t

                    
                                                     (2.22) 

 

    2
2

1
L E h H w

t t

                    
                                                           (2.23) 

 
where  
 

  

, , ,

, , , .

2 2 2
1 2

1 1 2 12 2 2

2 2 2
2

2 2 2

L p F L 1
t tt x y

F f 1 H h 1 H h 1
x y z

                        

             
  

 

 
3. Dispersion relation 

 
 Decomposing the perturbations into normal modes by seeking solutions in the form of functions of 

, ,x y t   
 

                            , , , , exp x yw W z z z ik x ik y nt                                               (3.1) 

 

where n is, in general, complex, and  
1

2 2 2
x yk k k   is the wave number of disturbance. 

 Eliminating and   between Eqs (2.21)-(2.23) and using expression (3.1), we obtain 
 

          

        ,

2 2 2 2 2 2 2 22 2
1

2 2 2 2 2 2

L L
L 1 An 1 An D k D k n E h D k n E h D k W

P

G 1
n H Rk D k n E h W n H Sk D k n E h W

G

                           
                            

(3.2) 

 

where   , and .1 2
1 1 2

d
L p n Fn L n 1 D

dz
         

 
4. The stationary convection 

 
 When the instability sets in as stationary convection, the marginal state will be characterized by 
n 0 . Putting n 0 , the dispersion relation (3.2) reduces to   
      

      .
22 2 2 2 2 21 1 G

D k D k W k RHW k SH W
P G 1
               

                  (4.1) 
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 We thus find that for stationary convection the viscoelastic parameter A vanishes with n and the 
Walters B’ viscoelastic fluid behaves like an ordinary Newtonian fluid.  
 Considering the case of two free boundaries, it can be shown that all the even order derivatives of W 
vanish on the boundaries and hence the proper solution of Eq.(4.1) characterizing the lowest mode is 
 
  sin0W W z                                                                      (4.2) 
 
where 0W  is a constant. Substituting the solution (4.2) in Eq.(4.1), we obtain 
 

    

 
.

2 2 22 2 2

2

G 1 k
k k H S

G 1 P
R

k H

                                                    (4.3) 

 
 If CR  denotes the critical Rayleigh number in the absence of compressibility and CR  stands for the 
critical Rayleigh number in the presence of compressibility, then we find that 
 

  .C C
G

R R
G 1

    
 

 
 Since the critical Rayleigh number is positive and finite, so G 1  and we obtain a stabilizing effect 
of compressibility as its result is to postpone the onset of thermosolutal convection in a fluid-particle layer of 
a porous medium. 
 To study the effect of medium permeability, suspended particles and the stable solute gradient, we 

examine the nature of , and
dR dR dR

dP dH dS
 analytically.  

 Equation (4.3) yields 
 

  
 22 2

2 2

kdR G

dP G 1 k HP

      
, (4.4) 

 

  

 
2 2 22 2 2

2 2

1 k
k k H S

PdR G

dH G 1 k H

               
, (4.5) 

 
and 
 

  .
dR G H

dS G 1 H

    
 (4.6) 

 
 It is clear from Eqs (4.4)-(4.6) that for stationary convection the medium permeability and suspended 
particles hasten the onset of convection whereas the stable solute gradient postpones the onset of convection 
in the Walters B’ compressible viscoelastic fluid permeated with suspended particles, heated and soluted 
from below in a porous medium. 
 We now examine the dispersion relation (4.3) numerically. We plotted the Rayleigh number versus 
the medium permeability P, suspended particles parameter H and stable solute gradient S in Figs 1-3, 
respectively. 
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F ig u re  1 : T h e  v a r ia tio n  o f R a y le ig h  n u m b e r (R ) w ith  m e d iu m  p e rm e a b ility  (P ) fo r 
               f ix e d  v a lu e s  o f G  =  1 0 , H ' =  5 ,    S  =  1 0 , H  =  5 ,   =  0 .5  a n d  k  =  1 , 2 .

 
Fig.1. The variation of the Rayleigh number (R) with medium permeability (P) for fixed values of ,G 10  

H 5  , 1  , S=10, H=5, .0 5   and k=1, 2. 
 
 In Fig.1, the Rayleigh number R is plotted against medium permeability P for fixed values of 

, ' , , , , . and , .G 10 H 5 1 S 10 H 5 0 5 k 1 2         As the value of medium permeability increases, the 
corresponding value of the Rayleigh number decreases, showing its destabilizing effect on the system. 
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Figure  2 : T he  va ria tion  o f R ayle igh  num ber (R ) w ith  suspended  partic les (H ) fo r
                fixed  va lues o f G  =  10 , P  =  1 , H ' =  5 ,   =  1 , S  =  10 , = 0 .5  and  k  =  1 , 2 .      

 
Fig.2.  The variation of Rayleigh number (R) with suspended particles (H) for fixed values of ,G 10  P=1, 

H 5  , 1  , S=10, .0 5   and k=1, 2. 
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 In Fig.2, the Rayleigh number R is plotted against suspended particles parameter H for fixed values 
of , , ' , , , . and , .G 10 P 1 H 5 1 S 10 0 5 k 1 2          The Rayleigh number decreases with the increase 
in the suspended particles parameter showing its destabilizing effect on the system.       
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F igure  3 : T he  va ria tion  o f R ayle igh  num ber (R ) w ith  s tab le  so lu te  g rad ien t (S ) fo r 
                fixed  va lues o f G  =  10 , P  =  1 , H ' =  5 ,  = 1 , H  =  5 ,  =  0 .5  and  k  =  1 , 2 .

 
Fig.3.  The variation of the Rayleigh number (R) with stable solute gradient (S) for fixed values of ,G 10  

P=1, H 5  , 1  , H=5, .0 5   and k=1, 2. 
 
 
 Figure 3 shows the variation of R with respect to the stable solute gradient S for fixed values of 

, , ' , , , . and , .G 10 P 1 H 5 1 H 5 0 5 k 1 2          The Rayleigh number R increases with an increase in 
the stable solute gradient parameter S, showing its stabilizing effect on the system. 
 Thus, the medium permeability and suspended particles parameter have a destabilizing effect 
whereas the stable solute gradient has a stabilizing effect on the Walters B’ compressible viscoelastic fluid 
permeated with suspended particles, heated and soluted from below in a porous medium. 
  
5. Principle of exchange of stabilities and oscillatory modes 

 
Let 

 

        and .2 2 2 22 2
1

L L
U D k W X L 1 An 1 An D k U

P
          

          (5.1) 

 
 In terms of X, the equation satisfied by W [cf. Eq.(3.2)] is 
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                          (5.2) 

 
 Here we consider the case of two free surfaces having uniform temperature and solute concentration. 
The boundary conditions appropriate for the problem are 
 

                   , , at and .2W D W 0 0 T 0 z 0 1                                             (5.3) 
 

 Multiplying Eq.(5.2) by *X , the complex conjugate of X, integrating over the range of z and using 
the boundary conditions (5.3), we get 
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7

0
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which are all positive definite. 
 Putting 0n in , where 0n  is real, into Eq.(5.4) and equating imaginary parts, we obtain 
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     (5.6)  

or 
 
  .0n 0                                                                              (5.7) 
 
 Equations (5.6) and (5.7) imply that or0 0n 0 n 0  , which means that modes may be oscillatory or 
non-oscillatory. In the absence of the stable solute gradient and viscoelastic parameter, Eqs (5.6) and (5.7) 
become 
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                   (5.8) 

 
or 
 
  .0n 0                                                                                          (5.9) 
 
 Since the integrals are positive definite and 0n  is real, it follows that .0n 0  and the principle of 
exchange of stabilities is satisfied, in the absence of the stable solute gradient and viscoelastic parameter. In 
the presence of the stable solute gradient and viscoelastic parameter, the principle of exchange of stabilities 
is not satisfied and oscillatory modes come into play. Thus, the presence of the stable solute gradient and 
viscoelastic parameter introduces oscillatory modes which were non-existent in their absence. 
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6. Conclusions 

 
 The effect of suspended particles on thermosolutal instability in a layer of the compressible Walters 
B’ viscoelastic fluid heated and soluted from below through a porous medium is considered in the paper. The 
investigation of thermosolutal instability is motivated by its complexities as a double diffusion phenomena as 
well as its direct relevance to geophysics and astrophysics. The main conclusions from the analysis presented 
in this paper are as follows: 
(a)   For the case of stationary convection the following observations are made: 
       (i)   The viscoelastic parameter vanishes with n and the Walters B’ viscoelastic fluid behaves like an 

ordinary Newtonian fluid.    
       (ii)  The stable solute gradient and compressibility have a stabilizing effect on the system. 
       (iii)  The suspended particles and medium permeability have a destabilizing effect on the system. 
(b)  It is also observed from Figs 1-3 that suspended particles and medium permeability haved destabilizing 

effect whereas the stable solute gradient has a stabilizing effect on the system. 
(c)  It is observed that the stable solute gradient and viscoelastic parameter introduce oscillatory modes in 

the system, which were non-existent in their absence.   
(d)  In the absence of the stable solute gradient and viscoelastic parameter, oscillatory modes are not allowed 

and the principle of exchange of stabilities is valid.  
 
Nomenclature 
 
 C – solute concentration 
 pC  – heat capacity of fluid at constant pressure 

 ptC  – heat capacity of particles 

 SC  – heat capacity of the solid matrix 

 vC  – heat capacity of fluid at constant volume 

, ,v pt cC C k    – analogous solute coefficients 

 g – acceleration due to gravity 
 H – suspended particles parameter 
 k – resultant wave number 
 1k  – medium permeability 

 ck  – effective thermal conductivity 

 ,x yk k  – wave numbers in x- and y-directions 

 N – perturbation in particle number density 0N  

 n – growth rate 
 P – medium permeability parameter 
 p – pressure 
 dq  – filter velocity of the particles 

  , ,u v wq  – filter velocity of the pure fluid 

 R – Rayleigh number 
 CR  – critical Rayleigh number in the absence of compressibility 

 CR  – critical Rayleigh number in the presence of compressibility 

 S – stable solute gradient parameter    
 T – temperature 
    – adverse temperature gradient 
   – solute concentration gradient 
   – perturbation in solute concentration C 
   – perturbation in fluid density   
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 p  – perturbation in fluid pressure p 
   – medium porosity 
   – fluid density 
   – fluid viscosity 
   – fluid viscoelasticity 
   – kinematic viscosity 
   – kinematic viscoelasticity 
 S  – density of the solid matrix 

   – perturbation in temperature T  
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