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The paper presents an aproximate analytic method for determination of the stored energy of plastic defor-
mation during cold bending of metal tubes at bending machines. Calculations were performed for outer points of 
the tube layers subjected to tension and compression (the points of maximum strains). The percentage of stored 
energy related to the plastic strain work was determined and the results were presented in graphs. The influence 
and importance of the stored energy of plastic deformation on the service life of pipeline bends are discussed. 
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1. Introduction 
 
 In Śloderbach and Rechul (2006) the authors specified a particular form of thermodynamic potential 
of free energy for a thermoplastic body with isotropic hardening, and derived equations for an analytic de-
termination of the stored energy of plastic deformation (SEPD), ability and rate of energy storage, for exam-
ple in cold bending of metal tubes for bends of pipelines or other tube installations. The relationship in the 
form of thermodynamic potential of free energy was derived according to the classical thermodynamics of 
irreversible processes (see e.g., Buchdahl, 1996; Perzyna, 1978; Raniecki and Sawczuk, 1975; Raniecki, 
1977; Śloderbach, 1983; Śloderbach and Rechul, 2006) in the material description using macroscopic inter-
nal parameters. A body model with isotropic hardening was assumed for calculations, because quasistatic 
bending of metal tubes at bending machines (wrapping at the rotational former) (Franz, 1961; 1969) was not 
an example of cyclic fatigue loading. Cold bending of metal tubes at bending machines for bends of pipe-
lines or other tube installations in energetic devices is a quasiisothermal process (T  const.). Here we con-
sider the known ideas of SEPD and choose the best one taking the latest tests results into account (see e.g., 
Chrysochoos et al. 1989; 1989; 1992; Oliferuk et al. 1993; 1995; 1996 and Oliferuk, 1997).  
 The stored energy of plastic deformation SEPD can be useful in evaluation of the material state and 
the state of tube bending process at bending machines. Cold bending of metal tubes, especially in the layers 
subjected to tension, leads to destruction and size reduction of the initial crystalline structure. The existing 
structures of grain boundaries are subjected to failure and breaking. Thus, we obtain a greater number of 
grain boundaries, and their surface increases. It means that it is necessary to take into account changes in the 
crystalline structure of a metal during plastic deformation, especially changes leading to an increase of dislo-
cation density and high reduction of grain size caused by the formation of a substructure. On the other hand, 
SEPD initiates and intensifies matter diffusion processes along the grain boundaries. Such phenomena re-
duce high-temperature diffusion creep resistance of metals and alloys, and that kind of creep belongs to the 
main causes of premature damages of materials. A description and determination of the quantity of SEPD 
could be helpful in the analysis and estimation of productive reliability and repairs of elements of devices for 
power engineering, especially those in which large plastic deformations formed at the stage of manufactur-
ing. A correct determination of SEPD could be helpful in the analysis of mechanisms and causes of damages, 
and in elaboration of methods of damage prevention at the designing stage, development of technology of 
production and repairs of many machine elements.  
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 In Śloderbach (1983), Śloderbach and Rechul (2006) it is shown that SEPD is equal to a change of 
internal energy of the body resulting from plastic deformation, and it is equal to enthalpy of plastic defor-
mation. It is obvious that the energy balance of the plastic deformation process is described by the first law 
of thermodynamics. Since processes of plastic deformation of metals and alloys are irreversible, it is neces-
sary to satisfy also the second law of thermodynamics for irreversible processes, the so-called dissipation 
rule (see e.g., Buchdahl, 1996; Perzyna, 1978; Śloderbach 1983; Śloderbach and Rechul, 2006).  
 The results obtained in this research confirm the known phenomena and effects, namely: SEPD in-
creases and its ratio to the plastic strain work and ability to energy storage decrease as the plastic strain in-
creases (in the considered case, it means increase of the bending angle).  
 
2. Geometric-analytic description of tube bending  

 
 An analytic-geometric description and analysis of the process concern tube bending by wrapping at 
the rotating former with the use of a mandrel or without it, keeping dw  const (permissible ovalization is 6%, 
according to EN 448 of 1993). An analytic description of deformation is limited to determination of the plas-
tic strain state with the method of kinematically permissible strain fields (Marciniak, 1971; Śloderbach, 
1999; Śloderbach and Rechul, 2000), because elastic strains are very small and they can be omitted. Taking 
into account the experimental data available from (Franz, 1961) and those derived in Śloderbach (1999) the 
generalized logarithmic components of the strain state including also displacement of the neutral axis of plas-
tic bending y0 (see Fig.1) can be written as 
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 Expressions (2.1) are the main quantities describing the strain state of the tube subjected to bending. 
Namely, if the top and external points of the tube are considered, then cos(kandcosi = 1. If dis-
placement of the neutral axis of plastic bending is neglected, (y0 = 0) should be substituted. 
 

 
 

Fig.1. Geometrical quantities involved in the pipe-bending processes description according to Śloderbach 
and Rechul (2000). 
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 The expression for strain intensity can be written as Marciniak (1971) 
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 Expressions (2.1) and (2.2) can be used for the description of the strain state of the tube subjected to 
bending at the top, cos(k= 1 and external, cos =1 points of the layers subjected to tension or compres-
sion,  
where: - logarithmic components of plastic strains,  
(i)- intensity of logarithmic plastic strains.  
 The following quantities are included into Eqs (2.1) and in Fig.1 they have the following meaning: 
g0 and gi- initial thickness of the tube, and actual thickness of the bend wall in the bending zone,  
R – suitable bending radius,  
Ri and R0- large active actual bending radius connected with longitudinal strain and the radius determining 
the actual position of the neutral layer,  
ri- small active actual radius of the bend in the bending zone, ri = rint + gi and di = 2ri, 
rext and dext- radius and external diameter of the tube subjected to bending, respectively dext = 2 rext, 
rint and dint- radius and internal diameter of the tube, dint = 2 rint, 
y0 – displacement of the neutral layer of plastic bending, 
and - angles of the point position in the bending zone,  
g- bending angle measured in the bending zone; in this zone g = 0,  
where: 0- bend angle (angle of the former rotation),  
i- angles of circulation of layers subjected to tension and compression in the bend  
i  0, 90o  0, and: sin0 = y0/rext,  
where 0 – angular range of displacement of the bending neutral axis,   
index i = 1 and sign (+) in Eqs (2.1) are related to the layers subjected to tension,  
index i = 2 and sign (-) in Eqs (2.1) are related to the layers subjected to compression. 
And additionally: 
k- technological-material coefficient defined according to the test results, determining the bending zone 

range so that kg = 180o. In theory, k  1; . For practical purposes we can assume that k  1; 6. From 
the known test results it appears that we can assume k  13, (see: Franz, 1961; Śloderbach, 1999; 
Śloderbach and Rechul, 2000). For example, for bends with the bending angle 180o, the coefficient k ex-
presses a ratio of the bend angle 0 to the actual bending angle g, i.e., k  0 /g. When 0 = 180o, then 
0 = kg = 180o, 

i- correction coefficient (technological – material) of strain distribution in the layers subjected to tension 
(i=1) and compression (i = 2), determined according to test for 1  1 and 2  0; 1. For most known 
experiments, we can assume that 2  0.5 (Franz, 1961; Śloderbach, 1999; Śloderbach and Rechul, 2000). 

 
3. Analytical description of experimental data for austenitic steel  

 
 In many works on the phenomena and effects in energy storage processes (see Gadaj et al. 1996; 
Oliferuk et al. 1993; 1995; 1996 and Oliferuk, 1997) austenitic steel 00H19N17Pr was tested. The tested 
steel had grain thickness A = 8m and B = 80m. In the present paper we consider only the steel of grain 
thickness 80m. For this steel, an almost linear dependence (except for the initial deformation stage) of the 
stored energy and the square of yield stress was obtained (see e.g., Oliferuk et al., 1996 and Oliferuk, 1997). 
 The experimental hardening curve obtained during uniaxial tension of the steel was approximated 
with a very good accuracy with the Swift equation (Marciniak, 1971) 
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        = Y = C(i))

n, (3.1) 
 
of the following explicit form 
 
  )

0.5359 [MPa] 
 

where: the coefficient of the square regression ˆ . %2R 99 75 , 
Y- stress equal to the yield point under uniaxial tension [MPa],  
C- material constant: C  1275.1 MPa,  
- strain corresponding to the initial yield point; 0.0214
1- logarithmic longitudinal plastic strain (along the axis), 
i)- intensity of the logarithmic plastic strain, 
n- coefficient of the material hardening, n  0.5359. 
 In order to determine the stored energy of plastic deformation where SEPD  Es it is assumed like in 
Bever et al., 1973; Oliferuk et al., 1996; Śloderbach and Rechul, 2006 that the expression for the stored en-
ergy can be aproximatelly written as a linear dependence on the square of yield stress 
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where B0 is the coefficient of proportionality (a material constant), [B0] = Pa-1. 
 Let us note that Eq.(3.2) is equal to the following expression 
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 In the case under consideration, the condition satisfying the dissipation rule, derived in Ślodrebach 
and Rechul (2006) is as follows 
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 In the papers (Gadaj et al., 1996; Oliferuk et al., 1993; 1995; 1996 and Oliferuk, 1978), for the 
tested austenitic steel 0019N17 Pr the coefficient B0 takes the values: B0  8.810-5 [MPa]-1 or B0  8810-

12 [Pa]-1 then the dissipation rule (3.4) is satisfied. Density 0 for that steel is taken from the tables and it is 
0  7.8103 [kg/m3]. In the case of tube bending and for bending temperature rise ~ 40 K, the estimated 
maximum energy of the thermostatic piezocaloric effect (Raniecki, 1977; Śloderbach, 1983) is about  
0.26 J/g. 
 The results of precise approximations and calculations of density of the stored  energy of plastic 
deformation SEPD per mass unit are shown in Fig.2. The graph was obtained from expressions (3.2) or (3.3), 
after introduction of Eq.(3.1). 
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Fig.2. Approximation of the stored energy curve Es obtained experimentally in Oliferuk (1977) with expres-
sions (3.1)-(3.3). 

 
 At the experimental curve (Fig.2) one can notice a small decrease of Es within the strain range to 5%. 
This reduction is a result of accommodation of non-compatible elastic-plastic strains of the adjacent grains, 
connected with kinematic hardening (Bauschinger effect) and formation of the field of internal microstresses 
of Kadaszewicz-Novożiłow (see Chrysochoos et al., 1989; 1989; 1992; 1964). Accommodation of non-
compatible elastic-plastic strains can take place when an additional amount of the dissipated energy of plastic 
strain is present. The proposed expression (3.1) for description of the hardening curve of austenitic steel 
00H19N17Pr does not include the kinematic hardening effect because of a lack of experimental data for this 
steel. The analytic description (3.1) includes only isotropic hardening which is of a great importance under 
great strains occurring while bending metal tubes at bending machines.   
 
4. Aproximate analytic determination of stored energy values in metal tubes bending 
 
 According to Adam et al. (1978), Bever et al. (1973), Chrysochoos et al. (1989; 1989; 1992; 1964), 
Oliferuk et al. (1993; 1995; 1996; 1997), Soós and Badea (1997), Śloderbach and Rechul (2006) SEPD de-
pends on many factors, for example a degree of plastic deformation, deformation rate, temperature of the 
deformed body, stress state, crystallographic structure, temperature, deformation history and deformation 
rate history, temperature history and history of temperature variation rate, chemical composition. In metals 
and alloys it is connected with formation of various defects in the crystal lattice, for example its deformation 
and orientation change, damages of grains and its boundaries, formation of pile-up of dislocations and va-
cancies, deformation of atomic layers. In metals and alloys, this energy causes also dynamic and static re-
covery and recrystallization. 
 For determination of SEPD while metal tube bending at a bending machine, austenitic steel 
00H19N17Pr was applied. Its grain thickness was 80m. The same steel was tested in Gadaj et al. (1996), 
Oliferuk et al. (1993; 1995; 1996), Oliferuk (1997). SEPD was determined according to Eqs (3.1), (3.2) or 
(3.3), where ( )i    was introduced. 
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 Plastic strain work per mass unit, calculated according to measures for true (logarithmic) strains is 
expressed by the following equation (Marciniak, 1971) 
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 Let us substitute (3.1) to (4.1), and integrate the obtained formula. Then, we have 
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 Tube bending at bending machines is a quasistatic process, where deformation rates are about (10-4 – 
10-3) s

-1, and temperature change for the tube is about ~1040 K because of plastic strains. In such a case we 
assume that such temperature change does not influence the hardening curve for the deformed material. Such 
a process can also be called quasiisothermal, then (T  const). We can distinguish cold bending in the ambi-
ent temperature, or bending at higher temperatures [hot bending, semi-hot bending or bending with preheat-
ing, (see e.g. Kocańda, 1998; Marciniak and Konieczny, 1987)], but in practice we can neglect temperature 
changes. From the practical point of view, it is possible to neglect all the thermal effects connected with 
temperature changes during bending. Thus  
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 After the application of Eqs (2.1), (2.2), (3.1), (3.3) and (4.1) the results of numerical calculations for 
the tube 44.5  4.5mm, bent at the angle (kg = 180o) with the bending radius R = 80mm (R 1,8  dz) 
and for (y0 = 0) were presented in Figs 3-6. The tube was made of austenitic steel 00H19N17 Pr, the grain 
size was 80m, and density 0  7.8103 [kg/m3]. 
 

 
 
Fig.3. Plots of the stored energy of strain hardening for stretched and compressed layers as a function of 

bending angle kg shown in terms of true strain for bending pipes made of austenitic steel 
00H19N17Pr with the grain size of 80 m. 
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Fig.4. Plots of the ratio of the stored energy value to the work of plastic strain value for stretched and com-

pressed layers as functions of bending angle kg expressed in terms of true strain in bending pipes 
made of austenitic steel 00H19N17Pr with the grain size of 80 m. 

 

 
 

Fig.5. Plots of the stored energy rate for stretched and compressed layers as functions of bending angle kg 
expressed in terms of true strain, bending pipes made of austenitic steel 00H19N17Pr with the grain 
size of 80 m. 
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Fig.6. Plots showing capacity of a material for storing the energy for stretched and compressed layers as 
functions of bending angle kg expressed in terms of true strain in bending pipes made of austenitic 
steel 00H19N17Pr with the grain size of 80 m. 

 
 Figure 3 shows that the values of SEPD in the layers subjected to tension-compression increase as 
the bending angle kg increases, and they reach their maximum for kg = 180o, which means the end of the 
bending zone range. It also appears that the values of SEPD in the layers subjected to compression for 
are greater, and for 0.5areless than in the layers subjected to tension for . It results from 
the geometry of strain distribution while tube bending at bending machines. 
 From deformation description it appears that in absolute values for strain components and strain 
intensity the following inequalities take place for  
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where the subscript “com” refers to compressed fibers while “el” refers to elongated fibers. 
 The calculated exemplary maximum values of components of longitudinal strains and strain intensity 
for the bending angle (kg = 180o) are 
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 From Fig.4 it follows that the quotient (Es /W
p) decreases as the bending angle kg (and strain) in-

creases. This value is less in the layers subjected to compression for and greater for 0.5, in com-
parison with the layers subjected to tension. The explanation of such a phenomenon is the following. For the 
given bending angle kg, inequalities (4.4) are satisfied, and as plastic strains increase (it is proved by almost 
all experiments for large deformations occurring while tube bending), a decrease of the quotient (Es /W

p) is 
observed. Variation of the curves in Fig.4 is similar to those reported in literature (Adam et al., 1978; Bever 
et al., 1973; Chrysochoos et al., 1989; Oliferuk et al., 1993; 1995; 1996; 1997). 
  Within large deformations (except the initial stage), the following implications arise 
 

when   kg , then:  ( )
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p), Y      and     (Es / W
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where: Rz(t)T –creep resistance of the material for time and temperature T. 
 At the initial stage of deformation, for example to ~ 4%, for 00H19N17Pr steel and some other metals 
(see e.g., Chrysochoos et al., 1989; 1989; 1992; Oliferuk et al., 1993; 1995; 1996 and Oliferuk, 1997), the max-
imum values of the quotients (Es./W

p) and (dEs/dWp) were observed, depending on the deformation degree.  
 In Fig.5, the rates (dEs/dkg) of storage of plastic deformation energy depending on the bending angle 
kg are shown. The curves for the layers subjected to compression are of the ascending character in all the 
bending angle range; in the layers subjected to tension they are of the same character only for (kg  150o). 
Thus, we can talk about “acceleration” of the energy storage process in the layers subjected to compression as 
the bending angle increases. In the layers subjected to tension such an acceleration is valid only for a (kg  
150o). For (kg > 150o) the energy storage rate is almost constant (in this range, the graph is almost constant).  
 Figure 6 shows changes of the ability to store plastic deformation energy (dEs/dWp) in the layers 
subjected to tension and compression depending on the bending angle (kg), in measures of logarithmic 
strains. In the case of large deformations, the presented values and histories of the curves variability are 
comparable with the test results obtained by (Oliferuk et al., 1993; 1995; 1996 and 1997). At the initial stage 
of strains (to ~ 4%, which corresponds to the bending angle kg ~ 20o then for k  1 we have g ~ 20o, and 
for k  2 we have g ~ 10o), there is no maximum and the calculated curves in Figs 4 and 6 are monotonical-
ly decreasing. It can be seen that for the bending angles kg greater than ~ 10o, the history of decreasing 
dEs/dWp is more intense (values of dEs/dWp decrease more quickly) than in the case of experiments made by 
Oliferuk et al. (1993; 1995; 1996) and Oliferuk (1997). 
 The initial values (i.e., for kg = 0o) of the curves (Es./ W

p) and (dEs / dWp) were obtained by introduc-
tion of the de l’Hospital rule to Eq.(4.5). The procedure is as follows 
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 type. Using the expressions describing geometry of 

deformations of the tube subjected to bending: (2.1), (2.2.), Eqs (3.2) or (3.3) and (4.1), (4.2), and using the 
de l’Hospital rule, after transformations we have 
 

  n 1
0 0 0q 2B C n    = 2B0

* C n 0
n 1
0
  (4.6) 

 

where  B0 = 0 B0
*       and       B0

*  1.12810-5 
( )2

J

g MPa

 
 
  

. 



244  Z.Śloderbach and J.Pająk 

 Such an initial value of the quotients: lim(Es./ W
p) and lim(dEs/ dWp) is q0  0.716 or q0(%)  71.6%. 

 Similarly, using the expressions describing the geometry of the tube subjected to bending (2.1), (2.2), 
Eqs (3.2) or (3.3), and (4.1), (4.2), for the case of a cylindrically linear dependence Es on the of yield stress 
analysed by Chrysochoos et al. (1989; 1989; 1992), Soós and Badea (1997) from Eq.(4.5), after some trans-
formations, we obtain 
 

  0
0 0

n
q

b



. (4.7) 

 

 The expression (4.5) and its specific forms (4.6) or (4.7), can be applied for determination of the mate-
rial constant B0 or the coefficient of proportionality b0 [4, 22], if the experimental value of q0 is known. The 
quantity q0 can be a measure of the initial internal thermodynamical force 0, when the corresponding internal 
parameter is the plastic strain work (Śloderbach and Rechul, 2006). It means that the force 0 is a macroscopic  
(phenomenological level) measure of internal stresses of mode III (so-called submicroscopic stresses) in the 
material (Cottrell, 1964; Perzyna, 1978). 
 The method allows determining SEPD during plastic deformation of metals and their alloys (see 
Fig.2). The results obtained are precise, and there is no need to perform expensive and time-consuming ex-
periments. We must only know the experimental hardening curve for the given material (metal or alloy) and 
the determined value of the coefficient q0; we should also apply the expressions (3.1), (3.2) or (3.3), and (4.6) 
or (3.1), (3.2) or (3.5) and (4.7) in a proper way. 
 
5. On the importance of energy stored during cold tube bending 

 
 According to Adam and Wolfenden (1978), Bever et al. (1973), Oliferuk (1997), Śloderbach and 
Rechul (2006), SEPD causes recovery and recrystallization in metals and their alloys. According to Adam 
and Wolfenden (1978), Bever et al. (1973), Oliferuk et al. (1996), Oliferuk (1997), SEPD also influences the 
formation of nuclei of new structures on the grain boundaries (nucleation) and their growth. Thus, it influ-
ences kinetic processes in plastically deformed metals and their alloys. SEPD initiates, intensifies and influ-
ences processes of internal matter (atoms or particles) diffusion  along the grain boundaries and along the 
volume (lattice diffusion), or usually both types of matter diffusion transport at the same type.  
 Processes of internal matter diffusion are the factors generating high-temperature creep (above 
0.40.7Tm, where Tm – melting point) reducing strength of many elements (for example, bends of pipelines and 
other tube installations) of devices applied in thermal power engineering, chemical and petrochemical indus-
tries, food industry and other. Additional energy delivered, for example, to the external layers of the bend sub-
jected to tension can generate and intensify internal physical and chemical processes, also destructive creep. It 
is obvious that dislocation or diffusion creep inside materials at the temperatures higher than 0.30.5Tm, is a 
physical mechanism responsible for durable and destructive deformations of pipelines and other tube installa-
tions working at higher temperatures. At the phenomenological level (macroscopic description) the following 
hypothesis can be assumed: SEPD collected in the body reduces activation energy, and increases diffusion of 
atom stream according to the first Fick law, and increases the rate of durable creep deformation according to 
the Arrhenius or Weertman laws (Cottrell, 1964). According to the Arrhenius laws, reduction of the activation 
energy level causes a reduction of the material life under creep and constant stress. Plastic deformation in met-
als and alloys generates not only the energy stored but, also generates internal stresses (Bever et al., 1973; Cot-
trell, 1964). These stresses strongly influence the life of many elements and their properties. As an example, we 
can show a situation when internal stresses are summed with the stresses coming from external forces, causing 
a decrease of the element load capacity. In order to prevent some internal destructive processes caused by large 
cold plastic deformations occurring while tube bending at bending machines, it is recommended to perform it at 
higher temperatures. Depending on the requirements and possibilities, we can chose hot bending, semi-hot 
bending and bending with preheating (Kocańda, 1998). At higher temperatures, many phenomena or processes 
take place, which do not proceed (or proceed more quickly) at low temperatures, for example structure homog-
enizing, SEPD emission during recrystalization, annealing, recovery. 
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 Let us note that the austenitic steel 00H19N17Pr has very good physical and mechanical properties, 
its ability to undergo plastic deformation and hardening is high. It is easy to make bends of that steel while 
cold bending (even with the least bending radii R  dext). However, strength of these bends in the pipelines 
working at higher temperatures can be unfavourable because their service life can be shorter than the life of 
boiler or tube steels, because the storage ability of SEPD of austenitic steels is much higher than that of boil-
er or tube steels. As an example, we can consider boiler steel K10 analysed by Śloderbach and Rechul 
(2000). Its maximum density of SEPD per mass unit at the top of the layers subjected to tension after cold 
bending at (kg = 180o) is Es (K10)  0.953 [J/g] (see Fig.7), and in the considered austenitic steel is more than 
four times greater, Es (aus)  4.2 [J/g], (see Fig.3, the graph in the middle). Thus  
 

  n(aus.) > n (K10)        and        Es (aus) > Es (K10) (5.1) 
 

where: n(aus.) – coefficient of hardening for the austenitic steel 00H19N17Pr, 
n (K10.) – coefficient of hardening for boiler steel K10. 
 The following material quantities in Eqs (3.1), (3.2)-(3.4) characterize the boiler steel (K10): C550 

MPa 0  0.016, n(K10)  0.2, 0  8.0103 [kg/m3], B0  6.210-5 [MPa]-1 , Young’s modulus E  2.02105 

MPa and 0  25. 
 The dimensionless material constant 0 is connected with the coefficient B0 according to Bever et al. 
(1973) by the following expression 
 

   MPa
10

0B
2E


 .                     (5.2) 

 

 The results of calculations of SEPD for K10 steel are presented in Fig.7. They have been obtained by 
an introduction of suitable material quantities to Eq.(3.1), then expressions (2.1), (2.2), (3.3) have been applied.  
 

 
 
Fig.7. Variation of the stored energy density for i = 1: in stretched layers (1 =1) and compressed layers 

(2 =1) as dependent on bending angle kg in the bending operation involving the 44.5  4.5 mm pipe 
made of boiler steel (K10). 
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 Figure 7 shows it appears that in the layers subjected to compression, the values of SEPD for 
(are greater than those in the layer subjected to tension for (. It results from strain mechanics 
and geometry of deformation distribution in the tube bending processes at bending machines, described by 
expressions (2.1) and implications resulting from Eq.(5.1). Thus 
 

when   ( ) ( )
2 1

i com i el1 1   
   ,        then        ( ) ( )2 1s com 1 s el 1E E    . (5.3) 

 
 The remaining parameters of the bending process, such as tube dimensions, the bending radius and 
the bending angle are the same as those for the austenitic steel 00H19N17Pr. 
 Tube bending for bends of pipelines (made of the boiler steel K10) with the wrapping method at a 
rotational former and with the use of a mandrel in the layers subjected to tension can be characterized (see 
Śloderbach, 1999; Śloderbach and Rechul, 2000) as follows: 
a. a loss of stability in the dissipated form (Marciniak, 1971) for the uniaxial tension. Then (i)  0.184, 

and for this state Es  0.788 [J/g], 
b. a loss of stability in the located form (initiation of the plane strain state under the plane stress state (El-

Sebaie, 1972; Marciniak, 1971). Then (i)  0.215, and Es  0.862 [J/g] corresponds to this state, 
c. a state where the longitudinal strain 1 reaches (at a given point) the value corresponding to the strain 

A5. Then, (i)  0.236, and Es calculated to that moment  0.901 [J/g], 
d. the maximum strains in the bending zone are obtained when the bending angle (kg = 180o). Then 

(i)  0.255, and Es  0.935 [J/g]. This value is more than four times less than the value calculated for 
the austenitic steel (see the central graph in Fig.3). 

 For the austenitic steel 00H19N17Pr and for the same tube dimensions and the bending radius 
(R=1.8  dz), such characteristic states (a – c) do not occur because the value of the hardening coefficient 
(see Eq.(3.1) in Chapter 3) is high (n  0.5). It causes that the condition excluding such states, (i)  (i) adm , 
is satisfied (El-Sebaie, 1972; Marciniak, 1971; Śloderbach and Rechul, 2000), because the value of (i)adm 
(the subscript adm means admissible) is similar to the hardening coefficient n for that steel, n  0.5 
(Marciniak, 1971; Śloderbach and Rechul, 2000). Such characteristic states can occur while tube bending at 
bending machines with smaller bending radii, for example R  (1  dz) (Śloderbach and Rechul, 2000). 
 
6. Final remarks and conclusions  

 
1.  The approximate calculation results presented in this paper confirm that SEPD increases, and its ratio to 

the plastic strain work and ability to store energy decrease as plastic strain increases (in the considered 
tube cold-bending at bending machines it corresponds to an increase of the bending angle g). 

2.  If we have materials that work at elevated temperatures, then we must prevent grain disintegration caused 
by cold-working, because a great number of grain boundaries intensifies the matter diffusion along the 
grain boundaries. It is obvious that a positive evaluation of immediate strength of the material cannot be a 
criterion of evaluation of strength and work at elevated temperatures. A lack of material cracking while 
plastic cold-working (while tube bending at bending machines for elbows of pipelines and other thermal 
tube installations) does not provide such good creep resistance.  In the case of creep  (especially diffusion 
creep) the area of the most disintegrated crystalline structure at the top layers subjected to tension seems 
to be the most dangerous. 

3.  Hot bending of metal tubes requires lower bending forces and allows performing annealing (for example, 
normalizing) together with bending. Thus, a suitable internal structure of the material, for example, coarse 
grained, more resistant to high-temperature creep could be obtained, because the creep rate is inversely 
proportional to the second or third power of the grain size (Bever et al., 1971; Cottrell, 1964). 
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4.  In order to provide higher strength and creep resistance of the considered elbows made of austenitic steel, 
we must perform a suitable heat treatment, or perform bending under elevated temperatures (hot bending, 
semi-hot bending or bending with preheating), but such technology is more expensive.  

5.  For the case of cylindrical shells the problem of decohesive carrying capacity under combined loading has 
been already analysed (Życzkowski and Tran, 1997). 
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