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An analytical investigation of extensional flow past a porous spherical shell of finite thickness with velocity 
slip at the surface is presented. The permeability of the shell varies continuously as a function of the radial 
distance. The flow in the porous region is assumed to obey Darcy’s Law. The drag has been calculated in terms of 
normal volume flux rate per unit area of the outer and inner surfaces. Particular cases of flow past a homogeneous 
sphere and no-slip boundary condition have been deduced. 
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1. Introduction 

 
 The theory of motion of fluid flow in porous media has been investigated extensively due to its vast 
applications. Many of these applications involve removal of impurities in integrated circuits in computers, 
study of landslides, nuclear waste disposal, study of micro organisms etc. This stimulates a detailed analysis 
of fluid flow past and through spherical geometries involving cavities, spherical shells, annulus etc. Nield 
and Bejan (2006) have shown that a porous medium can be considered as a solid matrix with an 
interconnected void. These voids can be of different shapes and sizes. The initial investigation on flow 
within porous media was performed by Henry Darcy. Darcy’s law is a simple proportional relationship 
between the instantaneous discharge rate through a porous medium, the viscosity of the fluid and the 
pressure drop over a given distance 
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where q is the filtration velocity, P is the pressure, k	 is the permeability of the porous material and μ is the 
viscosity. The study of the flow past the surface of a saturated porous material shows that there is a thin layer 
of streamwise moving fluid just beneath it. The fluid in this layer is pulled along by the main flow external to 
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the porous medium. Thus, there is a net tangential drag due to the transfer of forward momentum across the 
permeable surface. This gave rise to the need and justification of a slip velocity condition. The slip- 
condition suggested by Beavers and Joseph (1967) is of the form 
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where u is the fluid velocity at the permeable interface, ܷ is the Darcy velocity inside the porous medium, 

u

n

 
  

 is the gradient of the streamwise component of velocity along the normal to the surface drawn into the 

fluid, k	 is the permeability of the porous material and   is the empirical dimensionless constant depending 
on the nature of the porous material only. Happel and Brenner (1973) extensively studied the flow past a 
solid sphere at low Reynolds numbers. The slow flow of an Oldroyd fluid past a uniformly porous spherical 
shell of negligible thickness was investigated by Rajvanshi (1969). Prakash and Rajvanshi (1975) studied the 
slow flow of an incompressible viscous fluid past a porous spherical shell of finite thickness with velocity 
slip on the boundary. The shell is assumed to be non- homogeneous. The drag was calculated for some 
particular cases. In a subsequent paper Prakash and Rajvanshi (1978) evaluated the effective viscosity of a 
dilute suspension of porous spherical particles. They assumed that the small particles are homogeneous 
naturally permeable spheres and the tangential velocity slip applies at their saturated surfaces and that the 
flow inside is governed by Darcy’s law. Pop and Ingham (1996) presented a closed form exact solution for a 
forced flow past a sphere which is embedded in a porous medium using the Brinkman model. Their analysis 
shows that there is no flow separation for this flow configuration. Petrie (1999) studied the behaviour of 
polymeric liquids and fibre suspensions under extensional flows. Bhatt (1993) studied slow extensional 
flows past a porous sphere, liquid sphere and solid smooth sphere with slip at the surface. Stokes 
approximation was used to obtain exact solution for slow motion. Mass transfer to the outer fluid due to 
these spheres was evaluated in each case. Bhatt and Shirley (2001) examined a flow past a sphere bounded 
by a spherical shell with a radially stretching surface. The effect of the inner sphere on the mass transfer to 
the fluid was obtained. Kawase and Moo-Young (1986) obtained the approximate solutions of the power law 
fluid flow past a solid sphere at small Reynolds number when the flow at infinity was given by the 
extensional field. Alazmi and Vafai (2001) analysed the conditions at the interface between a porous medium 
and a homogeneous fluid. Sahraoui and Kaviany (1992) considered a solid matrix constructed from regularly 
spaced cylinders and numerically compared the micro-solution with the macro solution using the Brinkman 
model. Srivastava and Srivastava (2005) discussed the steady flow of an incompressible viscous fluid 
streaming past a porous sphere at small Reynolds number with a uniform velocity using Brinkman equations. 
They used the boundary conditions suggested by Ochao-Tapia and Whitaker (1995a; 1995b) at the surface of 
the sphere. It is noted that the drag on the sphere reduces significantly when it is porous and it decreases with 
the increase in permeability of the medium. Padmavathi et al. (1993) used the Brinkman model to investigate 
slow flow past a porous sphere. Rudraiah and Chandrashekhar (2005) analysed a two-dimensional steady 
incompressible flow past an impermeable sphere embedded in a porous medium using the Brinkman model 
with a uniform shear away from the sphere. Grosan et al. (2010) presented the steady flow of a viscous fluid 
past a permeable porous sphere embedded in another porous medium using the Brinkman model.  
 The aim of the present work is to study the extensional flow past a porous spherical shell of finite 
thickness with velocity slip at the surface. The permeability of the shell is taken to be variable. The Darcy 
law is applicable in the porous region and using the slip condition given by Jones (1973) the solutions are 
obtained. Limits on the filter velocities imposed by considerations of physical possibility of the flow are 
indicated. Values are calculated for the flow past a thin spherical shell under the conditions of no-slip and for 
flow past a homogeneous spherical shell of negligible thickness. The drag is evaluated for the shell under 
consideration and some particular cases are obtained. 
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2. Formulation 
 

 The slow flow past a porous non homogeneous spherical shell of finite thickness is investigated. The 
inner radius of the spherical shell is taken as b and the outer radius as a.   
 The flow at infinity is given by an extensional field with velocity components as  
 

  xu x
2


  ,            yu y

2


  ,               zu z    (2.1) 

 
where   is a constant. 
 The flow domain is divided into three regions which are labelled as I, II, III where 
region  I ሺݎ ൐ ܽሻ is the outer free fluid region, 
region  II ሺܾ ൏ ݎ ൏ ܽሻ is the permeable Darcy region, and  
region III ሺݎ ൏ ܾሻ is the region inside the porous sphere. 
 Spherical polar coordinates  , ,r    are considered with the pole at the centre of the shell. Axial 

symmetry is assumed and the derivatives with respect to   vanish identically. The velocity components at 

any point are denoted by ݑ∗ and ݒ∗ in the radial and tangential directions, respectively. The pressure is 
denoted by ܲ∗ .The density   and viscosity μ of the fluid are taken as constant. The velocity components 
corresponding to regions I, II and III are indicated by subscripts 1, 2, 3, respectively. 
 The equations of motion using Stokes approximation for regions I and III are given by 
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 The porous region II is governed by Darcy’s Law  
 

  
*

*
*

 2
2

Pk
u

r

 
     

,                                                                                               (2.5) 

 

  
*

*  2
2

Pk

r
 

    



.                                                                                               (2.6) 

 
 We introduce  ଵܵ

∗ and ܵଶ
∗ as the filter velocities of the fluid in the radial direction across the outer and 

inner surfaces of the shell. The boundary conditions are now prescribed as 
Region I 
 

  * * 1 1u S      at     *r a ,  (2.7) 
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Region II 
 

  * * 12u S      at     *r a ,     and     * *
2 2u S      at     *r b .  (2.9) 

 
Region III 
 

  * * 3 2u S      at     *r b ,     and     *,3 3u       are finite at     *r 0 .  (2.10) 
 
 The second boundary condition is the slip condition at the spherical surface adopted by Jones (1973) 
which is 
 

    at1 1 2r
2a e r a

   


      , (2.11) 

 

    at2 3 2r
2a e r b

   


       (2.12) 

 

where βଵ and βଶ are the values of the dimensionless slip parameter 
k

a
 at the outer and inner surfaces of the 

shell, respectively. ݁∗௥∗஘ is the shear strain rate. α is the empirical dimensionless constant depending on the 
nature of the porous material only. λ is a constant which has been introduced so that the no slip condition 
may be recovered by setting λ ൌ 	βଵ ൌ βଶ ൌ0. 
 The above equations are rendered dimensionless by defining the following variables 
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where ܷ is the characteristic velocity. 
 Therefore Eqs (2.2) and (2.3) are written as 
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 The equations applicable in region II are 
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 By the equation of continuity, the divergence of the velocity vector is zero in each of the three 
regions. 
 The modified boundary conditions are 
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   1 2 1u u S        at     r=1,                                                                         (2.18) 
 
   2 3 2u u S       at      r=c,                                                                           (2.19) 
 

 ଷ are finite at r=0                                                                                                 (2.20)ݒ ଷ andݑ
 
     1 r 1 2e v v          at     r=1,                                                                     (2.21) 

 
    2 r 3 2e v v          at      r=c.                                                                 (2.22) 

 
 Upon substitution of the expressions for ݑଶ and ݒଶ from above, the equation of continuity yields 
 
      2K P 0    .                                                                          (2.23) 

 
  Further, we assume the permeability of the shell to be given by a particular harmonic function of ݎ 
such that  
 

      
1

2 B
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r
  .                                                                                                (2.24)                    

 
 The pressure may be expressed in terms of a function  ,G r   as 
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3. Solution 

 
 Stokes stream function ψ is introduced to satisfy the equation of continuity such that 
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Region – I                                                                                            
 The Stokes stream function ψ is assumed as 
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where , ,1 2 3A A A  and 4A  are constants required to be determined by boundary conditions. 
 The velocity components are found as 
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 The boundary condition (2.17) gives 
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 Therefore 
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 Using Eq.(2.13) the pressure is found as 
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Region –III 
 The Stokes stream function ψ is assumed as 
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where , ,1 2 3C C C  and 4C  are constants required to be determined by boundary conditions. 
 The velocity components are found as 
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 Using condition (2.20) 
 
   1 2C C 0  .                                                                                          (3.12) 
 
 Therefore  
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 The pressure is obtained as  
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Region –II 
 Comparison of Eqs (2.25) and (3.8) with Eq.(3.15) suggests that  ,G r   is of the form 

  cos sin2 2F r 2    . Since G is a harmonic function of ݎ and θ, the desired form is assumed as 
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where 1B  and 2B  are constants required to be determined by boundary conditions. 
 Using Eqs (2.24) and (2.25) the pressure in Region-II is obtained as 
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 Substituting the above in Eqs (2.15) and (2.16) gives the following components 
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 By using the boundary conditions (2.18) and (2.19) the following expressions are obtained 
 

   cos sin2 2
1 1S s 2          and       cos sin2 2

2 2S s 2                                     (3.20) 

 
where ݏଵ and ݏଶ are positive constants depending upon the normal filter velocity across the surfaces of the 
shell. 
 Using the slip-conditions (2.21) and (2.22), the following equations hold true 
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 Using the Eqs (3.20), (3.21), (3.22) the constants are obtained as  
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3.1.  Pressure jump  

 
 The pressure jump at the surface may be expressed in terms of the dimensionless parameters ݁ଵ and 
݁ଶ defined by the relations 
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 These equations on simplification yield 
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       At the surfaces of a naturally permeable material, the pressure is continuous that means 1 2e e 0  . 
The normal filter velocity is determined by this fact and cannot be prescribed arbitrarily. 
 
3.2. Discussion 

 
 For physically possible flows, ݏଵ and ݏଶ are positive or zero, since the normal flow at points on front 
hemisphere must be in the direction of the impinging stream. The other conditions are that 
 

   1 2P P      and          2 3P P            for         
2 2

 
    .                          (3.27) 

 
 Using these conditions the limits on filtration velocity parameters may be prescribed by the 
inequalities 
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where the constants are given by 
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     



,     

   
 

M ( )7 4
2

5 3

2 4 c c 2A B c A 2B
G

c B Ac

      



, 

  

  4 3F Ac 2Bc 2Ac B    . 
 
3.3. Some particular cases 
 
 Taking the limit as c 1 , the limits on 1s  	for a physically possible flow past a thin spherical shell 
under the condition of no-slip are 
 

  
     ( )

 
( ) ( )2 1

2 M A B A B 5 M A B
0 s s

A B 2 A B

       
        

.                                    (3.30) 

 
 On taking the limit as c 0  for the flow past a non-homogeneous sphere with velocity slip 
 

  
   

 
   

 
( ) ( )

( ) ( )
1 1

1
1 1

A 2B B A B 1 B A 2B B A B 2 35
s

2 A B 1 3 A B 1 3

           
              

.                (3.31) 

 
  For the case of flow past a thin homogeneous spherical shell with B=0 and c 1  
 
  2 10 s s  .                                                                                                 (3.32) 
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4. Drag 
 

 The general expression for drag on a porous sphere is 
 

   
1 2

n V
D 1 m d m grad P dV


    

  


                                      (4.1) 

 
where φ௡ሬሬሬሬሬԦ is the stress vector on an element ݀σ of the surface, ݉ is the porosity of the material occupying the 
volume ܸ		bounded by the surfaces ∑ ,ଵ and ∑ .ଶ  
 The drag on the spherical shell in the negative direction of the polar axis is 
 

        
 

3
1 21 2

1 2

B c BB B
D 8 1 m A 3A m

A B c Ac B

               

.                               (4.2)                     

 
 The drag in the case of a homogeneous permeable shell is 
 

  

         

 

 
( )

.

2 4 4
1 1 1 1 2 1 1

1

34 4 1 22 1 1
2

1 m 2s 2 13s 5 1 12 k s c s c s c M
D 8

2 1 3

B c Bs c s c s c
m

M c k

            
 


          

        (4.3)                     

 
 In the case of flow past a homogeneous sphere of vanishingly small porosity, the drag is found as 
 

  
      

 

2 4 4
1 1 1 1 2 1 1

1

2s 2 13s 5 1 12 k s c s Mc s c
D 8

2 1 3

            
   

.                (4.4) 

 
 On the assumption of no-slip condition in the above case 
 
  ( )1D 4 4s 5    .                                                                             (4.5) 

 
5. Conclusion  

 
 The extensional flow past a porous spherical shell of finite thickness with velocity slip and variable 
permeability has been investigated. Limits on the filter velocities imposed by considerations of physical 
possibility of the flow have been indicated and, in particular, values have been calculated for the flow past a 
thin spherical shell under the conditions of no-slip and for flow past a homogeneous spherical shell of 
negligible thickness. The drag has been evaluated for the spherical shell under consideration. From the 
present investigation the drag for the flow past a homogeneous sphere of vanishingly small porosity and no-
slip has been found as ( )14 4s 5   . The problem undertaken may enhance research in the field of study of 
landslides, micro-organisms and other practical applications. 
 
 



Slow extensional flow past a non-homogeneous porous…  501  

Nomenclature  
 
 a, b – outer and inner radii of the spherical shell 
 , 1 2e e  – dimensionless parameters 

 re   – non-dimensional shear rate strain 

 *
*

r
e


 – shear rate strain 

 k – permeability of the porous material 
 m – porosity of the material 
 P – non-dimensional pressure 

 *P  – pressure 
 q  – filtration velocity  
 , ,r    – spherical polar coordinates 

 U – Darcy velocity inside the porous medium 
 U – characteristic velocity 
 u – fluid velocity at the permeable interface 
 ,u   – non-dimensional velocity components in radial and transverse directions	ݑ∗ 

 ,u   – velocity components in radial direction and transverse directions 

 V – volume 
   – non-dimensional constant 
   – non-dimensional slip parameter 
   – constant 
   – constant 
   – viscosity of the fluid 
   – density of the fluid 
   – non-dimensional stream function 
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