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Within the theory of linear magnetoelectroelasticity, the fracture analysis of a magneto — electrically
dielectric crack embedded in a magnetoelectroelastic layer is investigated. The prescribed displacement, electric
potential and magnetic potential boundary conditions on the layer surfaces are adopted. Applying the Hankel
transform technique, the boundary — value problem is reduced to solving three coupling Fredholm integral
equations of second kind. These equations are solved exactly. The corresponding semi — permeable crack — face
magnetoelectric boundary conditions are adopted and the electric displacement and magnetic induction of crack
interior are obtained explicitly. This field inside the crack is dependent on the material properties, applied
loadings, the dielectric permittivity and magnetic permeability of crack interior, and the ratio of the crack length
and the layer thickness. Field intensity factors are obtained as explicit expressions.

Key words: magneto electro elastic layer, Penny —shaped crack, dielectric crack, field intensity factors, exact
solution.

1. Introduction

Materials having magnetoelectroelastic coupling effects have found increasing applications in
engineering structures, particularly in smart materials intelligent structures. The effects of
magnetoelectromechanical coupling have been observed in single phase materials where simultaneous
magnetic and electric ordering coexists and in two phase composites where the participating phases are
piezoelectric and piezomagnetic. These “smart” materials are extensively used as electric packaging, sensors
and actuators, magnetic field probes, acoustic and ultrasonic devices, hydrophones and transducers with the
responsibility of electromagnetomechanical energy conversion. When subjected to mechanical, magnetic and
electrical loads in service, these magnetoelectroelastic composites can fail prematurely due to some defects,
namely cracks, holes and others, arising during their manufacturing processes. Therefore, it is of great
importance to study the magnetoelectroelastic interaction and fracture behaviours of magnetoelectroelastic
materials. On the other hand, composites consisting of piezoelectric and piezomagnetic components have
found their ways increasingly in applications in engineering structures. This is because these composites
have some new properties of magnetoelectricity with the secondary piezoelectric effects which are not found
in single phase piezoelectric or piezomagnetic materials. In some cases, the magnetoelectric effect of
piezoelectric / piezomagnetic composites can be obtained by a hundred times longer than that of a single
phase magnetoelectric material. Recently, Chen et al. (2004) derived a general solution for a transversely
isotropic electromagnetothermoelastic material. In consequence, the components of the coupled field are
expressed by five mono harmonic functions. More recently, a penny shaped crack in a magnetoelectroelastic
material has been considered. For example, Zhao et al. (2006) analyzed a penny shaped crack in a
magnetoelectroelastic medium. Niraula and Wang (2006) derived an exact closed form solution for a penny
shaped crack in a magnetoelectrothermoelastic material in a temperature field. The electro magnetic field
inside the crack was taken into account and closed form solutions were derived for an impermeable and
permeable crack (Rogowski, 2011). Wang and Mai (2007) and Rogowski (2007) discussed the different
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electromagnetic boundary conditions on the crack- faces in PEMO — elastic materials. On the other hand,
Zhong and Li (2007; 2008), Rogowski (2007), Zhong (2009) extended the semi permeable crack face electric
boundary conditions proposed by Hao and Shen (1994) to analyze the PEMO elastic fields induced by
dielectric cracks. However, all of the studies considered only infinite body and numerical procedures were
used to obtained the results of approximate type. To the best of the author’s knowledge, the penny shaped
crack problems for the layer and limited permeable cracks have not been addressed yet, in an exact form.
Motivated by this the author of this paper investigates a PEMO elastic layer, with an electrically and
magnetically conducting crack under prescribed displacement, electric potential and magnetic potential
boundary loading, to show exact solutions. Such solutions depend on a large number of material parameters,
in our analysis it is seventeen, making any solution other than explicit analytical ones impractical.

2. Basic equations in magnetoelectroelastic theory

The constitutive equations within the framework of the linearly magnetoelectroelastic theory, in an
axially symmetric problem, can be written as

G, i1 €2 G300 €3 qs3; Uy
Gy Ci2 €11 Ci3 €3 q3; ||u./r
G, |=|C3 €13 €33 €33 933 U, , 1
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D, |=|es e5s —g; —dj (pz’r V=20 2.1
| B, a5 a5 —dy —ng )
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Er ==0,, Ez ==, Hr ==V, Hz ==V,

where u,, u,, @, y are the elastic displacement, electric potential and magnetic potential, respectively; o,
, 69, 0,,0,.,D.,D,,B,,B,, E,., E., H., H, are the components of stress, electric displacement,
magnetic induction, electric field and magnetic field, respectively; e, g;; and dy; are the piezoelectric,
piezomagnetic and magnetoelectric constants, respectively; ¢;;, € and p, are the elastic stiffness, the
dielectric permittivities and the magnetic permeabilities, respectively.

Moreover, from the equations of equilibrium

C,,+0,,, +(0,, — 0y )/r =0,

G, +0,.+ (cs,,z )/r =0,
2.2)
D, +D. . +(D,)/r=0,
oB

By B +(8)r=0, B, =L,

the elastic displacements, electric potential and magnetic potential will satisfy the basic governing equations
as follows
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where the following differential operators are introduced

2
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The general solution of Eqs (2.3) are as follows

4 .
ur(r’z):zalixiM

i=1 or
4
_ gé(pi(r,zi)
u, (r,z)—g . —
2.5)
4
_ N 00i(rz)
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The functions ¢; (r,z;)(i=1,2,3,4) satisfy the following mono harmonic equations

o> 10 1 ¢° .
[y*:wm—z}"f(mi)=o, (i=1.2.3.4) 2:6)

where z; =A;z and A, satisfying Re(A;)> 0, are the four eigenvalues of the characteristic equation which
is an eight degree polynomial

ar® + 00 + At +d\ +e=0. (2.7)

The material parameters a, b, ¢, d and e are defined in the Appendix by Eq.(A1). The parameters
aj; j=1,2,3,4; i=1,2,3,4 are given as follows
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6 4 2
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where a ; iz bj ,
Then from Eqs (2.1) together with (2.5) the components of stress, electric displacement and magnetic
induction can be derived.

¢, d j are given in the Appendix by Eq.(A2). Note that a,; =1.

We have
G, = —g%%— (e —cr )MTr’
. :_i:%iz(gi ~(en _clz)agrr ’
N )
B, = g“ﬁ?w %, B. = g%%

where

2
as; (431 + 415) =Cyqq31 —C13915 (044%1% +¢119;s )ali + (631‘115 —€;593) )asis
2 2
A (du —ds3h; ) =d;e33 —e5ds; — (615d337“i +ezdy; )a,,- + (833d11 —g€;,d3; )a3i’ (2.10)

2 2
ay; (Mu — 33k ) =MW;1933 — 415433 — (%5“337% +q31; )ali + (H11d33 —W33d;; )a3i'

It should be noted that the general solutions given by Eqs (2.5) and (2.9) are valid for the cases when
the eigenvalues A; (i= 1,2,3,4) are distinct. In this paper, equal roots (the special cases) are viewed as the

limiting case of the distinct roots. For a pure piezoelectric medium we have a,; =0 and a,; =0 and
(e31+ess)=cp3+cgy—(cry—cuhi
A3i\€31 T €15) = €13 7 Cqq =\ €11~ C44’Vi |41i>
(e3+es5)= — + + A7 (2.11)
As5i\€31 7 €15) = Cqq€31 —C13€15 T\ C11€15 T C4q€317i |13 .

2 2
dgi (811 — €33\ ): €33811 —€15833 _(‘331811 +e5330; )a”.

It is easily verified, by direct substitution, that the equilibrium Eqs (2.2);,, electric and magnetic
charge conservation Eqs (2.2); 4 are satisfied by general solution (2.9).
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3. Penny shaped dielectric and magnetic crack in the PEMO elastic layer

Consider a penny shaped dielectric and assume that a magnetic crack is located in the middle plane
of a transversely isotropic PEMO elastic layer as shown in Fig.la. The cylindrical coordinate system

(r,@,z) is used with the poling axis as the z axis. It is further assumed that the crack is centrally situated at

the circle » <a and the width of a layer is 2. A constant displacement 9, electric potential ¢, and
magnetic potential y, are imposed on the layer surfaces, namely

u, (r.xh)=8,;  o(r,2h)=F¢);  y(r.xh)=Fy,. 3.1

1

® Qa9
v/

f poling direction

Fig.1a. Geometry of a magnetoelectroelastic layer with a penny shaped crack; the quantities o, D and

* . . . . .
B are in the circular region 7 < a in a plate without a crack.

z S —wo —Yo

ot

u,=p=1v=0 2a u,=¢=1v=0

Fig.1b. The illustration of the boundary conditions; the following should be added to the crack surface: -,
~D and -B"; G, =0 at z=0.

Equations (3.1) indicate that the top and bottom surfaces of the layer, y =%/, are sliding clamped
and displaced along the z direction by an amount of 26 and there is a constant electric potential difference
—2¢, and a constant magnetic potential difference —2y, between the top and bottom surfaces. These
equations give, in the layer without the crack, the particular solution

MZ(V,Z):%; (p(raz):_%; W(V,Z):_%,
Cr3 60}" 60}"
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c,, =0; Ezzﬁ; Hz=ﬁ
h h

where E_ is the Young modulus in the z direction.

By superposition principle the crack problem is equivalent to the perturbation problem under the
applied loading on the crack surface and condition of symmetry on the plane z =0 outside the crack region.

o.(r,0)=-¢; D.(r,0)=D.-D’; B.(r,0)=B,-B"; r<a, (3.3)
G, (r,O) =0; r=0, (3.4)
u, (r,0)=0; o(r,0)=0; y(r,0)=0; r>a (3.5)

where ¢, D*, B” are constant which from Eq.(3.2) are given by formulae

= 0 P v
G :EZIO_€3370—‘133703

* ) Do
D = (633 — V€34 )7 +e33—

(3.6)

* S ® v
B =(g3; -V L d gy, L
((133 rzq31) 5 337, M33 i
In the above equations £, and v, are the Young modulus and Poisson’s ratio in the principal
direction of anisotropy, the z axis. In Eq.(3.3) D, and B, are normal components of the electric

displacement and the magnetic induction, respectively, on the crack faces and inside the crack region, which
for semi permeable crack face magnetoelectric boundary conditions are expressed as follows

A A
D, =-¢ —(P; Bcz—pc—w; r<a 3.7
z Auz

where &.=¢,8) (g,=8,85x107"°F/m the dielectric permittivity of air) and w.=p,p, (

Ly =4nx1 07N /A’ - the magnetic permeability of air) are the electric permittivity and magnetic
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permeability of the medium inside the crack; A@, Ay and Au_ are the jumps of the electric potential,
magnetic potential and crack opening displacement, respectively, across the crack. Especially, one can see
that the crack reduces to an air when ¢, =1 and p, =1. If the crack is filled by silicone oil, then €, =2,5;

in the case of water €, =81.

4. Solution method

To solve the mixed boundary value problem on the crack plane, we express the solution for mono
harmonic functions ¢; (r,kiz) as the following Hankel integrals

()= [e 43 Cosii[r:hk(ii(ézh; &

0

Jy (Ef)d&, 4.1

where 4;(&) are the unknowns (i =1,2,3,4) to be obtained from the boundary conditions and J,, (&r) is the
Bessel function of the first kind and zero order, and A; are the roots of the characteristic Eq.(2.7). Since A,
are the roots of the characteristic Eq.(2.7) it should be pointed out that the roots satisfying Re(?» j ) >( are

only chosen and used in Eq (4.1) to satisfy the regularity condition at infinity.
Then from Eq.(2.9) the components of displacements u, and u., potentials ¢ and vy, stresses o,.,

Gy, O, , O,,, electric displacement D, and D, and magnetic induction B,., B, can be derived. We have
£ T cosh[-1E(z—h)] 5
=—Nan 4 ’ J,(&r)de—v,, 2 4.2
l/lr(r’Z) ;ah 1_! I(E.’) Sln(xléh) I(EJ”) E,, Vrz h v, ( )
_ 8_02 .
u(r2) | |l sinh[—,&(z—h)] .
—MiclET P9
,Z) |= S A4 = J, di+| ——=z |, 4.3
(P((l" Z)) ; as 'g (a) Slnh(?\,iah) 0(&7") &+ h z ( )
v(r,z ay; Vo
—z
L A
(o, (r,z)_ [ —as\;
0 (r,z) 4| ~%siti | cosh| —A
—L&(z—h
Gz(r,z) =Z as; 'h; l( ) Si[nh(k.(éh) )]Jg(il”)d&—i—
D, (r.z)| ™| agh; |0 '
_Bz (r,z)_ az;h; |
e ey 30| (4.4)
(crs 012)[ Ve hj 0
3 5 0
(C11_012)( M;JFVerOj e |
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rz (r,Z) 4 a512 © Sinh[—xié(z—h)]
D, (r.2) |= 2| ashi |4 (8) 2] J, (&r)dE, (4.5)
B, (r,z) i=1 a7lk2 0 i

o (r0) | 4 [asi/hi e =
D.(r,0)|=Y| ast; |[e4(&)coth(hEh)Jy(8r)dE=| D, -D" | r<a, (4.6)
B.(r,0)| "' ayh; |0 B.— B’

_(r,0) Za5, j e (e)J, (&r)de=0;  r=0, @.7)

i=1

uz(r,O) 4 -1 |
0(r.0) |= Y| a5 |[4(&)Jy(&r)dE=0;  rza (4.8)
\|1(r,0) =lay |0

On the plane z = & we have satisfied the boundary conditions (3.1) and o, (r,4)=0 and in addition

80
zallxlj. SlIl 7\‘ &h)J](E"r)dE"_VrZ 7’”

(4.9)

[>e}

4
_ ﬁ ' 1 , *
(rh)=>" by !@4 —smh(liéh)JO(& )dg+o".

i=

The boundary conditions (3.1), which give the boundary values (4.9), are of sliding clamped type
with prescribed axial displacement J, and electric, and magnetic potentials ¢, and vy, , respectively.

For convenience, we introduce three new functions U (&), ®(&) and W(&), such that

1 U(e)
< as; (D(Fa)
4.10
20, 4O g0 | (4.10)
as; 0
Then the unknowns 4; (&) can be written as
4(¢) U(e)
4(8) | _ (&)
A3(2’;) _|:bﬁ:'4><4 \p(g) (4.11)
4,(8) 0

where
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VA A I

[] _| 931 932 d3z Ay 4.12)
4x4 ’ )

Ay 4dgy Ady3 Ay
ds; dsy; ds3 dsy

and where “~/” denotes the inverse matrix.
The constants 4; (§) are obtained as follows

myA; (8)=dU () + L@ (&) + k¥ (8) (4.13)

where
4 4 4
my=>d; =Y ayl, =Y a,k. (4.14)
i=1 i=1 i=1
We have the identities

D= k=D ad; =) azki =) aud; = 2“41'11- -

(4.15)
=Y asd; = asl; = Zaj,.ki =0
where sums are from / to 4.
The material parameters d;, [;,and k;; i=1,2,3,4, are
d)=asy(as3a,y —a3as,)+ ass (assa, —asya,)+asy(asya,3 - azsa,;),
dy =as;(azga,5 — a0, )+ as3 (a3 0., —assa,) +asy(assa,, —az,a,3),
dy = as; (a304 — a34a.) + asy (azgay; —azag )+ asy(aza,, —asay;),
dy =as;(a330,5 — a350,3) + asy (3,03 — as3a,; )+ asz (as,a,, —asa,;),
Iy =asy(ag3 —agy)+as;(ay —ag)+ass(ap —ays),
l=as;(ay —as)+ass(ay —az)+as,(as—ay),
ly=as;(a;,—ay)+asy(az —ay)+asy(ay —ay,), (4.16)
L= as) (g —ap )+ asy (ag —ag)+ass (ap —ay),

ky = a5y (asy —ass )+ ass (a5, —azq) + asy (az5 - as, )
( )+ ass (asy —as;) +as, (a5, - as;)
ks = as, (asy —asy)+ a5y (a5 - azy) +asy (az; —az, ),
( )+ as )+ ass )

ky=as;(az; —azz)+asy(as; —az;)+asz(az; —as;
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The boundary conditions (4.6), (4.7) and (4.8) give a system of coupled integral equations for U (Z;) ,
q)(%’;) and ‘P(E,) in the following form

myo., (r,0)= T[mU(§)+m6<D(§)+ﬁ16‘P(§)]§,]0 (&r)de+

(4.17)
4 o0
+Z%J.[diU(§)+Zi(1)(§)+k,-‘I’(&)][coth(?»iéh)—ijo(ér)déz—mzc*; r<a,
1 i
m,D, (r,0)= .[[m5U(§)+m7CD(§)+m8‘P(§)]E_,JO(&r)d§+
;e (4.18)
+) g [[dU (8) +1,® (&) + kW () [ coth (1,8h) 116, (&) dE=m, (D, ~D"); r<a
i=1 0
myB, (r,0) = [[moU (&) +myy®(8)+my, ¥ ()&, (&) dE+
, } 0 (4.19)
+ a [[dU (8) + 10 () + k¥ (&) [ coth (,&h) ~ 1]e/, (&r)d&=my (B, - B'): r<a
i=1 0
uz(r,O) w —U(i)
o(r.0) |=[| (&) |Jy(&r)de=0;  r=a, (4.20)
w(r0)] [ Y(E)
where
4 a 4 e 4 4
m=>y Ld, mg =y L, g = Lk,
] i ] }\‘i ] i
4 4 4
ms = Zam’}‘idﬁ m; = Zam’?‘ilﬁ mg = zam'?‘iki’ (4.21)
1 1 1

4 4 4
my = zaﬁ)"idi; mpy = zaﬁ)"ili; mp; = zaﬁ?‘ikz"
1 1 1

Introduce the new functions f;(x) (i=1,2,3) and the following Fourier integral representation of

the functions U (&), ®(&) and ¥ (§)

sin(&s)ds; fi(0)=0, (4.22)
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then

u, (r,O) fl(s)

o(r,0) j 2(s) |ds[sin(&s)J, (&) de (4.23)
v(r0)] L f5(s) ] O
Recalling the following knows result
T H(s - r)
J.sm(ﬁs)Jo (&r)d&z — (4.24)
0 s°—r

where H () is the Heaviside function, we find that the boundary conditions (4.20) are automatically

satisfied. Moreover, the displacement, electric potential and magnetic potential on the crack plane can be
expressed in terms of the introduced unknown functions as

MZ((I", 0)) J_ fl((s))
(O} r,0 N
w(r0)] L f5(s) IV

(4.25)

Multiplying both sides of Eqs (4.17), (4.18) and (4.19) by r/ N , integrating with respect to »

from 0 to x (x < 0) , respectively, and using the following identities

roir sinE_,x <
IJ (&) g

I 7 c sin (&s )sin (&x)d& =§8(s —x) (4.26)
x> =

where 8() is the Dirac delta function, Eqs (4.17), (4.18) and (4.19) can be rewritten as

mf; (x)—m6f2 (x)—mg f3(x)+

a5

TC T

"[[df] -Lf, (s)—k[f3 (s)]K[(x,S)ds=£cs*m2x,
0

Ji z

ms f1(x)=m; f5(x) = mg f3(x) +

. 427
+Z Zaml,j[df, —1.f5(s k,.f3(s)]1<,.(x,s)ds=2(z) - D, myx (*.27)

T

m9f1(x)—mmfz(x)—m“f3(x)+
el 2a7,x,j[dﬁ —1.f5(s k,.f3(s)]1<,.(x,s)ds=2(3* B)mzx

T

where the kernel functions K; (x,s) are defined as follows



164 B.Rogowski

K, (xs) j [coth (k) — 1]sin(&s)sin (&x) dE, i=1234. (4.28)
0

Next, the solutions of electric displacement and magnetic induction inside the crack are of interest.
Application of Eqs (3.7) and (4.25) leads to

ds —¢€,€ 0<r<a,

D J.\/ST !%ds=0;

(4.29)
(/) G
Bcjwds—urpojwds —0, 0<r<a.

Differentiating both Eqs (4.29) with respect to 7 and using the following rule of differentiation
under integral sign

dar S(s) ,_fla) td(f(s)) ds
dr! ) ds = N +rf o (4.30)
Equations (4.29) may be rewritten as follows

_# __rz[Dcf](a)—grson(a)]+

fi(s )J ds T d(f( )j ds
+r| D, = &8 | - =0,

{ J- ( \/s —? O‘Eds \/s —?
(4.31)

ﬁ[Bcﬂ(a)—urugfg(a)]ﬁL
td(fi(s)) ds td(f(s)) ds |
—H{B",[g[ E j\/ﬁ—u,ug}[g( E o =0; 0<r<a.

The first terms in both Eqgs (4.31) are singular at » — a — 0, while other terms tend to zero in at this
point. For the singularity to vanish at » — a — 0, it must be true that

D, f(a)—¢,gyf5(a)=0,

(4.32)
B.fi(a)—p,u,f3(a)=0.

Equations (4.32) determine unknown quantities D, and B, . The relations are non linear since f; (a),
f>(a) and f;(a) depend also on D, and B,, as shown in Egs (4.27). Equations (4.32) form two coupling

quadratic equations with respect to D, and B,.. Those are dependent on the material properties, electric
permittivity and magnetic permeability of the crack interior and applied loadings. In addition, it is found that
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the kernel function K; (x,s;h) depends on the width of the layer D, and B, also depends on / . Moreover,
although these are at most four pairs of roots of D, and B, according to the nonlinear Eqs (4.32) only one pair

is reasonable and the other are superfluous. The acceptable D, and B, should be located at the range between

that for a magneto electrically impermeable crack (zeroes values) and that for a magneto — electrically
permeable crack (the extremally possible values). Four ideal crack face electromagnetic boundary conditions:
(1) D,=0 and B.=0, (ii) D,#0 and B, =0, (iii) D, =0 and B, #0, (iv) D.#0 and B, #0 are the
limiting cases of the electromagnetically semi permeable crack model (“dielectric and magnetic crack™).

5. The exact solution of Fredholm integral equation

Using the known result
coth (A,8h)—1=2) 2™ | 5.1
n=1

we find that the kernel function (4.28) is

> 2nkh 2nk;h
=Z 7 2 7 P (5.2)
=1 (anl-h) +(x—s) (anih) +(x+s)

Consequently, Eqs (4.27) can be rewritten as

fi(x)]
Al fo(x) |+
f3(x) ]

rd as; '\ |,

2nk;h 2nhh
2 A |[[d -1, k; l - l =63
+ ZZ Zjl.xl. .[[ if1(s)=1if2(s) = 'fj(s)}[(znxih)er(x—s)z (anih)2+(x+s)2}s G

4

*

c
2
:—msz =D, |
B’ -B,

This Fredholm integral equation of the second kind (5.3) can be solved explicitly. The method of
consecutive iteration yields the N t4 approximation

(5.4)

)
)|=
(x)
_ii[ agiki |[difi0(x)= 1Sz (x)_kifSO(x)]I:F;'n (x)—Efz(x)+Efz(x)‘---+Eflv(x)]

a71 i
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where
J10(x) 5 N
fzo(x) =—m2xA_1 D*—Dc "
T
f30(x) B -B,
2 2
. 2n\; — -
F,-n(x)zz mh ( n?»lh)2+(x a)2 +tan_1(x+aj—tan_1(x aJ ’ (5.5)
X (ZnKih) +(x+a) 2nh;h 2n;h
m  —ms;  —Ti
A=|ms; -m, -myg |,

mg —mpy —My;

and the superscript “—/” denotes the inverse of a matrix A .
The sum of infinite geometric series converges to the solution as N — oo, giving

*

fl (X) (o]
2 g
f2 (x) =—m2xA D —Dc +
T *
f5 (), B -B, (5.6)
4w |Gsi/ i o
_ZZ gk [difl()(x)_lifzo (x)_kifﬂ)(x):lﬂ.
i W 1+ F, (x)
L “7i%i
The range of convergence is given by the inequality
E (X)| - (5.7)

and is satisfied for all of 0<x<a and a/h . For the limiting case of an infinite magnetoelectroelastic space
E, (x,a/ h)—>0 as h —>oo. On the other hand, for a very thin plate F;, (x,a/ h) tends to unity since

h— 0. To check the above results, it is natural to consider the special case where a dielectric crack is
embedded in an infinite magnetoelectroelastic material, i.e., # — o . One can find that the solution may be
solved explicitly. This solution is given in Appendix B.

6. Analysis of field intensity factors

Defining the field intensity factors as follows

K, = lirn+4/2n(r—a)q(r) (6.1)

r—a

where ¢ stands for 6,, D, and B, , respectively, we then find that the intensity factors of stress, electric
displacement and magnetic induction can be expressed as
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K, 6
Kp | =2y DD, |+
T
Ky B -B,
] 6.2)
AL asi /i 2 tan"(ain)—afln(1+0t,-2,,)
—m—zz agih; [difm(a)_lifzo(“)_kifw(aﬂ; P m]
2i=in=l| g 3 ]+(tan_1(0t,-,,)—1n(1+0li2n )J
T 0Lin
where
a
L ‘ 6.3
Fin =3 Y

The first closed form solutions, for an infinite medium, are identical with the known result given by
Zhong and Li (2007) through a different approach. Similarly, the field intensity factors associated with the

crack opening displacement u_ (r), electric potential (p(r) and magnetic potential \V(r) across the crack
near the crack front are defined and easily derived from Eqs (4.25) as

Keop= lim | uz(r)zmﬁ(a)’

r—sa Z(a—r) a

Ky=lim = (p(r)zw-fzc(la), (6.4)

sz lim \p(r)=\/EM.

r—a~ Z(a—r) a

Figures 2 and 3 show the variation of the functions f (oc) and f (a) / (1 +f (OL)) , respectively.

201
(@) tan'1(oc)
15 -
10 - |
f(a)
0,5 -
00 ‘ ‘ ——aIn(1+a?)
_0‘5 V/—/———‘-‘————
o
1,0 -
0 10 20 30 40 50

Fig.2. The variation of the function f (a)= z[tan_l (a)-a ln(l +o’ ” with o .
n
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0,50

fa)/(1 m))/,_,_
0,40 /
0,30

0,20 -

0,10

0,00 T T T T
0 10 20 30 40 50

Fig.3. The variation of the function f (a)/(/+ f(a)) with a.

These field intensity factors can be presented explicitly

KCOD_ 5 o’
K, |==~NmamA™'|D*-D, |+
n
K, | B -B,
(6.5)
4 » Las; Iy 2 tan”! (ain)_iln(ﬁra’?”)
o
—ZZ agih; |:dif10(a)_lif20 (a)_kifﬂ)(a)]; P - ] '
i=1 n=1 i\, ]+[tan1 ((xl-n)——ln(1+(x,-2n )]
L T in
Note that
K A Kcop
Kp :m_ K(p (6.6)
Kz] 7| &,

where the matrix A /m, may be partitioned as

elastic stiffness  piezoelectric piezomagnetic
piezoelectric dielectric magnetoelectric |.
piezomagnetic magnetoelectric magnetic

For the piezoelectric barium titanate BaTiO; and piezomagnetic cobalt iron oxide CoFe,O4
composite (roughly 50:50 percent) we have
62,5%x10° N | m? 14,3C / m? 7,0x10° N | Am
14,3C | m? —17,0x107°C/Vm —-16,7x107°C/ Am |.
7,0x10°N/ Am —16,7x107°C/ Am -8,2x10°N / 4°
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The non zero magnetoelectric constant d,; =—16,7x 1 07°C/ Am exists only in the piezoelectric /
piezomagnetic composite as a significant new feature.

The electric displacement D, and magnetic induction B, inside the crack are obtained from Eqs
(4.32),1.e.,

D, =¢,89f>(a)! f;(a),

(6.7)
B. =1y f3(a)/ f1(a)
where
ha)) o
f2(a) ==myaA”™!| D" =D, |+
T
f.?(a)_ B*_Bc
_ ; (6.8)
oo [asi i ; tanfl(al.n)—a—ln(hrafn)
2| s [ ifio(@) =k S (@)= kS (@) ]S — - |
i=1 n=1 arh; ]+(tan_]((xm)—ln(1+oc,-2,,)J
L T Ay

7. Magnetoelectrically permeable crack

For a magnetoelectrically permeable crack case both electric and magnetic potentials are continuous
across the crack surfaces. Thus the problem can be reduced to the following Fredholm integral equation of
the second kind

2& ay, 2 .
mf; (x)+;Za5’ dijﬁ(s)Ki(x,s,%ih)ds =—0C m,X; x<a,

T

7.1
and f,(x)=0; and  f3(x)=0.

The solution of the integral equation is given explicitly

fl(x) ) 22051 l#);))} (7.2)

11n1

The field intensity factors can finally be expressed as

(7.3)
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Equations (7.3) indicate that the four field intensity factors of COD, stress, electric displacement and
magnetic induction depend on one another through material constants and thickness of the layer. In addition,

D

. and B, have no effect on these field intensity factors. For the barium titanate cobalt iron oxide

composite material the elastic stiffness m/m, piezoelectric coefficient m;/m, and piezomagnetic

coefficient mg / m, are obtained as follows: 62,5x10° N /m?; 14,3C /m”; 7,0x10° N | Am .

Appendix A

The material parameters in the characteristic Eq.(2.7) are as follows
= 2 Es3q5; + —d3;(c33d33+2 )
A =Cyy| M33€33 T E33q33 T C33133833 —d33(C33d33 T2€33q33) |

_ 2
b=p;; {(631 e )[2013633 —cs3(es; +egs )} +2¢y 5385, = Cp1€33 ~ 033044811} +
+e ( + )20 —c ( + )+2€ — ¢ —Cane +
33\\431 T 45 13933 —C33\431 T 45 144933931 —C11933 —C33C441 1
~2 2 2 2 2 2 2
—H33€33C _(e3l+el5) %3_(%1“‘415) €33 —Cyqll11€33 —C1y€11933 +
222
+2e339533 (6131 + 6115)(631 + 915)Jr d33¢" + 2¢33d 33 (931 + 615)(‘]31 + (]15)Jr

+2¢44¢35d 1 d 55 + 2e33q53 (Cqqd ) +¢ppds3) = 2d55(cp5 + 4y )[‘333 (931 +q15) +q35(e31 +ey5 )} )

€=HU;33 {2915 [011933 ~cy3(e31+eg5 ):l +Cpe) + 81152} +

€33 {2(115 [011933 —Cj3 (6131 +4;s )} + C44Q321 + H1152} +

+C33C44M 1811 + €1 rCaatszess + 2(cp3 gy ) (a1 + 15 )(de33 + dszers —qs380) +
+2(c13+cuq)(esr +es)(drg33 +d33qp5 —essbyg ) +

+(g31 +4s5 )2 (c33811 +2e335) + (€31 + ey )2 (c33017 +24339;5) + (A.1)
=2(q31 + 415 ) (€31 +eps)(e33q75 +qs3ers + 33y +Cqqdsz) +

=2¢;d33(e33915 + q3315) — 2¢04d ;1 (q33¢15 + €335 ) +

=2¢;,d ;1933633 — 2¢44d 339 5€15 + 2C414915933€ 1) + 2Cy4€p5€331 ) +

2 2 <2 2 2
+C11q53€1; + ¢ €531 — 26 d33d — ¢ pcyydsz — Cqycs3d]

_ 2 2 2 2
d=—cphs; (044811 tels ) ~C18s33 (044M11 +4is ) ~Cyuy (%1“11 t431811 ) +
2 2 2 2 ~2 ~2
—€3,4q75 — 43175 — M €€ +d €7 +2¢)C4d;d 35 +
+2¢1391593/€11 +2¢13€55€311 11 — 2¢119)5933€1 — 2C11€55€331 1 +
2 2
+2¢13q975€1; +2¢3€151 1 + 2€30€15931915 + 2¢11€55q5d 33 +

+dy, [—2013615 (Q15 + %1)— 2¢39;5 (915 +é3 )] +dp; [2011 (615%3 + 915633)"‘ 2044931%1]:
= e qrs + ~dy(cgyd;; +2 )
€=Crr|Kps€s T 811915 T Cuq€qlhyy — A1 \Cyqlyr +<€159)5) |5

~2
C =CpiC33 —Cp3 (013 +2¢yy )
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Material coefficients in Egs (2.8)
a;= (C13 +Cy )(3336133 —e33d;33 ) - (6131 +4;5 )(033833 + 653 ) + (331 tes )(6’33‘133 +e33d33 ),

b, = (013 +Cy )(633d11 +esdsz —€339;5 —€11933 ) + (931 +4q;s )(044833 +e338;; +2e33€)5 ) +

- (631 tes )(6’44d33 +es3d;; +qz3e5 + 633%5)’
¢ = (013 +Cyy )(8116115 —e;5d;; ) - (6131 +q;5 )(044511 + 9125 ) + (631 +ées )(044d11 +€59;s ),
d; =0, ay; =Cyy (933‘133 —€33933 ),

by =c¢y; (%3533 —d;3e33 ) TCyuy (6115833 +q338;; —esdzz —des; ) +

+(C13 TCyy )[dss (631 +é€s ) —€33 (%1 +4;s5 )] - (631 ters )[933 (6131 +4;5 ) —433 (631 térs )]

¢y =cyy(drers —e1415) + (13 +C44)[811 (951 +q15)~dpi(e51 +eys )]+

+(e35; +eys )[615 (931 +q15)—a15(e51 +ey5 )] +cp(dyess +dssers —qrs5833 433800
(A.2)
dy=cq; (%5"311 —e15d”), az =Cyy (033d33 t€33933 ),

by =—c¢y, (033d33 + 33933 ) —Cyy (044d33 +e;5q33 +C33d 1 +q)5€33 ) +

+(cr3+cyy )[(013 + e )ds; +(q51+ a1 )633] +(e3; +eys )[(013 +¢40) 455 = (451 + 415) €35 :|,

C3=¢yy (044‘133 +ez3dtesqss +q;5€33 ) +cy (044d11 +4q5€;s ) +

~ (13 +C44)[(C13 +egy)dy +(q3 +Q15)e15] ~(e3 +e15)[(c13 +egg)ars = (g3 + ‘115)044}

_ 2
by=cyy (033833 +e3;3 ) +Cyy (044833 +e338); +2€ 5033 ) +

~(cs3 +C44)|:(013 +cy)ess +(es +e15)e33:| ~ (e, +ez5)[(013 +cgg)ess —(es "‘315)‘73317

_ 2
Cy=—Cp (044533 +C338;; +2¢;5€33 ) —Cyy (044811 + 915)

+(cs3 +C44)[(013 +cu)ers +(es +e]5)e]5j +(e3; +el5)[(¢13 +cyg)ers —(es +615)C44:|s

2
d;=cyy (044811 +es )

The coefficients a,, b,, c,, d, are obtained from coefficients a;, b;, c;, d; by replacement of

d; by g; and gq;; by e;; and changing the signum.
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If only a pure piezoelectric or pure piezomagnetic material is considered, then the electric or
magnetic  potential is defined by a polynomial of A which is given as follows

c44c33k4 —[c”c33 —cy3(cp3+2¢yy )]7»2 +¢;;¢44. This polynominal vanishes for a pure elastic transversely

isotropic material without piezoelectromagnetic properties.
The roots of the characteristic Eq.(2.7) are presented by formulae

b1 )i I R
W= LR YR -2 [2R.—R 47
™ yq N3 2\/ T Ty

Rs+Rg

b I 1 I R
A =———ZJR+R, += |2R; —R, +———L—
2 da 2 5 6 2\/ 5 6 4

Rs +Rg
(A.3)

4 Rs +R; ’

a

b1 ] I R
W= L R +R += 2R —R -1 7
Ty 2V 2J 3Ty

Rs + Ry
where
R, = 2¢% —9bed + 27ad? + 27b%e - 72ace; R, = ¢ —3bd + 12ae,
Ry=y R} —4R3; R, =3 é(R, +R;), (A4)
b’ 2¢ R, R, b’ 4bc 8d
5T T 6= o TS Ry=—3-—F+—.
4a 3a 3aR, 3a a a a
Appendix B
Denoting

‘:’i = (mIZdi —mysl; —mygk; )0* - (m13di —mygl; —mgk; )(D* -D, ) +

_(m14di —myyl; _m20ki)(3* _BC)’

Y

=mmy, —Msiy s — Mgl y = MM, — Mg s — Mg g =M;M ;g — M5 3 +Mgh g =

=MygMy7 + My Myg — Mgy,

(B.1)
My, =mym;; —mgyg, myz =mgm;; — Mgy, myy = mght; —Mgyg,
mys =msm;; — Mgy, My =mmy; —mgng, m;; = mgms —mmg,
Mg = Mgy —MsMi;g, Mg = MgyMg —mmy, myg = mmy; —mgis

the physical quantities are obtained as follows
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4
r 1T -1 Ci )
r,z)=—>Y a;\;d;| ——tan =l -y _—7,
) TU’IN’IZ_ZI 1i'%i 1{2 Cl ]+C12] rz h

Zn, 1(1 C(——tan QD 8702,

2a < ~
r,z)=———) a;md;| 1-C; ——ta
) TU%; 3iM; 1[ i

_ %,
h 5

rz)——ﬁia d| 1- ——tan C Yo,
i Py 4iM;i4; l h Z

00 (r) =L asd il ,
mai 5 (1467 ) (6 + )

i TN
(B.2)
0 1)
066 I"Z Za5l {——tan C.>1 Cigc’lnig]_(cll 012)( aur +Vr270ja
E (r,z)=- 2r ia d N;
SR R ) e
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N
D
mm,zz%’ (1+¢)(c+n?)
z)=—iz4:a Ad| Z—tan”' ¢, - G +D
7T’7~1,~=1 6i"vi%i P i Clz+nlz >
N;
B )
Bk e e
_1 Cl
__—Za7l [——tan G — +n-2]+B
The following integrals are used
! %[%)e_é}‘izjo(r&,)diz—an {1 C(——tan qﬂ (B.3)
T d (singa o~z o, G
-{[d_[—j Jl(ri)di— 3(3 tanICZ- 1+Cl-2} (B.4)
[.d (singa) o, ¢,
!)’gd—é(m‘Taje &2 Jo(ré)déz—5+tan g+g2 e (B.5)
d (sin&a ~Ehiz g N
é—( je r& dé—— (B.6)
-([dé 3 /i) a(1+67)(c7 +n7)
where
Q-(r,z,a,k.):L\/\/(rZ +2227 —a2)2 + 40222 +(r2 +A7z2 —az),
1 1 \/Ea 1 1 1
(B.7)

ni(r,z,a,M)Zﬁ\/\/(rz +kfzz —a2)2 +47»,-222a2 —(r2 +szz —az)

and A, are the roots of Eq.(2.7) with positive real parts.

Nomenclature

a —radius of the penny — shaped crack
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B. —magnetic induction supported by the crack gap
B,, B, —magnetic induction components

D, — electric displacement supported by the crack gap
D, , D, - electric displacement components
E,, E, —electric field components

H,, H, —magnetic field components
d;;, d;; —magnetoelectric constants
e;5s, €37, €33 — piezoelectric constants
— Bessel function of the first kind of order m
K; —mode I stress intensity factor
K, —electric displacement intensity factor
Kp —magnetic induction intensity factor

K =(2/n)ogJa — the classical result

r —radial coordinate
d;5-> 931> 933 — piezomagnetic constants

u, , u, —components of displacement vector

ro Yz
z — vertical coordinate

Au, — crack opening displacement
A$ — drop in electric potential across the crack
Ay — drop in magnetic potential across the crack

€17, €33 — dielectric constants (permittivities)

z

e, =¢,gy — dielectric constants of the material within the crack gap

€ =8.85x10"2F/m — dielectric permittivity of air (or vacuum)
u;;, M3; — magnetic constants (permeabilities)
K. =,y — magnetic permeability of the material within the crack gap

ny =4nx1077 N/ 4> — magnetic permeability of air (or vacuum)
€, > Egg»--- — components of stress tensor
¢ — electric potential
v — magnetic potential
G,.» Ogg , O, ,0,, — components of stress tensor
¢ — Hankel parameter
Ai(i=1,2,3,4) — dimensionless roots appearing in general solution (eigenvalues defined by Eq.(2.7))
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