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The paper presents a modeling method and mathematical description of a two-wheeled self-balancing vehicle 
and its  rider. A model of the rider that was used contains a model of the ankle joint, so we could determine the 
interaction between the rider and the vehicle. The paper presents results of computer simulations , which show 
the fundamental processes during riding, such as acceleration and braking. 
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1. Introduction 

 The rapid development of miniature electro-mechanical devices (MEMS), or ever more perfect 
image processing algorithms, cause the interaction between users and their devices to be no longer limited to 
pushing a button or pulling a lever. The modern devices are able to record, whether by camera or for 
example miniature accelerometers or gyroscopes, user-made gestures and interpret them as specific orders. 
One of such device is a two-wheeled self-balancing vehicle where acceleration is controlled by an 
appropriate balancing of the rider’s body. A change of the rider’s center of gravity causes the vehicle to lean 
forward, the computer records it and on that basis controls the motors. The commercial version of such a 
vehicle is called the Segway™ (Reference 1). The control method of such a system is very similar to the 
problem of stabilizing the inverted pendulum (Astrom and Murray, 2008; Ciężkowski and Siemieniako 
2011). There are many papers describing the theory of TWSBV (two-wheeled self-balancing vehicle), where 
the main attention is focused on the problem of stability of an already leaning vehicle. In this paper, a 
description of both problems: the stability of the vehicle and the dislocation of the system from its 
equilibrium position, which is the primary goal of the TWSBV rider, will be presented. 

2. Model of the system 

 The system can be divided into three basic parts: a platform with wheels, motors as the power 
transmission system and the rider of the vehicle. It is assumed that the measuring equipment provides all the 
necessary variables needed to provide control of the vehicle, working principles of the above mentioned 
measuring devices are not significant to the following description. 

2.1. Platform with wheels 

 Figure 1 shows the physical model of the platform and wheels. The perfectly rigid disc has been 
taken as the model of the wheel, with mass mw and radius rw. The perfectly rigid square has been taken as the 
model of the floor, with mass m1 and the side length a1. The rest of the elements of the platform, such as the 
battery, motor casing, etc. has been described by a cylinder with mass m2 and radius r2. The cylinder has 
been put under the floor. The mass of the steering has been neglected. 
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Fig.1. Physical model of the platform. 
 

The mass of the platform mp is equal to m1+ m2. The moment of inertia of the platform relative to the 
axis of the rotation passing through the center of the wheels is as follows 
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 The values of platform parameters are equal to 
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2.2. Motors 
 
 The TWSBV driving system in this model is composed of two DC motors with built-in 20:1 gear 
whose parameters are similar to the NPC-T64 motor (Meggiolaro, 2009). Assuming zero inductance of 
motors (motors are relatively small) and neglecting the inductance simplify the analysis considerably. The 
Kirchhoff's second law for the motor can be written as follows 
 

eu IR nk    (2.2) 
 
where: u- voltage applied to the motor,  - engine (and more precisely the shaft gear) velocity, I- motor 
current, ke- back EMF constant, n- gear ratio, R- coil resistance. 
 Assuming that the torque generated by the engine is equal to mk I  and the motor's viscous friction is 
kw, the total torque of the engine can be written 
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where  - the rotational speed of the platform (the motor magnets are part of the platform, therefore the 
rotation of the platform also generates EMF). The torque described by Eq.(2.3) has been applied in the model 
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system. The turning of the vehicle is not a subject of this study. It can be assumed that the applied voltage u 
is the same for both engines. 
 The motor parameters are 
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Jm- moment of inertia of the rotor. 
 
2.3. Model of the rider 
 
 The TWSBV rider controls the vehicle by leaning his body backwards and forward, so it cannot be 
modeled by a rigid body (for example, a rod) rigidly connected to the platform. Observing the driving 
technique of the Segway riders, you may notice, that they primarily bend in the ankle joint. This strategy has 
been also adopted in the research. The rider has been replaced by a perfectly rigid rod with mass m and 
length l, connected with the platform by a joint simulating the ankle joint. This model enforces the 
assumption that the rider does not bend in his other joints, such as the hip. The human ankle joint (working 
muscles and tendons) is a very complicated and difficult system to describe by equations. It seems 
reasonable to assume that the model of the ankle joint can be described by two rods connected by a joint with 
a spring (Fig.2.). Such a model is often applied in the study of dynamics of the ankle (Loram et al., 2001; 
Weiss et al., 1985; Winter et al., 1998) 
 

 
 

Fig.2. Physical model of the ankle joint. 
 

 According to the data contained in the papers Loram et al. (2001) and Winter et al. (1998), we can 
assume that for a man with mass m = 75 kg and height l = 1.75 m, the elasticity coefficient ks and damping 
coefficient bs are 
 

  , .s s
Nm Nms
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 It should be noted that these coefficients are already set for  two ankles instead of one. It is also 
assumed that the rider will not detach his feet from the platform. If the rider exerts the torque Tu on the ankle 
joint and deflection of the joint is  , the total torque generated by the ankle joint amounts to 
 

s u s sM T k b     . (2.4)  
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2.4. Model of the vehicle with the rider 
 
 Using the model of the platform, engines and the rider, the mathematical description of the system 
can be formulated. Figure 3 shows the physical model of the system. The model is placed in a gravitational 
field with a value of acceleration g. The system has been described by the Lagrange formalism. 
 

 
 

Fig.3. Physical model of the system 
 
 The position of the platform is described by a vector 

 ,p wr 0 r  (2.5) 

where:  - wheel rotation angle. 
 Describing the position of the platform by the angle   follows from the assumption that the motion 
takes place without slipping. 
 The position of the rider’s mass center 
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where:   – the rider’s  inclination angle with respect to the y-axis. 
 The kinetic energy of the rider is the sum of the translational kinetic energy of the mass center and 
the rotational kinetic energy relative to the mass center 
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 The kinetic energy of the platform 
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 The kinetic energy of the wheels and the motor’s rotors 
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 Potential energy of the rider, the platform and the spring in the ankle joint 
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 The Lagrangian takes the form 

1 2 3L T T T V    . (2.11) 

 Using Eqs (2.11), (2.3) and (2.4), three Euler-Lagrange equations take the form 
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 The obtained equations are the equations of motion of the system. 

3. Calculation of motor control 

 The control system of the vehicle is provided by applying an appropriate voltage u to the motors. 
The electronic system IMU, placed on the vehicle, measures the angle and speed of inclination of the 
platform  and  , and another sensor such as the encoder measures the velocity  . The voltage u will thus 

depend only on these parameters. Calculation of the voltage u requires the assumption that the rider is not in 
a bent position, i.e.:    . The angle must be equal to  otherwise the system will not be stable. 

According to the assumptions that is: , , uT 0        , Eq.(2.13) takes the form 

f , ,orm u
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
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 


. (3.1) 

 Equation (3.1) is a function of the following variables , ,   . Velocity   occurs only in the 
expression Mm and describes the friction of the motor. If the friction of the motor is neglected, then Eq.(3.1) 
will depend only on ,  . The equation will be used to determine voltage control using LQR controller. In 
the next step, the neglected friction will be compensated through an amendment to the voltage u. 

3.1.  LQR controller 

 To determine the motor control system, a linear-quadratic regulator was used. Using Eqs (2.3) and 
(3.1) you can write the state equation, which takes the form 

x Ax Bu   (3.2) 

where: ,( )Tx    , A and B – state matrix and input matrix, u- motor voltage. 
 Defining a quadratic cost function as 
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and taking according to Bryson’s rule (Bryson et al., 1969)  
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the voltage stabilizing the TWSBV can be calculated 
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 It is expected that the system does not change its velocity when the rider is not in a bent position. 
The friction of the motor has to be compensated (previously mentioned amendment). The unchanged 

velocity condition, according to Newton's first law (from Eq. (2.3)): 
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 Taking into account the result of Eqs (3.4)-(3.5), the final form of the control voltage is 

. . .stab 44u 35 12 54 0 915u u 58           . (3.6) 

3.2. Velocity control 

 To solve Eqs (2.12)-(2.14) numerically, we still need to find a torque uT  acting on the ankle joint to 

achieve the desired velocity. The simplest way to achieve this is to use the dependence of the torque uT  on 
the difference between the reference velocity and the actual velocity of the vehicle. It can be assumed 

 u 1 SETT C      (3.7) 

where: 1C - controller gain, 

            SET - reference velocity 
 Using the formula-Eq.(3.7), the Euler-Lagrange equations from two Eqs (2.12)-(2.14), can be solved 
numerically. This system takes the form 
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 The equations obtained are the equations of motion of the system. 

4. Numerical simulation results 

 The last thing to do is to determine the parameter 1C  in Eq.(3.7). 

4.1. The choice of setting C1 

 The condition to get the reference velocity of the vehicle is: 1C 0 . Obviously, it is important to 
accelerate the vehicle in a reasonable time and not to overshoot the system, since oscillations of the state 
vector will be manifested. Figures 4, 5 and 6 show the graphs of linear velocity of the TWSBV 

  . w km hV 3 6 r   as a function of time for various 1C  and  various [ / ].SET SET w kV 3 6 r m h  . 

 

 
 

Fig.4. Velocity of a vehicle for C1=5 mNrad/s. 
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Fig.5. Velocity of a vehicle for C1=10 mNrad/s. 
 

 
 

Fig.6. Velocity of a vehicle for C1=15 mNrad/s. 
 

 By analyzing Figs 4-6 it can be concluded that the weak point of Eq.(3.7) is the constant value of the 
parameter 1C . For a fixed 1C , the system indeed reaches a certain velocity, but it takes always the same time - it 
does not matter if it reaches a top speed of 5 or 15 km/h. It would be good to be able to control the acceleration 
time, and this problem is the subject of further research. It is reasonable to assume that the time needed to 
accelerate oscillates around 5s and therefore, for further simulations /1 mNC 10 rad s  will be taken. 

4.2. Acceleration to the reference velocity 

 
 

Fig.7. The inclination of the vehicle and the rider during acceleration. 
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 Figure 7 shows a graph of inclination of the platform , inclination of the rider relative to the 
platform () and vehicle velocity V as a function of time during acceleration to /SET 1V 0 km h . As 
shown in Fig.7., the reference velocity was reached after about 5s. At the beginning of the process, an 
interesting behavior of the system can be observed. It may be noted that the rider  leans forward, and at this 
time the platform leans back and the vehicle begins to ride backwards. This can be easily explained by the 
principle of conservation of angular momentum: angular momentum at the time t=0 is zero and when the 
rider leans forward, the platform has to lean backward because the angular momentum must still be zero. The 
measurement system registered the minus angle of the platform and the driver applied voltage to the motor in 
order to straighten the platform- the platform is going back for a while. As can be seen later, the platform 
leans forward (“spring” in the ankle joint rotates the platform) and then the rider and the platform are 
upright, and the vehicle moves with a fixed velocity VSET.  

4.3. Braking 

 Figure 8 shows the simulation results of the , () and the vehicle velocity V as a function of time 
during braking from /V 10 km h  to VSET = 0. 

 

 
 

Fig.8. The inclination of the vehicle and the rider during braking. 
 
 As can be seen there are analogical processes during acceleration. 

4.4. Simulation in the presence of random noise  

 The simulation results presented above assume that the measurement of parameters that determine 
the voltage u (that is: , ,   ) is perfect. In the real world, random disorders cannot be eliminated. To make 
the system more realistic, numerical simulation in the presence of random disturbances was performed. The 
voltage u then takes the form 

     . . .1 1 244 35 12 54 0 91u 558           . (4.1) 

 Variables ,1 2   stand for random disturbances and they are assumed to follow normal distribution 
with the density function respectively 
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 The average values of ,1 2    are zero. The perturbation changes randomly at each simulation time 

step. The standard deviation was adopted as follows: . , .1 20 05 0 5    . In the case of the angle  , noise 

with standard deviation .1 0 05  (about 2.8°) can be considered as significant. The noise of velocity was 

adopted even greater: .2 0 5   (about 28°/s). The results of these simulations are illustrated in Fig.9. 
 

 
 

Fig.9. The vehicle and the rider inclination during acceleration. 
 
 As you can see in Fig.9. the system is measurement error-proof in the selected range. 

5.  Summary 

 The main objective of this study was to show that the rider-vehicle interaction can be simulated 
using a simple human model. This goal has been achieved and the ankle model provides promising results. 
This paper, however, does not answer the question: whether this model describes the reality properly. To 
answer that an experiment with the TWSBV should be conducted and the results should be compared with a 
simulation. It may turn out that the controller described by Eq.(3.7) is not real, that means that a human 
behaves different “by nature” and then using the experiment data the correct control system will be 
determined. It may turn out that using the described model, the operation of the TWSBV can be optimized. 
An explanation of the above-mentioned problems is the current topic of the author’s research. 

Nomenclature 

 a1 – side length of the floor 
 bs – damping coefficient of ankle joint 
 I – motor current 
 Jm – moment of inertia of the rotor 
 Jp – moment of inertia of the platform 
 ke – back EMF constant 
 km – motor torque constant 
 ks – elasticity coefficient of ankle joint 
 kw – motor viscous constant 
 l – height of the rider 
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 Mm – engine total torque 
 m – mass of the rider 
 m1 – mass of the floor 
 m2 – mass of the rest of the elements 
 mp – mass of the platform 
 mw – mass of the wheel 
 n – gear ratio 
 R – coil resistance 
 rw – radius of the wheel 
 r2 – radius of the rest of the elements 
 Tu – the torque exerted by the  rider  
 u – voltage applied to the motor 
   – inclination of the platform 
   – the rotational speed of the platform 
   – inclination of the rider 

   – the rotational speed of the rider 
   – wheel rotation angle 
   – wheel rotation velocity 
   – deflection of the joint 
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