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Finite difference solutions of the unsteady MHD flow past an impulsively started infinite vertical plate with 

uniform heat and mass flux are presented here, taking into account the homogeneous chemical reaction of first 
order. The dimensionless governing equations are solved by an efficient, more accurate, unconditionally stable 
and fast converging implicit scheme. The effects of velocity, temperature and concentration for different 
parameters such as chemical reaction parameter, Schmidt number, Prandtl number, thermal Grashof number, 
mass Grashof number and time are studied. It is observed that due to the presence of a first order chemical 
reaction, the velocity increases during the generative reaction and decreases in the destructive reaction. It is 
observed that the velocity decreases in the presence of the magnetic field, as compared to its absence. 
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1. Introduction 

 
The influence of the magnetic field on a viscous incompressible flow of electrically conducting fluid 

has its importance in many applications such as extrusion of plastics in the manufacture of rayon and nylon, 
purification of crude oil, pulp, paper industry, textile industry and in different geophysical cases etc. In many 
industries, the cooling of threads or sheets of some polymer materials is of importance in the production line. 
The rate of cooling can be controlled effectively to achieve final products of desired characteristics by 
drawing threads, etc. in the presence of the magnetic field.  

Chemical reactions can be classified as either heterogeneous or homogeneous processes. This 
depends on whether they occur at an interface or as a single phase volume reaction. In many chemical 
engineering processes, there does occur a chemical reaction between a foreign mass and the fluid in which 
the plate is moving. These processes take place in numerous industrial applications, e.g., polymer 
production, manufacturing of ceramics or glassware and food processing. Bourne ad Dixon (1971) analyzed 
the cooling of fibres in the formation process. 

Chambre and Young (1958) analyzed a first order chemical reaction in the neighbourhood of a 
horizontal plate. Das et al. (1994) studied the effect of a homogeneous first order chemical reaction on the 
flow past an impulsively started infinite vertical plate with uniform heat flux and mass transfer. Again, mass 
transfer effects on a moving isothermal vertical plate in the presence of a chemical reaction were studied by 
Das et al. (1999). The dimensionless governing equations were solved by the usual Laplace transform 
technique and the solutions are valid only at lower time level. 

The effects of a transversely applied magnetic field, on the flow of an electrically conducting fluid 
past an impulsively started infinite isothermal vertical plate were studied by Soundalgekar et al. (1979). 
MHD effects on impulsively started vertical infinite plate with variable temperature were studied by 
Soundalgekar et al. (1981). The dimensionless governing equations were solved using the Laplace transform 
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technique. Muthucumaraswamy and Ganesan (2001) studied the effects of a first order homogeneous 
chemical reaction on the flow past an impulsively started semi-infinite vertical plate with uniform heat flux 
and mass diffusion. The governing equations were solved numerically.  

The problem of an unsteady natural convection flow past an impulsively started infinite vertical plate 
with uniform heat and mass flux in the presence of chemical reaction and magnetic field has not received 
attention of any researcher. Hence, the present study is to investigate the MHD flow past an impulsively 
started infinite vertical plate with uniform heat and mass flux in the presence of a homogeneous first order 
chemical reaction by an implicit finite-difference scheme of Crank-Nicolson type. 
 
2. Mathematical analysis 

 
Here the hydromagnetic flow of a viscous incompressible fluid past an impulsively started infinite 

vertical plate with uniform heat and mass flux is studied. It is assumed that there is a first order chemical 
reaction between the diffusing species and the fluid. The x-axis is taken along the plate in the vertically 
upward direction and the y-axis is taken normal to the plate. Initially, it is assumed that the plate and the fluid 
are of the same temperature and concentration. At time t 0  , the plate starts moving impulsively in the 
vertical direction with constant velocity u0 against the gravitational filed. At the same time, the heat is 
supplied from the plate to the fluid at a uniform rate and the concentration level near the plate is also raised 
at an uniform rate. A transverse magnetic field of uniform strength B  is assumed to be applied normal to the 
plate. The induced magnetic field and viscous dissipation are assumed to be negligible. Then, under the usual 
Boussinesq’s approximation, the unsteady flow is governed by the following equations 
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The initial and boundary conditions are 
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On introducing the following non-dimensional quantities  
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 Equations (2.1) to (2.3) are reduced to the following non-dimensional form 
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The corresponding initial and boundary conditions in the non-dimensional form are 
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3. Numerical technique 
 
The unsteady, non-linear coupled Eqs (2.6) to (2.8) with the condition (2.9) are solved by employing 

an implicit finite difference scheme of Crank-Nicolson type. The finite difference equations corresponding to 
Eqs (2.6) to (2.8) are as follows 
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The thermal boundary condition at Y = 0 in the finite difference form is  
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At Y = 0 (i.e., j = 0) Eq.(3.2), becomes 
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The boundary condition at Y = 0 for the concentration in the finite difference form is     
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At Y = 0 (i.e., j=0), Eq.(3.6) becomes  
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The region of integration is a rectangle with sides Xmax (= 1) and Ymax(= 14), where Ymax corresponds 
to Y =  which lies very well outside the momentum, energy and concentration boundary layers. The 
maximum of Y was chosen as 14 after some preliminary investigations so that the last two of the boundary 
conditions (2.9) are satisfied. Here the subscript i-designates the grid point along the X-direction, j-along the 
Y-direction and the superscript n along the t-direction. 

The computations of U, T and C at time level (n +1) using the values at previous time level (n) are 
carried out as follows: The finite-difference Eqs (3.1), (3.5) and (3.9) at every internal nodal point on a 
particular i-level constitute a tridiagonal system of equations. Such a system of equations is solved by using 
Thomas algorithm as discussed in Carnahan et al. (2.2). Thus, the values of C are found at every nodal point 
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for a particular i at (n+1)th time level. Similarly, the values of T and U are calculated from Eqs (3.5) and (3.1) 
respectively. This process is repeated for various i-levels. Thus the values of C, T and U are known, at all 
grid points in the rectangle region at (n+1)th time level. 

Computations are carried out for different time levels until the steady-state is reached. The steady-
state solution is assumed to have been reached, when the absolute difference between the values of U as well 
as temperature T and concentration C at two consecutive time steps are less than 10-5 at all grid points. 

 
4. Results and discussion 

 
The effects of velocity, temperature and concentration are studied for different parameters The 

velocity profiles for different magnetic parameters are shown in Fig.1. It is observed that for M = 0, 2, 5, 10, 
K = 2, Gr =2, Gc =5, Pr = 0.71 and Sc=0.6, the velocity decreases in the presence of the magnetic field. This 
shows that an increase in the magnetic field parameter leads to a fall in the velocity.  
 

 
 

Fig.1. Velocity profiles for different M. 
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The velocity profiles for different values of the chemical reaction parameter (K = -1, 0.2, 2), M = 2, 

Gr = 2, Gc = 5, Pr = 0.71 and (Sc = 0.16, 0.6, 2.01) are shown in Fig.2. It is observed that the velocity 
increases with the decreasing chemical reaction parameter. This shows that velocity increases during the 
generative reaction and decreases in the destructive reaction. It is also observed that the velocity decreases 
with the increasing Schmidt number.  

 

 

 
Fig.2. Velocity profiles for different K and Sc. 
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In Fig.3, the velocity profiles for different values of thermal Grashof number and mass Grashof 

number are shown graphically. The Figure shows that the velocity increases with the increasing thermal 
Grashof number or mass Grashof number.  

 

 
 

Fig.3. Velocity profiles for different Gr, Gc and Pr. 
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The temperature profiles for different values of the chemical reaction parameter and Prandtl 
number are shown in Fig.4. It is observed that the temperature increases with the decreasing Prandtl 
number. This shows that the buoyancy effect on the temperature distribution is very significant in air 
(Pr= 0.71) compared to water (Pr = 7.0). The temperature trend is reversed with respect to the chemical 
reaction parameter. 

 

 
 

Fig.4. Temperature profiles for different K and Pr. 
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The effect of the chemical reaction parameter and the Schmidt number is very important for 
concentration profiles. The steady-state concentration profiles for different values of the chemical reaction 
parameter and Schmidt number are shown in Fig.5. There is a fall in concentration due to increasing the 
values of the chemical reaction parameter or Schmidt number.  

 

 
 

Fig.5. Concentration profiles for different K and Sc. 
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5. Conclusions 
 

 A numerical study has been carried out for the unsteady hydromagnetic flow past an impulsively 
started infinite vertical plate with uniform heat and mass flux in the presence of a homogeneous chemical 
reaction of first order. The dimensionless governing equations are solved by an implicit finite difference 
scheme of Crank-Nicolson type. It is observed that the velocity decreases in the presence of the magnetic 
field. It is also observed that the velocity and concentration increases during the generative reaction and 
decreases in the destructive reaction.  

 
Nomenclature  
 
 B0 – magnetic field strength 
 C – dimensionless concentration 
 C  – concentration 
 D – mass diffusion coefficient 
 Gr – thermal Grashof number 
 Gc – mass Grashof number 
 g – accelaration due to gravity 
 j  – mass flux per unit area at the plate 
 K – dimensionless chemical reaction  parameter 
 Kl  – chemical reaction parameter 
 k – thermal conductivity of the fluid 
 M – magnetic field parameter 
 Pr – Prandtl number 
 q – heat flux per unit area at the plate 
 Sc – Schmidt number 
 T – dimensionless temperature  
 T   – temperature 
 t – dimensionless time 
 t  – time 
 U – dimensionless velocity components in X -direction respectively 
 u – velocity components in x –directions, respectively 
 u0 – velocity of the plate 
 X – dimensionless spatial coordinate along the plate 
 x – spatial coordinate along the plate 
 Y – dimensionless spatial coordinate normal to the plate 
 y – spatial coordinate normal to the plate 
  – thermal diffusivity 
  – coefficient of volume expansion 
  – volumetric coefficient of expansion with concentration 
  – coefficient of viscosity 
  – kinematic viscosity     
  – Stefan-Boltzmann constant 
 
Subscripts 
 
 i – grid point along the X-direction 
 j – grid point along the Y-direction  
 w – conditions at the wall 
  – conditions in the free stream 
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