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We consider a two-phase Hele-Shaw cell whether or not the gap thickness is time-dependent. We construct an 
exact solution in terms of the Schwarz function of the interface for the two-phase Hele-Shaw flow. The derivation 
is based upon the single-valued complex velocity potential instead of the multiple-valued complex potential. As a 
result, the construction is applicable to the case of the time-dependent gap. In addition, there is no need to 
introduce branch cuts in the computational domain. Furthermore, the interface evolution in a two-phase problem 
is closely linked to its counterpart in a one-phase problem  
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1. Introduction 
 
 The Hele-Shaw cell is an apparatus used to study plane flow problems, e.g., the porous medium 
which is familiar in the oil industry. In particular, two immiscible fluids of different viscosities are confined 
between a pair of parallel plates which are separated by a narrow gap. Consider the Hele-Shaw cell in which 
a viscous fluid droplet such as oil, is surrounded by a less viscous fluid (e.g., air or water) of constant 
physical quantities. The sharp interface between the viscous fluid domain Ω(t) and its complement moves 
due to injection (suction) of oil through an inlet in the middle of one of the plates, with a boundary velocity 
proportional to a gradient of scalar field, i.e., the pressure  
 

  
 d t

k p
dt


                                                                           (1.1) 

 

where 2k h 12   is the fluid pearmability, h is the gap width and   is the viscosity. Assume that the fluid 
is incompressible. Therefore, the pressure is harmonic 
 
   ,p Q x y            in         t .                                                      (1.2) 

 
 Here,  ,x y  is the Dirac distribution supported at a set of points and/or curves and located strictly 

within  t  for any time, and Q is a constant strength (Gustafsson et al., 2006 and Savina et al., 2011). As 

such, this pattern is classified under the Laplacian growth which governs a variety of physical and 
mathematical applications such as solidification, viscous fingering and the growth of bacterial colonies 
(Oust, 2009). In addition to Eq.(1.2), we stress that the boundary  t  is equipotential, i.e., an interface 

satisfying the boundary condition (neglecting the surface tension) 
 
  p=0        on         t .                                                                   (1.3) 
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 Furthermore, the normal velocity of the boundary coincides with the normal velocity of the fluid at 
that boundary 
 

  n
p

n


  


         on          t .                                                                    (1.4)                   

 
 The structure of this paper is organized as follows: we have some preliminary results in Section 2. 
We derive the governing equation for the two-phase Hele-Shaw cell in terms of a single-valued velocity 
potential in Section 3. We confirm the validity of the derived equation to the case when the gap width is a 
function of time, but not of position in Section 4. Examples are considered in Section 5, and a conclusion is 
given in Section 6. 
 
2. Mathematical description  

 
   In this section we discuss several useful properties of the Schwarz function of the interface between 
a fluid domain and its complement (David, 1974). Consider an interface  t  with a Schwarz function 

 ,S z t  which is a unique analytic function in the neighborhood of  t  and  ,z S z t  on  t , where 

z x iy  . First, let d  be an element of the curve; we write the unit tangent vector, dz d , in terms of the 
Schwarz function as follows    
 

      zd dx idy dx idy dz dz dz S z dz      . 

 
Therefore,          
 

  
 z

dz 1

d S z



,                z

dz
S z

d



.                                                             (2.1) 

 
 Second, the normal velocity of the boundary is expressed in terms of the Schwarz function 
(Howison, 1992) 
 

  t
n

z

S
i

S
   .                                                                                             (2.2) 

 
 Third, it follows immediately from Eq.(1.2) that for each instance of time, there is a multiple-valued 
function  ,w z t  defined on  t  in which  Re w p  satisfies the Dirchlet boundary conditions (1.3) and 

(1.4). The Cauchy-Riemann equations in  ,n  െ coordinates together with the boundary conditions and 

(2.2) yield the following theorem. 
 
Theorem 2.1. (Howison,1992) There exists a multiple-valued analytic functions  ,w z t  	defined in the 

neighborhood of   satisfying the equation         
  

  z t
w w p p 1

S i S
z z s n 2

               
,                                            (2.3) 

 
whose real part  Re w p   is defined by Eqs (1.1)-(1.4). 
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 Here, the function  ,w z t  is called the complex potential while its derivative is called the complex 

velocity potential. Equation (2.3) reduces the elliptic free boundary problem (1.2)-(1.4) to a simple dynamic 
description of singularities of the Schwarz function (Lundberg, 2010). Next, we derive an analogous 
equation for the case of the two-phase problem. 
 
3. The Schwarz function equation for the two-phase problem 

 
 The two-phase displacement in a Hele-Shaw cell is a motion of an interface  t  between two 

viscous fluids. For each instant of time, the computational domain  t  is divided into a blob of viscous 

fluid  1 t  which is imbedded into another infinite viscous fluid  2 t , i.e.,      1 2t t t   , 

     1 2t t t     and    1 2t t   . The dynamics of the fluid in  i t , where i=1, 2, is 

described by the equation of state for the pressure, i.e., Darcy law, 
 
  i i ik p    , (3.1) 
 
  ip 0  ,           in            i t , (3.2) 

 
  1 2p p ,         on          t , (3.3) 

 

  1 2
n 1 2

p p
k k

n n

 
    

 
,         on          t . (3.4) 

 
 Equation (3.3) indicates the continuity of pressures at the interface while Eq.(3.4) indicates that a 
particle of the fluid on the interface remains constantly throughout the period of the motion.  
 The first exact solutions to unsteady bubble in the two-phase Hele-Shaw cell was constructed by 
Howison (2000), but it was restricted in its scope. Specifically, the fluids’ permeabilities are alike, i.e., the 

computational domain,      1 2t t t   , is occupied by a single fluid with a different color in each 

subdomain, i.e., a multiply-colored fluid. The general form of this construction was developed by Crowdy 
(2006) in terms of a multiply-valued complex potential. However, a proper choice of branch cuts was 
significant toward the later derivation. In the following theorem, we construct an analogous equation in terms 
of the Schwarz function of the interface based upon the single-valued complex velocity potential. 
 
Theorem 3.1. There exist multiple-valued analytic functions  ,iw z t , where i=1, 2, defined in the 

neighborhood of   satisfying the equation         
  

  2 1 1 1

2 2

w w 1 S
1

z z 2 t

     
        

,                                                        (3.5) 

 
whose real part  Re i i iw k p   is defined by Eqs (3.1)-(3.4). 

 Proof. Let   be a parameterization along the interface, the tangent velocity of the interface, 

t i z    , where i  is the velocity vector defined in Eq.(3.1) and z dz d    is the unit tangent vector. 

Consider a point of the interface  z z t ; the complex conjugate of the velocity filed is (see, for example, 

Currie, 1974) 
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  iwdz

dt z


  


.  (3.6) 

 
 In addition, we have  ,z S z t  on the interface so that 

 

  z i t
dz

S S
dt     .                                                            (3.7) 

 

 The scalar product of two complex numbers ܣ and ܤ, regarded as vectors, is  Re A B . Thus, from 

Eq.(3.6) it follows that 
 

  Re iw
z

z 
     

.                                                               (3.8) 

 
Equation (3.1) indicates that 
 

  i
1

p





  


.  (3.9) 

 
Therefore, 
 

  1 1 1

1

w w p1
z z

2 z z 


   
      

,  (3.10) 

 
and 
 

  2 2 2

2

w w p1
z z

2 z z 


   
      

. (3.11) 

 
 Subtraction yields the relation 
 

  1 1

1

w w1
z z

2 z z 
  

    
+ 2 2

2

w w1
z z 0

2 z z 
  

    
 

 
where Eqs (3.3) has been used. It follows immediately from Eqs (2. 1) that 
 

  1 1
z

1

w w1
S

2 z z

  
    

+ 2 2
z

2

w w1
S 0

2 z z

  
    

. (3.12) 

 
 Substitution of Eq.(3.7) into Eq.(3.12) finishes the proof.  
Equation (3.5) is defined in the neighborhood of the interface, and it might be analytically continued 
elsewhere. The result relates the potential on one side of the interface to its counterpart on the other side. In 
other words, having the solution of the interior problem, it is straightforward to calculate the solution on its 
complement.  
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4. Time-dependent gap two-phase Hele-Shaw cell 
 

 Consider a two-phase Hele-Shaw cell in which the gap width is a function of time, but not of a 
position. The time-dependence arises when the upper plate is lifted at a uniform rate. This model was studied 
by Shelley et al. (1997) and its generalization to multiply-connected domain was developed by Kang et al. 
(2001). The relevant mathematical formulation is identical to that of the regular Hele-Shaw problem, except 
for the continuity equation. In particular, averaging the divergent-free three dimension velocity field 
(incompressible fluid) across the gap, we have         
 

  
 

    
 

h t z h t z 0
x y z x y0

w w1
0 u w dz u

h t h t

 
        .                  (4.1) 

 
 Indeed, at the height  z h t  across the gap, where z is the third component in  , ,x y z - 

coordinates, the corresponding velocity component is 
 

      0 d z h t dt w dh t dt    .  (4.2) 

 
 Due to the no-slip condition, we have 

z 0
w 0  . Substitution of (4.2) into (4.1) yields the modified 

continuity equation  
 

  
 
 

, ,i
h t

i 1 2
h t

   


  (4.3)                     

 
where i  is the averaged velocity field in the xyെplane. The dynamics of the fluid is described by Darcy law 
 
  i i ik p    ,            in             i t ,  (4.4) 

 
thus, 
 

  
 

 
 i

i

h t1
p

k t h t
 


,             in             i t .                                                    (4.5) 

 
 Equations (4.5) is complement by boundary conditions 
 
  1 2p p               on             t ,                                                  (4.6)                     

 

  1 2
n 1 2

p p
k k

n n

 
    

 
               on               t .                                                   (4.7)        

 
 It is evident from Eqs (3.1) and (4.4) that the component of the velocity vector is defined as the 
gradient of a scalar velocity potential function regardless of whether or not the gap width is time-dependent. 
In general, the directional velocity is obtained by taking the directional derivative of the velocity potential 
along that direction. Therefore, 
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     Re i
i i

p
z k t  


         


  (4.8)                    

 
where   is an arclength along the interface and   is the tangent velocity. Starting from Eqs (4.6) and 
following the proof of theorem 3.1 yields the next theorem. 
 
Theorem 4.1. Consider an interface  t  that moves between two viscous fluids in a narrow and uniform 

gap at a variable distance. The velocity field of the interior phase is directly related to the exterior as follows 
 

  1 1
2 1

2 2

1 S
1

2 t

   
        

.  (4.9) 

 
 From Eq.(2.3) it follows that there is a one-phase Hele-Shaw flow whose evolution is identical to 
that of  t  (Cummings et al., 1999 and Howison, 2000). As such, 

 

  0
0 t

w 1
S

z 2


   


,  (4.10) 

 
here, 0  is a velocity component defined as the gradient of an arbitrary harmonic scalar 
 
  0 0  ,  (4.11) 
 
with boundary conditions 
 

  0 0  ,            0
n n


 


             on              t . 

 
 Indeed, the one-phase problem is closely linked to the two-phase case. Substitution of Eqs (4.4) and 
(4.10) into (4.9) indicates that 
 

   
   t t

1 2 0

1 2

1 1
p p 0

 
      
 
 

.                                          (4.12)    

 
 Equation (4.10) holds on the interface. From Eq.(4.11) it follows that 0  might be analytically 

continued so that apart from the singularities and the branch cuts of 0  and 1 2p p , Eq.(4.10) is defined in 

the entire computational domain. Away from the boundary, 1 2p p  is the analytic continuation of 0 , and 

thus 1 2p p  is harmonic. Equation (4.5) implies 
 

     1 2 h t 0    .                                              (4.13) 

 

 Since our model is concerned with fluids of different viscosities, we have  h t 0   which 

constitutes the velocity component across the gap generated due to changing the gap between plates. As 
such, the incompressibility condition remains unchanged when the gap width is a function of time.  
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5. Examples 

 
5.1. Ellipse injected off the branch cut 
 

 Let 
   

2 2

2 2

x y
1

a t b t

      
  

 be an elliptic domain with the half-axis  a t  and  b t , where 

   a 0 b 0 . The Schwarz function of   is 

 

       
 

   
 

 ,
2 2

2 2
2 2

a t b t 2a t b t
S z t z z d t

d t d t


     (5.1) 

 

where 2 2d a b   is half of the interfocal distance. Thus,  ,S z t  has a square root branch along the 

segment joining 2 2a b  . Differentiating the Schwarz function with respect to time we have 
 

   
2 2

2 2 2
2 2 22 2

S a b 2ab 1 2ab
z z d d

t t t td d dz d

                   
.  (5.2)  

 
 Consider a point source of constant strength, log 0p Q z z  where  Re 1p w , located off the 

branch cut, the corresponding complex velocity is 
 

  1

0

w Q

z z z


 

 
.  (5.3) 

 
 Substitution of (5.2) and (5.3) into Eq.(3.5) yields the complex velocity potential of the exterior 
phase 
 

   
2 2

2 2 22 1 1
2 2 22 22 0 2

w Q 1 a b 2ab 1 2ab
1 z z d d

z z z 2 t t td d dz d

                                  
. 

 
 This complex velocity is analytic in the infinite fluid, and the far field flow consists of a stagnation 
point along with points sink. This example has been studied by Richardson (1992) for the case of a one-
phase problem. 
 
5.2. Parabola  
 
 Suppose the   is the curve described algebraically by 
 

  
 

 
    2a t 1

x y
2 2a t


  , (5.4) 

 



256  K.R.Malaikah 

 
assuming that  a t  has real positive value. The boundary   is approximately parabolic as x . 

Performing the change of variables ,x iy z x iy    , and then solving for z , we have the corresponding 
Schwarz function 
 

   
   

 
 

,
a t z 2 2 2a t z

S z t
a t

 
 . (5.5) 

 
 Thus  ,S z t  has a square root branch cut along the negative real axis. Away from the negative real 

axis, i.e., the axis of symmetry of the parabola, consider a point source of constant strength. Differentiating 
the Schwarz function with respect to time we have 
 

      
 

   
a tS 1

2 2 2a t z
t t a t 2a t 2a t z

  
       


.  (5.6) 

 
 The dynamic of the fluid in the other side of   is obtained by Eq.(3.5) as follows 
 

   2 1 1

2 0 2

w Q 1 1 a
1 2 2 2az

z z z 2 t a 2a 2az

                        


. 

 
  The complex potential is analytic in the relevant domain. This example is considered by Lacey 
(1982) for the case when 2  is occupied by frictionless fluid. 
 
6. Conclusion 

 
 We formulated the Schwarz function equation for the case of a two-phase Hele-shaw flow. The main 
advantage of the derivation was demonstrated by producing exact solutions to an immiscible two-phase flow 
in a Hele-Shaw cell with a time-dependent gap. Therefore, the incompressibility condition remains 
unchanged for the case of time-dependent gap. In addition, there is no need to introduce branch cuts in the 
computational domain. Furthermore, the derived equation is directly related to the explicit solutions of a one-
phase Hele-Shaw flow.  
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Nomenclature  
 
 h – gap width of the Hele-Shaw cell 
 k – fluid permeability 
 p  – scalar field, i.e., pressure 
 S – Schwarz function 
 w  – complex potential  
   – velocity field 
   – viscosity 
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