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In this present paper, we have discussed the effects of viscous dissipation and thermal radiation on heat 
transfer over a non-linear stretching sheet through a porous medium. Usual similarity transformations are 
considered to convert the non-linear partial differential equation of motion and heat transfer into ODE’s. 
Solutions of motion and heat transfer are obtained by the Runge-Kutta integration scheme with most efficient 
shooting technique. The graphical results are presented to interpret various physical parameters of interest. It is 
found that the velocity profile decreases with an increase of the porous parameter asymptotically. The 
temperature field decreases with an increase in the parametric values of the Prandtl number and thermal radiation 
while with an increase in parameters of the Eckert number and porous parameter, the temperature field increases 
in both PST (power law surface temperature) and PHF (power law heat flux) cases. The numerical values of the 
non-dimensional wall temperature gradient and wall temperature are tabulated and discussed. 
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1. Introduction 

 
 As we know the boundary layer behaviour over a moving continuous solid surface is an important 
type of flow occurring in several engineering processes. The heat transfer due to a continuously moving 
stretching surface through an ambient liquid is one of the thrust areas of current research. Such investigations 
find their application over a broad spectrum of science and engineering disciplines, especially in the field of 
chemical engineering. Many chemical engineering processes like metallurgical process, polymer extrusion 
process involve cooling of a molten liquid being stretched into a cooling system. The fluid mechanical 
properties desired for an outcome of such a process would mainly depend on two aspects, one is the cooling 
liquid used and the other is the rate of stretching. Liquids of non-Newtonian characteristics, which are 
electrically conducting, can be opted as a cooling liquid as the flow and the heat transfer can be regulated 
through some external agency. The rate of stretching is very important as rapid stretching results in sudden 
solidification, thereby destroying the properties expected for the outcome. The problem mentioned here is a 
fundamental one and frequently arises in many practical situations such as polymer extrusion processes. It is 
also encountered in other processes such as drawing, annealing and tinning of copper wires, continuous 
stretching, rolling and manufacturing of plastic films and artificial fibers, heat treated materials traveling on 
conveyer belts, glass blowing, crystal growing, paper production and so on. 
 As the flow through porous media plays an important role in many practical applications such as 
ground water flows, enhanced oil recovery process, contamination of soils by hazardous wastes, pollution 
movement, etc., contributions towards the study of stretching sheet problems in a porous medium are 
numerous. 
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 Sakiadis (1961) investigated the boundary layer flow over a flat surface moving with a constant 
velocity and formulated a boundary layer equation for the two dimensional and axisymmetric cases. Crane 
(1970) studied the steady two dimensional flow caused by the stretching of an elastic flat surface, which 
moves on its own plane with a velocity varying linearly with distance from a fixed point. Works by Sakiadis 
(1961) and Crane (1970) were further extended to include the effects of suction/injection, heat transfer, mass 
transfer, porous medium, magnetic fluid, non-Newtonian fluids, etc. 
 Gupta and Gupta (1977) studied the effects of surface suction (or injection) on Crane’s flow Crane 
(1970). Carragher and Crane (1982) investigated the heat transfer in a two dimensional flow past a stretching 
sheet when the temperature difference between the surface and the ambient fluid is proportional to a power 
of distance from the fixed point. Liu (2005) and Liu (2006) studied the heat and mass transfer problems for a 
viscous fluid-saturated porous medium over an impermeable/permeable and non-isothermal stretching sheet 
under various environment, respectively. The steady and the unsteady boundary layer flow and heat transfer 
past a stretching sheet in a porous medium are analysed by Ishak et al. (2006). A similarity solution for the 
boundary layer flow through a porous medium over a stretching porous wall is found by Tamayol et al. 
(2010). Fang and Zhang (2010) revisited the heat transfer over a stretching sheet with mass transfer in a 
porous medium. The flow and the diffusion of chemically reactive species over a non-linearly stretching 
sheet immersed in a porous medium are studied by Ziabakhsh et al. (2010). Also a remark on the validity of 
the Brinkman model in particular on the effective viscosity was made by Auriault (2009). 
 Mukhopadhyay (2009) studied the unsteady boundary layer flow and heat transfer past a porous 
stretching sheet with variable viscosity and thermal diffusivity. Pal and Hiremath (2010) studied the 
computational modeling of heat transfer over an unsteady stretching surface embedded in a porous medium 
by considering the effects of unit film thickness, viscous dissipation and uniform heat source/sink. Also, 
Mukhopadhyay (2009) investigated the effects of thermal radiation on unsteady mixed convection flow and 
heat transfer over a porous stretching surface in a porous medium. Noor and Hashim (2010) studied the 
effects of thermo-capillarity and the magnetic field in a thin liquid film flow over an unsteady stretching 
surface by considering non-uniform film thickness. 
 Nandeppanavar et al. (2010) studied the flow and heat transfer characteristics of a viscoelastic fluid 
in a porous medium over an impermeable stretching sheet with viscous dissipation. Also, Nandeppanavar et 
al. (2011) investigated the effects of thermal radiation and non-uniform heat source on heat transfer of MHD 
viscoelastic fluid flow over a linear stretching sheet. Abel et al. (2010) investigated the flow and heat transfer 
of a second grade fluid over linear stretching sheet in a porous medium 
 It is worth mentioning that the stretching need not be linear. In view of this, Kumaran and Ramanaih 
(1996) studied the flow over a quadratic stretching sheet. Magyari and Keller (1999), Elbashbeshy (2001), 
Khan and Sanjayanand (2005), Sanjayanand and Khan (2006), Sajjid and Hayat (2008), Partha et al. (2005) 
studied the heat transfer characteristics of viscous and viscoelastic fluid flows over an exponentially 
stretching sheet. Vajravelu (2001), Vajravelu and Cannon (2006) are also studied the flow over non-linearly 
stretching sheet.  
 There is no heat transfer analysis with thermal radiation and viscous dissipation of a viscous fluid 
over nonlinear stretching through a porous medium. Hence this work is carried on. 
 
2. Basic equations and boundary conditions 
 
 Consider the steady flow and heat transfer of a viscous and incompressible fluid past a semi-infinite 
stretching sheet in the region y 0 , as shown I Fig.1. Keeping the origin fixed, two equal and opposite forces 
are suddenly applied along the x-axis, which results in stretching of the sheet and hence the flow is 
generated. Under consideration of the boundary layer approximation, the basic equations of governing flow 
and heat transfer due to stretching of the sheet are given by   
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where (x, y) denotes the Cartesian coordinates along the sheet and normal to it, u and v are the velocity 
components of the fluid in the x and y directions, respectively, and   is the kinematic viscosity, k  is the 

permeability of the porous medium. T is the fluid temperature, 
p

k

c
 


 is the thermal diffusivity,   is the 

density, pC  is the specific heat of the fluid at constant pressure and rq  is the radiative heat flux, 1k  is the 

porous parameter and l  is the characteristic length. 
 Now we introduce the following new variables 
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 Using the initial and boundary conditions (2.4a), (2.4b), (2.4c) and the new variables (2.5) in Eqs 
(2.2) and (2.3) we have 
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with boundary conditions 
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Here the prime denotes the differentiation with respect to the similarity variable  . 

 The physical quantities of this problem are the skin friction coefficient fC  and local Nusselt number 

Nu x  which are defined as 
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where the skin friction w  and the heat transfer from the sheet wq  are given by 
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with   being the dynamic viscosity. Using Eqs (2.4a), (2.4b), (2.4c) in Eqs (2.13) and (2.14), we have 
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Fig.1. Schematic diagram of non-linear stretching sheet. 
 
3. Numerical solution of the problem 

 
 The non-linear differential Eqs (2.6)-(2.7) and (2.8) with appropriate boundary conditions given in 
Eqs (2.9) to (2.11) are solved numerically by the most efficient numerical shooting technique with the fourth 
order Runge-Kutta algorithm (Please see Cebeci and Bradshaw (1984), Conte and Boor (1972) for more 
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details). The non-linear differential equations are first decomposed into a system of first order differential 
equations in the form 
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 Corresponding boundary conditions takes the form, 
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where  
 

  ( ),0f f          and       ( ).0                                                                                 (3.3) 
 
 The above boundary value problem is first converted into an initial value problem by appropriately 
guessing the missing slopes. The resulting IVP is solved by the shooting method for several sets of 
parameters. This is done on a trial and error basis. The step length of h=0.01 is employed for the computation 
purpose. The convergence criterion largely depends on the fairly good guesses of the initial conditions. The 
iterative process is carried out until the relative difference between the current and the previous iterative 

values matches up to a tolerance of 510 . Once the convergence is achieved we integrate the resultant 
ordinary differential equations using the standard fourth order Runge-Kutta method to obtain the required 
solution. 
 

4. Discussion of the results 
 

 A problem for momentum and heat transfer viscous flow over a non-liner stretching surface in 
porous media with viscous dissipation and thermal radiation is examined in this paper. The basic boundary 
layer partial differential equations, which are non-linear, have been converted into a set of non-linear 
ordinary differential equations by applying suitable similarity transformations and their solutions are 
obtained numerically by the Runge-Kutta method with shooting technique. The study has been extended for 
two different heating processes, namely:  
(i) prescribed power law surface temperature (PST) and  
(ii) prescribed power law heat flux (PHF). 
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        Figure 2 is plotted for velocity profiles for different values of the porosity parameter 1k , from this figure we 
can observe that the velocity profile decreases with an increase of parametric values of the porosity parameter. 
 Figures 3a and b, respectively, reveal that the effect of increasing the values of the local Eckert number 

 Ec Es  is to increase temperature distribution in the flow region in both the cases of PST and PHF. This 

behavior of temperature enhancement occurs as heat energy is stored in the fluid due to frictional heating. 
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Fig.2. Velocity profile f  for different values of 1k . 
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Fig.3a. Temperature profile for various values of Ec. 
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Fig.3b. Temperature profile for various values of Es (PHF case). 

 
 Figures 4a and 4b illustrate the variation of temperature profiles for various values of the Prandtl 
number (Pr). From these figures it is seen that the temperature decreases with increasing the values of the 
Prandtl number Pr in the boundary layer. From these plots, it is evident that temperature in the boundary 
layer falls very quickly for large values of the Prandtl number because the thickness of the boundary layer 
decreases with an increase in the value of the Prandtl number.  

 
Fig.4a. Temperature profile for various values of Pr  (PST case). 
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Fig.4b. Temperature profile for various values of Pr (PHF case). 

 
 Figures 5a and 5b are drawn for temperature profiles for PST and PHF cases respectively .From 
these figures, it is apparent that the temperature is unchanged at the wall with the change of physical 
parameters in the PST case and we also observe that the temperature increases with an increase in the value 
of k1, in both PST and PHF cases. This is due to the fact that an increase of viscous normal stress gives rise 
to thickening of the thermal boundary layer.  
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Fig.5a. Temperature profile for various values of k1. 
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Fig.5b. Temperature profile for various values of k1. 

 
 Figures 6a and 6b represent the temperature profiles for PST and PHF cases, respectively, for various 
values of the thermal radiation parameter Nr. It is observed that an increase in the thermal radiation 
parameter (Nr) produces a significant increase in the thickness of the thermal boundary and so the 
temperature distribution increases with increasing values of Nr in both cases. The effect of Nr is to enhance 
the heat. Thus it is pointed out that the radiation should be minimized to have the cooling process at a faster 
rate. 
 

 
Fig.6a. Temperature profile for various values of Nr. 
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Fig.6b. Temperature profile for various values of Nr. 

 
Table 1.  Wall temperature gradient  ( )0  (PST case with /m 2 3 ) and wall temperature ( )0  (PHF 

case with /m 1 3 ) for various values of ,Tr and Ec(Es)pr  at different values of 1k . 
 

 
Pr 

 
Nr 

 
Ec(Es) 

PST PHF 

 0   0  

   K=0.0

 0.5  0.535936 1.757780 

2 1 0.2 0.713899 1.312961

 3  0.947651 0.982945 

 7  1.057013 0.878837 

     

0.71   0.359562 2.634675 

2 1 0.2 0.713899 1.312961

3   0.908171 1.028721 

10   1.742119 0.525615 

     

  0 0.973974 1.26721 

3 1 0.2 0.908171 1.30722

  1.0 0.644959 1.56627 
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Table 2. Temperatures     and ( )  when Pr and r2 T 3   for several values of m. 
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Nomenclature 
 
 fC   – skin-friction coefficient  

 pC  – specific heat of the fluid at constant pressure 

 Ec  – Eckert number in PST case 
 Es  – Eckert number in PHF case 
 k   – permeability of the porous medium 
 1k  – porous parameter 

 L   – characteristic length  
 Nr  – thermal Radiation parameter 
  Nux   – local Nusselt number 

 Pr   – Prandtl number 
 rq  – radiative heat flux 

 Rex  – local Reynolds number  

 T  – fluid temperature 
 wT   – wall temperature 

 T   – temperature far away from the wall  

 ,u v  – velocity components  
 x, y – Cartesian coordinates along the sheet and normal to it 
   – thermal diffusivity 
    – similarity variable 
   – viscosity  
   – density 
   – kinematic viscosity 
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