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This paper deals with the theoretical investigation of the triple-diffusive convection in a micropolar ferrofluid 
layer heated and soluted below subjected to a transverse uniform magnetic field in the presence of uniform 
vertical rotation. For a flat fluid layer contained between two free boundaries, an exact solution is obtained. A 
linear stability analysis theory and normal mode analysis method have been employed to study the onset 
convection. The influence of various parameters like rotation, solute gradients, and micropolar parameters (i.e., 
the coupling parameter, spin diffusion parameter and micropolar heat conduction parameter) on the onset of 
stationary convection has been analyzed. The critical magnetic thermal Rayleigh number for the onset of 
instability is also determined numerically for sufficiently large value of the buoyancy magnetization parameter 
M1 (ratio of the magnetic to gravitational forces). The principle of exchange of stabilities is found to hold true for 
the micropolar fluid heated from below in the absence of micropolar viscous effect, microinertia, solute gradient 
and rotation. The oscillatory modes are introduced due to the presence of the micropolar viscous effect, 
microinertia , solute gradient and rotation, which were non-existent in their absence. In this paper, an attempt is 
also made to obtain the sufficient conditions for the non-existence of overstability. 

 
Key words: triple- diffusive convection, micropolar ferrofluid, thermal convection, solute gradient, vertical 
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1. Introduction   
 
 Micropolar fluids are fluids with internal structures in which coupling between the spin of each 
particle and the microscopic velocity field is taken into account. They represent fluids consisiting of rigid, 
randomly oriented or spherical particles suspended in a viscous medium, where the deformation of fluid 
particles is ignored (e.g., polymeric suspension, animal blood, liquid crystal). Micropolar fluids have 
received a great deal of research focus and interest due to their application in a number of processes that 
occur in industry. Such applications include the extrusion of polymer fluids, solidification of liquid crystal, 
cooling of metallic plate in a bath, exotic lubricants and colloidal suspension solutions. The micropolar fluid 
theory was introduced by Eringen (1966) in order to describe some physical systems, which do not satisfy 
the Navier-Stokes equation. The equations governing the micropolar fluid involve a spin vector and 
microinertia tensor in addition to the velocity vector. The theory can be used to explain the flow of colloidal 
fluids, liquid crystals, animal blood etc. The generalization of the theory including thermal effects was 
developed by Kazakia and Ariman (1971) and Eringen (1972). The theory of thermomicropolar convection 
began with Datta and Sastry (1976) and was interestingly continued by Ahmadi (1976), Lebon and Perez- 
Garcia (1981), Bhattacharya and Jena (1983), Payne and Straughan (1989), Sharma and Kumar (1995; 1997) 
and Sharma and Gupta (1995). The above works give a good understanding of thermal convection in 
micropolar fluids. 
    In many situations involving suspensions, as in the magnetic fluid case, it might be pertinent to 
demand an Eringen micropolar description. This was suggested, in fact, by Rosenweig (1995) in his 
monograph. An interesting possibilities in a planer micropolar ferrofluid flow with an AC magnetic field was 
considered by Zahn and Greer (1995). They examined a simpler case where the applied magnetic fields 
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along and transverse to the duct axis are spatially uniform and varying sinusoidally with time. In a uniform 
magnetic field, the magnetization characteristic depends on particle spin but does not depend on fluid 
velocity. Micropolar ferrofluid stabilities have become an important field of research these days. A particular 
stability problem is the Rayleigh-Bénard instability in a horizontal thin layer of a fluid heated from below. A 
detailed account of thermal convection in a horizontal thin layer of a Newtonian fluid heated from below was 
given by Chadrasekhar (1981). For a ferrofluid, a thermo-mechanical interaction is predicted by Finlayson 
(1970) in the presence of a uniform vertical magnetic field provided the magnetization is a function of 
temperature and magnetic field, and a temperature gradient is established across the fluid layer. The thermal 
convection in a Newtonian ferro fluid has been studied by many authors (Lalas and Carmi, 1971; Gotoh and 
Yamada, 1982; Stiles and Kagan, 1990; Siddeshwar, 1993; 1995; Sunil et al., 2004; 2005; 2005; 2005; 2006). 
   The Rayleigh-Bénard convection in a micropolar ferrofluid layer permeated by a uniform, vertical 
magnetic field with free-free, isothermal, spin-vanishing, magnetic boundaries was considered by Abraham 
(2002). She observed that the micropolar ferro fluid layer heated from below is more stable as compared 
with the classical Newtonian ferrofluid. The effect of rotation on thermal convection in micropolar fluids is 
important in certain chemical engineering and biochemical situations. Qin and Kaloni (1992) considered a 
thermal instability problem in a rotating micropolar fluid. They found that, depending upon the values of 
various micropolar parameters and the low values of the Taylor number, rotation has a stabilizing effect. The 
effect of rotation on thermal convection in micropolar fluids was also studied by Sharma and Kumar (1994), 
whereas the numerical solution of thermal instability of rotating micropolar fluid were discussed by Sastry and 
Rao (1983) without taking into account the rotation effect in the angular momentum equation. But we also 
appreciate the work of Bhattacharyya and Abbas (1985) and Qin and Kaloni (1992). They considered the effect 
of rotation in the angular momentum equation. More recently, Sunil et al. (2006), Sunil and Mahajan (2009), 
Sunil et al. (2008) studied the effect of rotation on the thermal convection problems in ferrofluids.  
   In the standard Bénard problem, the instability is driven by a density difference caused by a 
temperature difference between the upper and lower planes bounding the fluid. If the fluid, additionally has 
salt dissolved in it, then there are potentially two destabilizing sources for the density difference, the 
temperature field and salt field. The solution behavior in the double-diffusive convection problem is more 
interesting than that of the single component situation in so much as new instability phenomena may occur 
which are not present in the classical Bénard problem. When temperature and two or more component 
agents, or three different salts, are present, then the physical and mathematical situation becomes 
increasingly richer. Very interesting results in triply diffusive convection have been obtained by Pearlstein et 
al. (1989). The results of Pearlstein et al. (1989), are remarkable. They demonstrate that for triple diffusive 
convection linear instability can occur in discrete sections of the Rayleigh number domain with the fluid 
being linearly stable in a region inbetween the linear instability. This is because for certain parameters the 
neutral curve has a finite isolated oscillatory instability curve lying below the usual unbounded stationary 
convection. Straughan and Walker (1997) derive the equations for non-Boussinesq convection in a multi- 
component fluid and investigate the situation analogous to that of Pearlstein et al. (1989), but allowing for a 
density non linearity in the temperature field. Lopez et al. (1990) derive an equivalent problem with fixed 
boundary conditions and show that the effect of the boundary conditions breaks the perfect symmetry. In 
reality the density of a fluid is never a linear function of temperature, and so the work of Straughan and 
Walker applies to the general situation where the equation of state is one of the density quadratic in 
temperature. This is important, since they find that a departure from the linear Boussinesq equation of state 
changes the perfect symmetry of the heart shaped neutral curve of Pearlstein et al. (1989). 
       In view of the recent increase in the number of non iso-thermal situations wherein magnetic fluids 
are put to use in place of classical fluids, we intend to extend our work to the problem of thermal convection 
in Eringen,s micropolar fluid to the triple-diffusive convection in a mocropolar ferrofluid in the presence of 
rotation. In the present analysis, for mathematical simplicity, we have not considered the effect of rotation in 
the angular momentum equation. 
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2. Mathematical formulation of the problem 
 
    Here we consider an infinite, horizontal layer of thickness d of an electrically non-conducting 
incompressible thin micropolar ferromagnetic fluid heated and salted from below. The temperature T and 

solute concentrations C1
 and C2 at the bottom and top surfaces 

1
z d

2
   are T0 and T1 ; C0

1 and C1
1; and C0

2 

and C1
2 respectively, and a uniform temperature gradient 

dT

dZ

 
  
 

 and uniform solute gradients are 

1dC

dZ

 
   
 

 and 
2dC

dZ

 
   
 

 are maintained. Both the boundaries are taken to be free and perfect 

conductors of heat. The fluid layer is assumed to occupy the layer z	∈(-d/2, d/2) with gravity acting in the 
negative z- direction and magnetic field, H =H0

ext
 ෡ = (0, 0, 1), acts outside the layer. The whole࢑  ෡ , where࢑ 

system is assumed to rotate with angular velocity ષ = (0, 0,  ) along the vertical axis, which is taken as the 
z-axis. 
 The mathematical equations governing the motion of incompressible micropolar ferrofluids (utilizing 
Boussinesq approximation) for the above model are as follows: 

 The continuity equation for an incompressible fluid is 
 
  0  q .                                                                                           (2.1) 
                                                                                                                                                                      
 The momentum and internal angular momentum equations are 
 

           2
0 0 0p 2 2

t

                       
q q g M H q q  ,  (2.2) 

 

            2
0 0I 2 2

t

                         
q q M H    . (2.3) 

 
 The temperature and solute concentration equations for an incompressible micropolar ferromagnetic 
fluid are 
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M M
H .  (2.6)                     

 
 In terms of temperature T and the concentrations C 1

 and C 2, we suppose the density of the mixture is 
given by (known as the density equation of state)  
 
  0    [1- α (T- Ta

 ) + α´ (C
 1 – Ca

1) + α´´(C 2 – Ca
2]                                                            (2.7) 
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where ,, , , , , , , , , , , , , , , , , , , , ,0 0 V H 1 1 1t p I C M K K K               q Bω  are the fluid density, reference 

density, velocity, microrotation, time, pressure, shear kinematic viscosity coefficient, coupling viscosity 
coefficient or vortex viscosity, bulk spin viscosity coefficient, shear spin viscosity coefficient, micropolar 
heat conduction coefficient, moment of inertia (microinertia constant),magnetic permeability, magnetic 
induction, heat capacity at constant volume and magnetic field, magnetization, thermal conductivity, solute 
conductivity, thermal expansion coefficient and concentration expansion coefficient analogous to the thermal 
expansion coefficient, respectively. Ta  is the average temperature given by Ta = (T0+T1)/2 where T0

 and T1 
are the constant average temperatures of the lower and upper surfaces of the layer and Ca

1 and Ca
2 are the 

average concentrations given by Ca
1 = (C0

1+C1
1)/2 and Ca

2 = (C0
2+C1

2)/2, where C0
1 , C1

1 and C0
2, C1

2 are the 
constant average concentrations of the lower and upper surfaces of the layer. The partial derivatives of M are 
the material properties that can be evaluated once the magnetic equation of state, such as Eq.(2.10) below is 
known. In writing Eq.(2.2), we also use the Boussinesq approximation by allowing the density to change 
only in the gravitational body force term. 
 Maxwell’s equation, simplified for a non-conducting fluid with no displacement currents, becomes 
 
  0 B ,                                                                                                          (2.8a)                     
 
  0 H                                                                                      (2.8b)                     
 
where the magnetic induction is given by 
 
  B =	0ߤ (H + M). 
 
 We assume that the magnetization is aligned with the magnetic field, but allow a dependence on the 
magnitude of the magnetic field, temperature and salinity, so that 
 

   , , ,1 2M H T C C
H


H

M .                                                                                               (2.9) 

 
 The magnetic equation of state is linearized about the magnetic field, H0, an average temperature,  
Ta , and average concentrations, Ca

1 and Ca
2 to become 

 
  M = M0 + ߯(H- H0) – K2 (T- Ta)+K3(C

 1 – Ca
1) + K4(C

 2 - C a 
2)                                      (2.10) 

 
where magnetic susceptibility, pyromagnetic coefficient and salinity magnetic coefficients are defined by 
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       (2.11) 

 
 Here H0 is the uniform magnetic field of the fluid layer when placed in an external magnetic field  
H =H0

ext
 
෠݇

 , where  ෠݇ is a unit vector in the z direction 
 
  H =|H|,         M = |M|         and         M0 = M (H0, Ta, Ca

1, Ca
2).  
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    The effect of rotation contributes two terms: (a) centrifugal force – ሺρ0 /2) grad|	ષ ൈ  and (b) 2|ݎ	

Coriolis force  02 q  . In Eq.(2.2), 2
f 0

1
p p r

2
     is the reduced pressure, where pf stands for the 

fluid pressure.  
  The basic state is assumed to be a quiescent state and is given by  
 
  q = qb = (0, 0, 0),           , , , , , ,b b b a0 0 0 z p p z T T z z T         b   
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  and         H0 + M0 = H0

ext 
 
where the subscript ‘ b ‘ denotes the basic state. 
 
3. The perturbation equations and normal mode analysis method 
 
 We now examine the stability of the basic state, and assume that the perturbation quantities are 
small. We write 
 
  q = qb + q´,           , ,b bp p z p          b   ,       T = Tb (z) + θ, 

   (3.1) 
  C1=C1

b (z) + γ,         C2=C2
b (z) +	γ	´,        H = Hb(z)+ H´		    and       M = Mb (z) + M´                                  

 
where q´ = (u, v, w), ω´	=(ω1, ω2, ω3), ρ´, θ, γ, γ	´,  M´ are perturbations in velocity q, spin ω, pressure ,´ࡴ
p, temperature T, concentrations C1 and C2, magnetic field intensity H, and magnetization M, respectively. 
The change in density ρ´, caused mainly by the perturbations		θ,	 γ, and		γ	´	 in temperature and 
concentrations, respectively, is given by 
 
   0           .                                                                                              (3.2) 

 
 Then, the linearized perturbation equations (by neglecting second-order small quantities) of the 
micropolar ferromagnetic fluid become 
 

      21
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Hu p
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t x z
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where ρC1 = ρ0CV, H + μ0 K2H0; ρC1´ = ρ0CV, H   μ0 K3H0; ρC1´´=ρ0CV, H   μ0 K4H0.                                        
 Equation (2.9) and Eq.(2.10) yield 
 
   3 3 3 2H M 1 H K        , (3.11) 

 
   3 3 3 3H M 1 H K        , (3.12) 

 
   3 3 3 4H M 1 H K         , (3.13) 

 
    , ,i i 0 0 iH M 1 M H H i 1 2 3       (3.14) 

 
where, we have assumed K2 (Tb – Ta)<< (1+	ߞሻH0; K3 β´ d << (1+	ߞሻ H0; K4 β´´d << (1+	ߞሻ H0; Ω´ = (Ω1´, 
Ω2´,Ω3´) = (׏ x ω´	). 
 Thus the analysis is restricted to a physical situation in which the magnetization induced by 
temperature and concentration variations is small compared to that induced by the external magnetic field. 
Equation (2.7b) means that we can write H´ =׏ (ϕ1´ - ϕ2´ -	ϕ3´), where ϕ1´ is the perturbed magnetic 
potential and ϕ2´, ϕ3´ are the perturbed magnetic potentials analogous to the solute.  
 Eliminating u, v, p´ between Eqs (3.3)-(3.5), using Eq.(3.6), and taking curl once on Eq.(2.3) and 
considering only kth component, we obtain 
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               
   

  
 

    ,2 2 1
0 1 3 0g 2 2

Z

                     


  (3.15) 

 

   2 23
0 3 32 2

t

             


. (3.16) 

 
 The vertical component of the vorticity equation is  
 

    21
0 0 1

w
2

t z

 
         

 
 (3.17) 

 

where 1
v u

x y

 
  

 
 stands for the z-component of the vorticity. 

 From Eq.(3.8), we have 
 

   
2

20
1 22

0

M1
1 1 K 0

H Zz

              
, (3.18) 

 

   
2

20
2 32

0

M2
1 1 K 0

H Zz

              
, (3.19) 

 

   
2

20
3 42

0

M3
1 1 K 0

H Zz

               
. (3.20) 

 
 We analyze the normal mode technique. This can be written  
 

       , , , , exp x yf x y z t f z t i k x k y    (3.21) 

 
where f (z, t) represents W(z, t),  ,z t , Z(z, t),            , , , , , , , , , , ,1 2 3 3z t z t z t z t z t z t      ; kx, ky 

are the wave numbers along the x- and y-directions, respectively and k ൌ √ሺkx
2 + ky

2) is the resultant wave 
number. 
 Following the normal mode analysis, the linearized perturbation dimensionless equations are 
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        

     

    ,

2 2 2 2
1 1 4 1 1 4

1
1 1 4 2 1 4 2 1 4 3

2 2 2
1 4 1 3 A

1 N D a D a W a R M M D 1 M M T
t

a S M M D 1 M M C a S M M D

1 M M C 2N D a T DZ

 


  

  

                 
                  

       

(3.22) 

 

     ,2 2
1 A1 N D a Z T DW

t
 


     
 

 (3.23) 

 

      2 2 2 23
1 3 3 3I 2N D a W 2 N D a

t


  


        


,  (3.24) 

 

       rP 2 2
r 2 1 2 5 3

T
P M D D a T a R 1 M W a RN

t t


   

 
 

       
 

, (3.25) 

 

       
1

2 2 1
1 1 2 2 1 2

C
Ps Ps M D D a C a S 1 M W

t t


  

 
       
 

, (3.26) 

 

       
2

2 2 2
2 2 2 3 2 2

C
Ps Ps M D D a C a S 1 M W

t t


  

 
       
 

, (3.27) 

 

  2 2
1 3 1D a M DT 0       , (3.28) 

 

  2 2 1
2 3 2D a M DC 0       , (3.29) 

 

  2 2 2
3 3 3D a M DC 0        (3.30) 

 
where the following non dimension quantities and non dimensionless parameters are introduced 
 

     
, , , ,1 1 1 1 2

1 1 2 2 3 32 2 2 2
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d K C d K C d K C d
         

           
           

, 

 

, , , , ,
4 4 4

1 111 1 1 1
1 1 2
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R S S T C

K K K C d C d
              

      
          

 

 

r, , , , P ,
1

1 22
1 s 1

1 1 1

K a S z v v
C a kd z D C P C

C d d K KZ




          
     

, 

 

     
, , , , ,

2

2 2 2 22
0 2 0 3 0 4

s 1 A 1 1 1
1 0 0 0

K K Kv 2 d
P C T M M M

K v 1 g 1 g 1 g

                              
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         
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 
            

             
, 
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                 
             

, 

 

 , , and
3

3
3 5 32 2 2

1

dI
N N I

d C d d
       

 
. 

 
4. Exact solution for free boundaries 
 
  Here the simplest boundary conditions chosen, namely free-free, no- spin, isothermal with infinite 
magnetic susceptibility χ in the perturbed field keep the problem analytically tractable and serve the purpose 
of providing a qualitative insight into the problem. The case of two free boundaries is of little physical 
interest, but it is mathematically important because one can derive an exact solution, whose properties guide 
our analysis. Thus the exact solution of Eqs (3.22)-(3.30) subject to the boundary conditions are 
 

 at1 2 1
W D2W T C C 3 D 1 D 2 D 3 0 z

2
                      ,  (4.1)    

 
is written in the form 
 

 cos , cos , cos , cost t t t
1 1 1 1 3 1W A e z T B e z D C e z D e z

                        , 
 

 cos , sin , sin , cost t t 1 t1 1
2 1 1 2 1

C E
D E e z e z e z C F e z

                                  
, 

 

 cos , cos , sin2 t t t1
1 3 1 3

H
C G e z D H e z e z

                    
  (4.2) 

 
where A1, B1, C1, D1, E1, F1, G1, and H1 are constants and σ is the growth rate, in, general, a complex 
constant. Substituting Eq.(4.7) in Eqs (3.28)-(4.5) and dropping asterisks for convenience, we get the 
following equations 
 
  {	σ + (1+N1)(ߨ

2+ a2)} (2 ߨ + a2) A1 + a √ܴ [(M1 – M4) C1 -(1+ M1- M4) B1]+ 
 +aඥܵ	ଵ[(M1´ – M4´ ) E1+(1-M1´+M4´) F1]+aඥܵଶ [(M1´´–M4´´) H1 +(1-M1´´+M4´´) G1] + (4.3) 

 - 2N1(ߨ
 2+a2) D1+ 

்ఽ	
	ሼ	ఙ	ା	ሺଵାேభ	ሻሺగ	మା	௔	మሻሽ

                                                                                                     ,ଶA1  = 0	ߨ

 
 - 2N1 (π

2 +a2) A1 + I´σ ൅ 4N1 + N3 (π
 2+ a2)} D1 = 0,                                                         (4.4) 

 
 (1- M2) a √ܴ A1- (π

 2+ a2 + Pr	σ	ሻ B1 + (Pr M2	σሻ C1 - a √ܴ N5 D1 = 0,                             (4.5) 
 
 (1- M2´ ) aඥ ଵܵ  A1- (π

 2+ a2 + 	ܲ ଵܵσ	ሻ F1 + (P ଵܵ M2´	σሻ E1= 0,                                       (4.6) 
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  (1- M2´´) aඥܵଶ A1-(π
 2+ a2 + 	ܲܵଶσ	ሻ G1 + (Pܵଶ M2´´	σሻ H1=0,                                    (4.7) 

 
െ π  B1

 +ሺπ2 + a2 M3) C1 = 0,                                                                                    (4.8) 
 

െπ2 F1
 +ሺπ2 + a2 M3) E1 = 0,                                                                                (4.9) 

 
െπ 2G1

 +ሺπ2+ a2 M3) H1 = 0.                                                                                        (4.10) 
 
 For the existence of non-trivial solutions of the above equations, the determinant of the coefficients 
of A1, B1, C1, D1, E1, F1, G1, and H1 in Eqs (4.3)-(4.10) must vanish. This determinant on simplification yields 
 
  iT5 σ௜

ହ+ T4	σ௜
ସ – iT3	σ௜

ଷ –T2	σ௜
ଶ + iT1	σ௜ +T0=0.                                                             (4.11) 

 
Here 
 
          T5 = b	ܮସ

´ ଷܮ 
´ ଶܮ 

´  I1,  
 
         T4 = b [	ܾܮସ		

´ ଷܮ ଵሺܮ
´ ൅ ܮଶ

´  ) I1 + {(1 + ଵܰ )b I1 + 4 ଵܰ + ଷܰ
´ ସܮ {ܾ

´ ଷܮ 
´ ଶܮ 

´ ଷܮ + 
´ ଶܮ 

´  ,[ଵܮ
 
         T3 =  b3 ܮଵ[	ܮସ		

´ ሺ ܮଷ
´ ൅ ܮଶ

´  ) (1 + ଵܰ ) + ሺ	ܮସ	
´ ଶܮ + ଵܮ
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´ 	ଵሺ4ܮ ଵܰ ൅ ଷܰ

´ܾሻ( ܮଷ
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´ ଷܮ] ଵ } I1] + bܮ + 

´ ଶܮ 
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´ ଷܮ 
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              		 {(1 + ଵܰ )	ሺ4	 ଵܰ ൅ ଷܰ	
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்ಲ			

ሺଵା	ேሻమ
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where  
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5. Results and discussion   
 
5.1. The case of stationary convection 
 
  When the instability sets in as stationary convection in the case M2 ≅ 0, M2´ ≅ 0, the marginal state 
will be characterized by 	σ௜= 0 (Chandrasekhar, 1981), then the Rayleigh number R1 is given by  
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which expresses the modified Rayleigh number R1 as a function of dimensionless wave number x, the 
buoyancy magnetization parameter M1, the non-buoyancy magnetization parameter M3, solute gradient 
parameters S1 and S2, ratio of the salinity effect on the magnetic field to the pyromagnetic coefficient M5, 
coupling parameter N1 (coupling between vorticity and spin effects), spin diffusion parameter N3´and 
micropolar heat conduction parameter N5´(coupling between spin and heat fluxes). The parameters N1 and 
N3´ measure the micropolar viscous effect and micropolar diffusion effect, respectively.  
  The classical results in respect of Newtonian fluids can be obtained as the limiting case of the present 
study. Setting N1 = 0 and S1 = 0, and keeping N3´ arbitrary in Eq.(5.1), we get 
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which is the expression for the Rayleigh number of ferromagnetic fluids (Finlayson, 1975). 
 Setting M3 = 0 in Eq.(5.2), we get  
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the classical Rayleigh Bénard result (Chandrasekhar, 1981), for the Newtonian fluid case. 
 Before we investigate the effects of various parameters, we first make some comments on the 
parameters N1, N3´ and N5´ arising due to suspended particles. Assuming the Clausius- Duhem inequality, 
Eringen (1972) presented certain thermodynamic restrictions which lead to non-negativeness of N1, N3´ and 
N5´. It is obvious that couple stress comes into play at small values of N3´. This supports the condition that 
0൑ N1 ൑1 and that N3´	is a small positive real number. The parameter N5´ has to be finite because the 
increasing of concentration has to be practically stopped somewhere and hence it has to be a positive, finite 
real number. The range of the values for the other parameters is as in the classical ferroconvection problem 
involving a Newtonian ferromagnetic fluid (Sharma and Kumar, 1994; Sastry and Rao, 1983; Bhattaharya 
and Abbas, 1985). M1´and	M1´´	is the effect of magnetization due to salinity. This is allowed to vary from 0.1 
to 0.5 with values smaller than the magnetization parameter M3. M5 represents the ratio of the salinity effects 
on the magnetic field to the pyromagnetic coefficient. This is varied between 0.1 to 0.5. The salinity 
Rayleigh numbers S1 and S2 vary from 0 to 500.  
     To investigate the effect of solute gradients, the non-buoyancy magnetization coefficient, coupling 
parameter, spin parameter, and micropolar heat conduction parameter, we examine the behavior of 

'
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which is positive if  
 
  3 1 5N 2N N  ,  (5.4)  
 
which shows that rotation has a stabilizing effect when condition (5.4) holds. In the absence of the 
micropolar viscous effect (N1=0),	 rotation always has a stabilizing effect on the system. 
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 This shows that, for a stationary convection, the stable solute gradients have a stabilizing effect, if  
 
  3 1 5N 2N N  .  (5.7)  
 
 In the absence of the micropolar viscous effect (coupling parameter ଵܰ), stable solute gradients 
always have a stabilizing effect on the system. Equation (5.1) also yields 
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which is negative, if 
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 This shows that the non-buoyancy magnetization has a destabilizing effect when conditions (5.9) 
hold. In the absence of the micropolar viscous effect (N1=0) and the effect on magnetization due to salinity 

 and1 1M 0 M 0   , the non-buoyancy magnetization always has a destabilizing effect on the system. 
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which is positive if  
 
  and

1A 5T 1 N 2  . (5.11) 

 
 This shows that the coupling parameter always has a stabilizing effect when condition (5.11) holds. 

In the absence of rotation  1AT 0 , Eq.(5.11) yields that 1

1

dR

dN
 is always positive, implying thereby the 

stabilizing effect of the coupling parameter. Thus , the stabilizing behavior of the coupling parameter is 
virtually unaffected by magnetization parameters but it is significantly affected by the micropolar heat 
conduction 	 ହܰ´ and by Taylor		 ஺ܶభ.  
 Equation (5.1) gives the number  
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which is negative if ହܰ´ ൐ 2. 
 This shows that the spin diffusion has a stabilizing effect when condition (5.12) holds. 
Equation (5.1) also gives 
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which is always positive. 
 This shows that the micropoalr heat conduction always has a stabilizing effect.  
For sufficiently large values of M1 (Finalyson, 1970), we obtain the results for the magnetic mechanism 
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where Rm is the magnetic thermal Rayleigh number.  
 As a function of x, Rm given by Eq.(5.16) attains its maximum when 
 
  P6x

6 +P5x
5+P4x

4 +P3x
3+ P2x

2 +P1x+ P0 =0.                                                                   (5,15) 
 
 The coefficients P0, P1, P2, P3, P4, P5, P6 being quite lengthy , have not been written here and are 
evaluated on numerical calculations. 
 The values of the critical wave number for the onset of instability are determined numerically using 

the Newtonian Raphson method by the condition mdR
0

dx
 . With x1 determined as a solution of Eq.(5.15), 

Eq.(5.14) will give the required critical magnetic thermal Rayleigh number Nc which depends upon M3, S1, S2 
and micropolar parameters N1, N

’
3 and N5

’ .  
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5.2. Principle of exchange of stabilities  
 
 Here we examine the possibility of oscillatory modes, if any, on the stability problem due to the 
presence of micropolar parameters and solute gradients. Equating the imaginary parts of Eq.(4.11), we obtain 
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 It is evident from Eq.(5.16) that σ௜ may be either zero or non-zero, meaning that the modes may be 
either oscillatory or oscillatory. In the absence of the micropolar viscous effect (N1=0), microinertia (I1= 0) 
and solute gradients (S1=0, S2 =0 , ଷܮ

´ ൌ 0, and		ܮସ
´ ൌ 0), we obtain the result as 

 
   i 1 2L L 0   .                                                                                                     (5.17) 

 
 Here the quantity inside the bracket is positive definite because the typical values of M2 are +10- 6 
(Finlayson, 1970). Hence 
 
  i 0  , (5.18) 
 
which implies that the oscillatory modes are not allowed and the principle of exchange of stabilities is 
satisfied for a micropolar ferromagnetic fluid heated from below, in the absence of the micropolar viscous 
effect, microinertia and solute gradients. Thus from Eq.(5.17), we conclude that the oscillatory modes are 
introduced due to the presence of the micropolar viscous effect, microinertia and solute gradient, which are 
non-existent in their absence. Thus, it is important to note that the Taylor number ஺ܶభ, gives a significant 
contribution to the development of oscillatory modes in the stability analysis.  
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5.3. The case of overstability 
 
 The present section is devoted to finding whether the observed instability may really be overstability. 
Since we wish to determine the Rayleigh number for the onset of instability through the state of pure 
oscillations, it suffices to find conditions for which (4.11) will admit solutions with σ௜ real.  
 Equating real and imaginary parts of Eq.(4.11) and eliminating R1 between them, we obtain 
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where, c1 = σ௜

ଶ, Since σ௜ is real for overstability, the three values of c1( =σ௜
ଶ) are positive. The product of 

roots of Eq.(5.19) is  0
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 The coefficients A2 and A1 being quite lengthy and not needed in the discussion of overstability, have 
not been written here.  
 Since σ௜ is real for overstability, the three values of c1(= σ௜

ଶ) are positive. The product of roots of 

Eq.(5.19) is  0

3

A

A
 , and if this is to be negative, then A3 and A0 are of the same sign. Now, the product is 

negative if  
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overstability cannot occur and the principle of the exchange of stabilities is valid. Hence the above 
conditions are the sufficient conditions for the non existence of overstability, the violation of which does not 
necessarily imply the occurrence of overstability. Rotation contributes two more conditions, i.e. 
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for the non-existence of overstability. In rotating a non-magnetic fluid and in the absence of microrotation, 
the above condition reduces to Pr>1, which is in good agreement with the result obtained earlier 
(Chandrasekhar, 1981). 
 
5. Conclusions 
 
     In this paper, the effect of rotation on triple –diffusive convection in a micropolar ferrofluid layer 
heated and soluted from below subjected to a transverse uniform magnetic field has been investigated. The 
behavior of various parameters like rotation parameter, solute gradients, non-buoyancy magnetization, 
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coupling parameter, spin diffusive parameter and micropolar heat conduction on the onset of convection has 
been analyzed analytically and numerically. The results show that for the state of stationary convection, the 
non-buoyancy magnetization, spin diffusive parameter have a destabilizing effect under certain condition(s), 
whereas rotation, the coupling parameter and solute gradients have a stabilizing effect under certain 
condition(s). However, the micropolar heat conduction always has a stabilizing effect. The principle of 
exchange of stabilities is found to hold true for the micropolar ferrofluid heated from below in the absence of 
the micropolar viscous effect, microinertia, rotation and solute gradient. Thus oscillatory modes are 
introduced due to the presence of the micropolar viscous effect, microinertia, rotation and solute gradients, 
which were non-existent in their absence. In addition, the presence of rotation, solute gradients, coupling 
between vorticity and spin effect (micropolar viscous effect) and microinertia may bring overstability in the 
system. Finally, we conclude that rotation and micropolar parameters have a profound influence on triple- 
diffusive convection in a micropolar ferrofluid layer heated and soluted from below. 
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Nomenclature 
 
 ,1 2a a  – wave numbers 

 B – magnitude of B(T) 
 B – magnetic induction (T) 

 1C   – constant average solute concentration at the bottom surface z = –d/2 (kg) 

 2C   – constant average solute concentration at the upper surface z = +d/2 (kg) 
 0C  – specific heat at constant pressure (J/kg K) 

 ,1 2C C  – solute concentration (kg) 

 ,a bC C  – average solute concentration (kg) 

 d – thickness of the ferrofluid layer (m) 

 g – acceleration due to gravity   , , 2g 0 0 g m s   

 H – magnetic-field intensity (A/m) 
 H  – magnitude of H (A/m) 
 H  – the perturbation in magnetic field intensity (A/m) 
 0H  – reference magnetic field intensity (A/m) 

 ext
0H  – external magnetic field intensity (A/m) 

 1K  – thermal conductivity (W/mK) 

 2K  – the pyromagnetic coefficient (A/mK) 

 ,3 4K K  – the salinity magnetic coefficient (A/m kg) 

 1k   – solute conductivity (W/m kg) 

 k


 – unit vector in the z-direction 
 M  – magnetization (A/m) 
 M  – magnitude of M (A/m) 
 M  – the perturbation in the magnetization (A/m) 
 0M  – the magnetization when magnetic field is H0, temperature Ta and concentration Ca (A/m) 

 p  – the fluid pressure (psi; 1 psi = 6894.76 N/m) 
 p  – the perturbation in fluid pressure (psi) 
 q  – filter velocity of the ferrofluid (m/s) 

  , ,u v w q  – the perturbation in velocity (q) (m/s) 
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 T  – temperature (K) 
 0T  – constant average temperature at the bottom surface z = –d/2 (K) 

 1T  – constant average temperature at the upper surface z = +d/2 (K) 

 aT  – average temperature (K) 

 t  – time (s) 
  

Subscripts 
 

 a  – average 
 b  – basic state 
 f  – fluid 
   – coefficient of thermal expansion (K–1) 
 ,    – coefficient of solute expansion (kg–1) 

   – a uniform temperature gradient (K/m) 
 ,    – a uniform solute gradient (kg/m) 

 ,    – the perturbation in concentration C (kg) 

   – coefficient of MFD viscosity (T–1) 
   – porosity (m3/m3) 
 1  – variable dynamic viscosity of fluid (kg/(m s)) 

   – reference dynamic viscosity of fluid (kg/(m s)) 
 0  – magnetic permeability of free space (H/m) 

   – thermal diffusivity (m2/s) 
 ,    – solute diffusivity (m2/s) 

   – kinematic viscosity (m2/s) 
   – fluid density (kg/m3) 
   – perturbation in density ρ (kg/m3) 
 0  – reference density (kg/m3) 

   – perturbation in temperature T (K) 
 , ,1 2 3      – the perturbed magnetic potential (A) 

   – the magnetic susceptibility 
   – gradient operator (m–1) 
 

Non-dimensional parameters 
 

 1M  – buoyancy magnetization parameter 

 ,1 1M M   – effect of magnetization due to salinity 

 3M  – magnetic parameter (measures the linearity in the magnetic equation of state) 

 , ,4 4 4M M M   – effect of magnetization due to solutes 

 5M  – ratio of salinity effect on magnetic field to pyromagnetic coefficient 

 , ,1 3 5N N N    – micropolar parameters 

 Pr  – Prandtl number 
 ,1 2S S  – solute gradient parameters 

 1x  – dimensionless wave number 
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