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The vibration characteristics of stiffened plates with cutouts subjected to in-plane partial edge loadings at one 

end at the plate boundaries are studied using the finite element method. Buckling loads and vibration frequencies 
are determined for different cutout ratios and extent of partial edge loading at one end. In the structural 
modelling, the plate and the stiffeners are treated as separate elements where the compatibility between these two 
types of elements is maintained. The main elegance of the formulation lies in the treatment of the stiffeners. The 
stiffeners can be placed anywhere within the plate element, and need not be placed on the nodal lines. The 
vibration characteristics are discussed and the results are compared with those available in the literature. 
Numerical results are presented for a range of cutout to plate size from 0 to 0.8. 
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1. Introduction 
 
 Structures consisting of thin plates are often reinforced with stiffening ribs for achieving greater 
strength with relatively less material and thus making the structure quite efficient. The wing and the fuselage 
of an aircraft consist of a thin skin with an array of stiffeners. The hull of a ship, its deck and superstructure, 
a road bridge and a launching pedestal of rocket are examples of stiffened plate structures. With such a wide 
range of applications, the stiffened plates are often subjected to dynamic in-plane loads of varying magnitude 
and complexity.  
 Plates with cutout are commonly encountered in many technological situations, aeronautical, civil, 
mechanical and naval engineering. Plates with interior openings are often used in industrial design such as 
machines, bridges, aircraft etc. Cutouts are used in most of the situation due to operation conditions, passage 
of ducts and conduits, cables etc. However when interior holes are cut from a plate structures, the mechanical 
behaviour of the plate structures is changed. To avoid induced acoustic noise and/or mechanical failure due 
to mechanical resonance, vibration problems of such plate structure can be studied. 
 Vibration problems of plates with internal cutouts or supports are commonly encountered in the 
engineering practice. In aeronautical, marine and civil structural design, cutouts are deliberately incorporated to 
reduce material, lighten the loads, and provide ventilation and to alter the resonant frequencies of the structures. 
 The buckling and vibration instability of stiffened plates with cutouts subjected to uniform and non-
uniform in-plane edge loadings are of considerable importance. Aircraft wing skin panels, which are made of 
thin sheets, are usually subjected to non-uniform in-plane stresses causing partial edge loading at the edges. 
These elements, being thin are highly susceptible to the buckling instabilities under such loading. In contrast to 
high transverse strength, they often lose stability at fairly low stress levels, when subjected to in-plane forces.  
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 Cutouts in aerospace, civil, mechanical and marine structures are inevitable mainly for practical and 
design considerations. Free edges of the cutout are susceptible to instability behaviour due to local buckling. 
The buckling and vibration characteristics of structures with cutouts pose a tremendous challenge. The 
instability effects are improved with the provision of stiffeners. The study of static stability of stiffened plate 
structures with or without cutout is of interest for the present work. 
 A large number of references in the published literature deal with the buckling, vibration behaviour 
of rectangular plates subjected to in-plane uniform loading. The problem becomes complicated when the 
loading is partially loaded over the edges. Relatively fewer investigations deal with the static stability 
problems under in-plane partial edge loadings.  
 Yamaki (1953) analyzed the plate subjected to locally distributed in-plane loading over a finite 
length of the edge at the center of two opposite edges. Leggett (1937) was able to obtain an approximate 
non-uniform in-plane stress distribution within the plate subjected to point loading at the two opposite edges. 
The vibration of flat thin plates subjected to complex middle force system under arbitrary stress system 
based on Kirchoff’s theory is studied by Mei and Yang (1972). Vibration and buckling calculation for 
rectangular plates subjected to complicated in-plane stress distribution by using numerical integration in a 
Raleigh-Ritz analysis is studied by Dickinson and Kalidas (1981).  
 Sundersan et al (1998) studied the influence of partial edge compression on buckling behaviour of 
angle ply plates for few orientations. Vibration and buckling calculations for rectangular plates subjected to 
non-uniform in-plane stress distribution were studied by Deolasi and Datta (1995).  
 Vibration and dynamic stability of stiffened plates subjected to in-plane uniform harmonic edge 
loading is studied using the finite element analysis by Srivastav et al. (2002). 
 A number of investigations exist on buckling under uni-axial uniform loads of stiffened plates 
having longitudinal equispaced stiffeners, mostly based on shear deformation theories under different 
classical boundary conditions.  
 A finite element analysis of a clamped thin plate with different cutout sizes, along with experiments 
was carried out by Monahan et al. (1970) using holographic interferometry. Ritchie and Rhodes (1975) 
investigated theoretically and experimentally the behaviour of simply supported uniformly compressed 
rectangular plates with central holes, using a combination of Rayleigh-Ritz and finite element methods. 
Paramsivam and Sridhar Rao (1969) developed a finite difference method for obtaining the natural 
frequencies and mode shapes for rectangular plates, of varying stiffnesses causing re-entrant corners, by 
assuming average curvature at the corners.  
 Ali and Atwal (1980) studied the natural frequencies of simply supported rectangular plates with 
rectangular cutouts using the Rayleigh Ritz method. Using the finite element method for computing in-plane 
stresses, Uenoya and Rewood (1986) determined the shear buckling of square plates with holes by the 
applying Rayleigh- Ritz method. 
 Mundkur et al. (1994) studied the vibration of square plates with square cutouts by using boundary 
characteristics orthogonal polynomials satisfying the boundary conditions. 
 Paramsivam and Sridhar Rao (1973) modified the grid framework model suitably to obtain the 
natural frequencies of a square plate with stiffened square openings. The free vibration characteristics of 
unstiffened and longitudinally stiffened square panels with a square cutout are investigated by 
Sivasubramonian et al. (1977) using the finite element method. Lam et al. (1990) studied the vibration of a 
rectangular plate by dividing the total domain into smaller areas and using a modified form of the Rayleigh-
Ritz method. The same method was employed by Lam and Hung to study the vibrations of plates with 
stiffened openings using orthogonal polynomials and partitioning method 
 However, little attention has been paid to buckling, vibration behaviour of stiffened plates with / 
without cutout subjected to partial edge loading at the plate boundary of practical interest. The vibration and 
stability analysis of stiffened plates with / without cutout subjected to partial loading is sparsely treated and 
can be extended to practically important patch loading under different boundary conditions. The authors 
could not find any work in the literature on the buckling and vibration of a stiffened plate with cutout 
subjected to in-plane partial edge loading at the plate boundary. Thus the study on buckling and vibration of 
a stiffened plate subjected to partial edge loading is new.  
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 The present paper deals with buckling and vibration analysis of eccentrically stiffened plates with 
cutout subjected to harmonic in-plane partial edge load. A finite element formulation is applied to study the 
effects of different boundary conditions, cutout size, extent of partial edge loading position.  
 In the present analysis, the plate is modelled with the nine noded isoparametric quadratic elements 
with five degrees of freedom, where the contributions of bending and membrane actions are taken into 
account. One of the advantages of the element is that it includes the effect of shear deformation and rotary 
inertia in its formulation. Thus the analysis can be carried out for both thin and thick plates. The formulation 
of the stiffener is mode in such a manner so that it may lie anywhere within a plate element.  
 
2. Governing equations and proposed finite element 
 
 The governing equations for free vibrations are  
 

           bM q K q 0  .                                                  (2.1) 
 

 The governing equations for vibrations with in-plane loads are 
 

             b GM q K P K q 0     .                          (2.2) 
 

The matrix  GK is a function of external in-plane loads. 

 The governing equations for vibration with in-plane loads are 
 

              b GK P K q 0                          (2.3) 
 

where  bK ,  GK ,  M are the overall elastic stiffness, geometric stiffness, and mass matrices, 

respectively,  q  is the displacement vector. The elements of overall matrices in Eqs (2.1), (2.2) and (2.3) 

can be generated through the assembly of corresponding element matrices. The derivation of each of the 
above matrices is given in the following section. The eigenvalues of the above equations give the natural 
frequencies and buckling loads for different modes. The lowest values of frequency and buckling loads are 
termed as the fundamental frequency and fundamental critical load of the structure. 
 The overall elastic stiffness matrix, geometric stiffness matrix and mass matrix are generated from 
the assembly of those element matrices and stored in a single array where the variable bandwidth profile 
storage scheme is used. The eigenvalues is solved by the simultaneous iteration technique proposed by Corr 
and Jennings (1976). 
 For problems involving complex in plane loading and boundary conditions, analytical methods are 
not easily adaptable and numerical methods like the finite element method (FEM) are preferred. The 
formulation is based on Mindlin's plate theory, which will allow for the incorporation of shear deformation. 
The plate skin and the stiffeners are modelled as separate elements but the compatibility between them is 
maintained. The middle plane of the plate is taken as the reference plane for both the plate and the stiffeners. 
The nine noded isoparametric quadratic elements with five degrees of freedom (u, v, w, X  and y ) per 

node have been employed in the present analysis.  
 As the plate element for a stiffened plate includes in-plane displacements, the formulation presented 
here includes both in- plane and bending displacements. The in-plane displacements u and v need to be 
considered only when the stiffeners are connected eccentrically to the plate. The effect of in-plane 
deformations is taken into account in addition to the deformations due to bending, which will help to model 
the stiffener eccentricity conveniently. The element matrices of the stiffened plate element consist of the 
contribution of the plate and that of the stiffener. A study of the stiffness and mass matrices of the stiffener 
element reveals that the contribution of the beam element is reflected in all 9 nodes of the plate element, 
which contains the stiffener, and they are coupled also. This is achieved through the expression of the strain 
displacement relationship in terms of displacement of 9 nodes of the plate. The contribution of the stiffener 
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to a particular node depends on the proximity of the stiffener to that node. This is similar to the concept 
proposed by Mukherjee and Mukhopadhyay (1990). The whole domain of interest (plate area) is divided into 
a number of finite elements. The formulation is based on the following assumptions. 
 
Assumptions of the analysis 
 
1. The material of the plate and the stiffener obeys Hook’s law. 
2. The bending deformation follows Mindlin’s hypothesis; therefore the linear elements perpendicular to 

the middle plane of the plate before bending remain straight, but not necessarily normal to the middle 
plane of the plate after bending. 

3. The deflection of the points of the middle plane of the plate in the direction normal to this plane is small 
in comparison to the thickness of the plate. 

4. The normal common to the plate and the stiffeners before bending remain straight after bending. 
5. The deflection in the z direction is a function of x and y only. 
6. The transverse normal stresses are neglected. 
 
2.1. Formulation of plate element for eccentrically stiffened plate 
 

 The strain displacement relation can be written by 
 

       p r pr
B B           .                                                    (2.4) 

 

 Element stiffness matrix is expressed as 
 

  
1 1

T
p p p p p

1 1

K B D B J d d
 

 

                      (2.5)  

 

where           P P P P P 91 2 r
B B B B B     ,                            (2.6)        
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 The element mass matrix can be expressed in isoparametric coordinates as 
 

     
1 1

T
p p p

1 1

M N m N J d d
 

 

            (2.8) 

 

where  3p

3

t 0 0 0 0

0 t 0 0 0

0 0 t 0 0

m t
0 0 0 0

12

t
0 0 0 0

12

 
  
 
       
 
 

 
  

.                                        (2.9) 

 
 When expressed in isoparametric coordinates the geometric stiffness matrix can be expressed as 
 

  
1 1

T
G p G p p G p p

1 1

K B B J d d
 

 

                                                         (2.10) 

 

where           GP GP GP GP GP 91 2 r
B B B B B     ,                              (2.11) 

 

and     p p pD     , 

                                                           

     T
p x y xy zx zy       , 
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.                                 (2.12) 

 
 Similar to the plate element, the elastic stiffness matrix [KS], geometric stiffness matrix [KGS] and 
mass matrix [MS] of a stiffener element placed anywhere within a plate element and oriented in the direction 
of x may be derived. Element stiffness matrix, element mass matrix, geometric matrix for stiffener can be 
expressed as 
 

        
1

T
S S S S S

1

K B D B J d




  ,                                          (2.13) 
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  ,                                                        (2.14) 
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                                                           (2.18) 

 
where AS is the area, FS is the first moment of the area about the reference plane, SS is the second moment of the 
area about the reference plane, TS is the torsion constant and PS is the polar moment of the area of the stiffener 
cross-section. 
 
3. Problem description 

 
 The basic configuration of the problem considered here is a rectangular stiffened plate (a x b) with 
stiffeners having a rectangular cutout of size (g x d) at the center subjected to in-plane partial edge loading at 
the plate boundary as shown in Fig.1. The choice of the stiffened plate with cutout geometry as a basic 
configuration has been made so that depending on the value of the cutout size (g x d), partial edge load, 
extent of load width and position, various problems of stiffened plates with or without cutout subjected to 
uniform or partial edge loading can be considered as special cases. The stiffened plates with stiffener and 
stiffener cross-section are shown in Fig.2. The loading applied is compressive in nature. All the boundaries 
of the plates are simply supported unless otherwise stated. The partial edge loadings have different locations 
relative to the lower edge. All the boundaries of the plates are simply supported unless otherwise stated. The 
length (a) of the stiffened plate considered above is varied keeping its other parameters unchanged. 
Numerical results are presented for isotropic stiffened plate with different boundary conditions. For 
comparison, the boundary conditions are considered as reported in the respective studies. Here the 
displacement components (w, X , y ) are set to be zero over the whole domain of the plate for pre buckling 

analysis thereby reducing the problem size considerably. However, in the case of partially compressed plates, 
out of plane displacements do appear. These out of plane displacements vanish only when the full edge is 
subjected to uniform or linearly varying compression. The width of the extent of partial edge load at one end 
from the lower edge is assumed as ‘c’ throughout the analysis. 
 The presence of the cutout in the plate produces stress concentrations and high stress gradients in the 
neighbourhood of the cutout, which calls for an extra fineness of the mesh in this zone in the finite element 
discretization.  
 

 
 

Fig.1. Stiffened plates with cutout under in plane partial edge loading at one end at plate boundary. 
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Fig.2. Stiffened plate cross-section. 
 
4. Result and discussion 

 
 The non-dimensionalisation of different parameters like vibration, buckling and excitation frequency 
for the dynamic stability analysis is taken as shown in Tab.1. The majority of the model parameters and 
results are presented in a non-dimensional form to make them independent of the plate size, thickness, 
material properties, etc for the convenience of the analysis. 
 
Table1. Non-dimensionlisation of parameters. 

 

 Term Non-dimensionalisation values 
1 Frequencies of vibration ( ) 2b t D   

 
2 

Buckling load ( ) 
(1)      Distributed load 
(2)      Concentrated load 

 
2 2

XN b D  

c rP b D  

3 Frequencies of excitation ( ) 2b t D   

 

where D is the plate flexural rigidity, D =  3 2E t 12 1  , P is the applied load, rcP  is the buckling load, 

  is the density of the plate material and t is the plate thickness.  

 Assuming a general case of several longitudinal ribs and denoting by EI S  the flexural rigidity of a 

stiffener at a distance (Dx) from the edge y = 0, the stiffener parameter terms are defined as: SA bt   = the 

ratio of the cross-sectional area of the stiffener to the plate, where SA  is the area of the stiffener. 

SE I bD   = Ratio of bending stiffness rigidity of stiffener to the plate, where SI  is the moment of inertia 

of the stiffener cross-section about the reference axis. The frequency parameter is expressed in terms of a 

non-dimensional frequency parameter ( ) as: non-dimensional frequency, /2b h D    which is a 

function of only the Poisson ratio and aspect ratios of the plates for a given cutouts configuration.   
 In addition, certain quantities are expressed as the ratio of that quantity to some reference quantity. 
In the discussion that follows, S, C and F denote simply supported, clamped and free edges respectively. The 
notation SCSF identifies a plate with the edges: x = 0, x = a, y = 0, y = b having the boundary conditions in 
that order. Numerical results are presented for an isotropic unstiffened, stiffened plate with different 
boundary conditions.  
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 The problem of isotropic stiffened plates without cutout with uniform loading (c/b = 1.0) is 
investigated for buckling (static stability). Vibration characteristics for establishment of convergence and 
validity is discussed. Here the displacement components (w, X , y ) are set to be zero over the whole 

domain of the plate for pre buckling analysis thereby reducing the problem size considerably.  
 In a finite element analysis, it is desired to have the convergence studies to estimate the order of the 
mesh size necessary for the numerical solution. The plate area of interest is divided in M x N finite element 
mesh, where M is the number of divisions along the x-axis and N is the number of divisions along the y-axis. 
The mesh division is generally uniform in both x and y directions. However to accommodate the mesh 
division at a desired edge location, the plate is divided into two zones and each zone is meshed separately 
with a uniform mesh. The actual values of M and N are based on the convergence studies. The mesh that has 
been used has been kept uniform throughout, not only from the point of view of ease of use, but also 
experience indicates that this tends to minimize numerical inaccuracy in computation. The in-plane 
movement at the boundaries of the plate has not been constrained. 
 
4.1. Convergence and validation 

 
 For the validation of the buckling load parameter of stiffened plates subjected to partially distributed 
in-plane edge loading at one end at the plate boundary as shown in Fig.1, the analysis is carried out for 
c/b=1. Actually this corresponds to a fully loaded plate problem, for which analytical, finite element and 
other solutions are available in the literature. In the present case, the plate contains one stiffener as shown in 
Fig.2. By varying the stiffener parameters, the plate is analyzed taking a/b = 1.0 (Fig.2) and the simply 
supported boundary condition at the four edges.  
 Results obtained in the present analysis are presented with the analytical solution of Timoshenko and 
Gere (1963) and finite element results of Mukherjee and Mukhopadhyay (1990) in Tab.2. It shows that the 
agreement between the results obtained from different sources is very good. 
 
Table 2. Validation of buckling load parameter of a simply supported stiffened plates under distributed in-

plane edge loading. (c/b =1). 
 

 

 

 

a/b 

5   10 

.0 05   .0 1  .0 05  .0 10   

Present A

[1963] 

Present  A

[1963] 

Present B 

[1990] 

Present B 

[1990] 

1.0 

1.2 

1.6 

2.0 

3.0 

11.98 

9.85 

8.17 

8.01 

8.31 

12.0

9.83 

8.01 

7.95 

8.31 

11.03 

9.02 

7.35 

7.28 

7.67 

11.11

9.06 

7.38 

7.29 

7.62 

15.99

15.34 

11.43 

10.20 

12.03 

16.00

15.30 

11.40 

10.20 

12.0 

15.99 

14.09 

10.48 

9.34 

11.10 

16.0 

14.2 

10.5 

9.35 

11.1 

 
In table A is Timoshenko and Gere (1963) and B is Mukherjee and Mukhopadhyay (1990). 

 
 In order to validate the results of cutout, linear fundamental frequency parameters of a simply 
supported and clamped isotropic square plate with various sizes of rectangular cutout (g/a) are computed and 
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compared in Tab.3 with Mundkur et al. (1994) given in bracket, showing good agreement. Mundkur et al 
(1994) analyzed assuming boundary characteristics orthogonal polynomial functions, and assumed plate 
deflection shape functions satisfying the boundary conditions along the plate outer edges. The orthogonal 
polynomials are generated along both x and y directions.  
 
Table 3. Comparison of natural frequency parameter. 
 

Natural frequency parameter ( )
 SSSS  CCCC 

g/a Mundkur et al. 
(1994) 

Present  Mundkur et al. 
(1994)

Present 

0.0 
0.167 
0.33 
0.5 

19.739 
20.070 

20.9633 
24.2434 

19.732
19.87 
20.12 
24.24

 35.985
37.425 
43.867 
65.715

35.981 
36.06 
43.02 
65.27 

 
 A free vibration analysis of a square plate with centrally stiffened opening analyzed by Paramasivam 
and Rao (1973) by the grid framework model and Shastry and Rao (1977) by the finite element model is 
carried out and presented in Tab.4 in the form of the fundamental frequency parameter   for simply 
supported and clamped square plate.  
 
Table 4. Convergence and validation of non-dimensional fundamental frequencies of a SSSS and CCCC 

unstiffened / stiffened square plates with cutout. g/a = 0.5, a / b =1, b / h = 100, 10  . 
 

 
Boundary 
condition 

 
Types of 

plates 

Fundamental frequency parameter ( ) 
 

Mesh size Paramsivam 
(1977) 

Shastry 
(1973) 6 x 6 8 x 8 10x10 12x12

 
Simply 

supported 

Unstiffened 
 

26.87 26.57 26.42 26.48 26.80 25.45 

Stiffened 
 

30.79 30.12 30.02 30.02 29.02 28.72 

 
 

Clamped 

Unstiffened 
 

66.92 66.80 66.80 66.81 68.67 57.25 

 
Stiffened 

 

 
71.09 

 
70.98 

 
70.57 

 
70.56 

 
70.87 

 
68.62 

 
 The parameter ES IS / DL is taken as 10, where, ES is Young’s modulus of the stiffener material, IS is the 
moment of inertia of the stiffener and D is the plate flexural rigidity. 
 The present results agree well with the result obtained by Shastry and Rao (1977) and by 
Paramasivam and Rao (1973). Torsional rigidity of the stiffeners and the effect of lateral deformation have 
been neglected. The comparison of these results with those in the literature shows the reliability and accuracy 
of the present formulation and program. It is observed that the frequency parameter results converged and 
agreed well with the above reference. As the convergence study shows a mesh size of 10x10 is sufficient 
enough to get a reasonable order of accuracy. The analysis in the subsequent problems is carried out with this 
mesh size. The predicted natural frequencies for square plates with cutouts are also compared with the 
reported value in the literature for the CSCS square plate. The first four natural frequency parameters are 
obtained for different sizes of cutouts in Tab.5. The corresponding boundary characteristics orthogonal 
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polynomial functional results for the CSCS square plate are shown within parentheses. The predicted 
changes in the frequency agree with the finite element results of Mundkur (1994) showing an initial 
decreasing trend with increased cutout sizes.  
 
Table 5. Linear fundamental frequencies of a CSCS square plate with square cutout. 
 

Natural frequency parameter ( )
Mode Cut out ratio (g/a)

0 0.1 0.2 0.3 0.5 0.8 
 

1 
 

2 
 

3 
 

4 

 
29.02 

(28.9509) 
54.86 

(54.7432) 
69.61 

(69.3270) 
94.765 

(94.5823) 

 
29.32 

(29.2675) 
54.87 

(54.7512) 
69.68 

(69.3416) 
94.714 

(93.9170) 

 
30.296 

30.2057 
54.9154 

(54.8577) 
69.723 

(69.5036) 
92.412 

(92.3961) 

 
32.215 

(32.1893) 
55.14 

(55.0372) 
69.782 

(69.7469) 
91.397 

(91.3022) 

 
44.368 

(44.3386) 
55.58 

(55.5415) 
74.789 

(74.7403) 
94.312 

(94.2797) 

 
90.272 

(90.2553) 
92.623 

(92.6066) 
182.109 
(182.03) 
188.612 

(188.5265) 

 
The result of parentheses is from Mundkur (1994). 
 
4.2. Numerical results 

 
 The vibration frequencies and buckling load parameter for various modes of rectangular stiffened 
plates with one central stiffener subjected to in-plane uniform uni-axial loading and partial edge loading at 
the plate boundary have been determined for simply supported edge conditions. The influence of the size of 
cutout and extent of the width of partial edge loading on the buckling and vibration behaviour of stiffened 
plates has been examined. Numerical results are presented for a range of hole to plate width ratios of 0 to 0.8. 
The necessary data used are as follows: a = 600mm, b = 600mm, t = 1mm, Sb = 3.31mm, Sd = 20.2 mm,  

 =0.34, E = 6.87 x 104 N/mm2, =2.78 x 10 6 Kg/mm3. 
 Fundamental frequencies are computed for a simply supported plate having one central stiffener with 
a central square cutout of different sizes (g/a) subjected to uni-axial compressive force and the results are 
presented in Fig.3. Numerical results for the buckling load parameter for a stiffened square plate having one 
central stiffener with a central square cutout of different sizes subjected to uni-axial compressive force for 
boundary conditions (SSSS, SSCC) are shown in Fig.4.  
 It is observed from Fig.3 that the frequency parameter increases with the increase of the cutout size. 
A similar behaviour was observed for higher modes of oscillation. The effects of cutout sizes on natural 
frequency for stiffened plates subjected to bi-axial force have also been studied and observed to be same as 
the uni-axial compressive force. It is observed from Fig.4 that the buckling load of the stiffened plate reduces 
with the increase in the size of the hole. 
 The influence of various parameters on buckling, vibration and dynamic stability characteristics of 
stiffened plates with cutout subjected to partial edge load at one end are studied.  
 



548                    A.K.L.Srivastava, S.R.Pandey and S.Kumar 

 

                                        

                                        

                                        

                                        

                                        

                                        

                                        

0.2 0.3 0.4 0.5 0.6 0.7 0.8
10

15

20

25

30

35

40

45

50

55

N
a

tu
ra

l f
re

q
u

e
n

cy
 p

a
ra

m
e

te
r



Cutout size (g/a)

 
Fig.3. Frequency parameters for a simply supported stiffened square plate having one central stiffener with 

square cutout subjected to uni-axial compressive forces. 
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Fig.4. Buckling load parameter    vs hole/plate ratio (g/a) for uni-axially loaded stiffened plate with one 

central stiffener (  = 0.1 and  = 10). 
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4.2.1. Buckling studies of stiffened plates with cutout 
 

 Numerical results for the buckling load parameter are presented for a simply supported stiffened 
square plate having one central stiffener in three higher modes for the cases: 
(i) Various central square cutout sizes (g/a = 0.2, 0.4, 0.6, 0.8) and partial edge load width (c/b = 0.4) at one 
end in Fig.5 and (ii) For cutout of size (g/a = 0.4) at various load width (c/b = 0.2, 0.4, 0.5, 0.6, 0.8) in Fig.6. 
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Fig.5. Effect of cutout (g/a) on buckling load parameter for simply supported stiffened plate with cutout 

having one central stiffener subjected to partial edge load at one end. a/b = 1, c/b = 0.4. 
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Fig.6. Effect of load width (c/b) on buckling load parameter with load width (c/b) for simply supported stiffened 

plate with cutout having one central stiffener subjected to partial edge load at one end. g/a = 0.4, a/b = 1. 
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 It is observed from Fig.5 that buckling resistance decreases as the cutout size increases in all the 
modes. It is observed from Fig.6 that buckling resistance decreases as the load bandwidth (c/b) increases 
from 0 to 0.4. This can be explained by the fact that as the load width increases, the edge restraint effect 
decreases and consequently the buckling load decreases. However, as the load width (c/b) increases from 0.4 
to the uniform full width (c/b = 1), no appreciable variation is noticed.  
 
4.2.2. Vibration studies of stiffened plates with cutout 

 
 Numerical results for vibration frequencies are presented for a simply supported stiffened square 
plate having one central stiffener with a central square cutout. The variation of vibration frequencies with 
P/Pcr is presented for the cases: 
(i) for various cutout sizes (g/a = 0.2, 0.4, 0.6, 0.8) and partial edge load width at one end (c/b = 0.4) in Fig.7 
and (ii) for various load width (c/b = 0.2, 0.4, 0.6, 0.8) with cutout size (g/a = 0.4) in Fig.8. 
 It is observed from Fig.7 that vibration frequencies increase with the increase of the cutout size (g/a). 
It is observed from Fig.8 that the effects of load width (c/b) on vibration frequencies for the simply supported 
end condition are not very appreciable. It is also observed from Figs 7 and 8 that the frequency parameter 
decreases with the increase of P/Pcr and it becomes zero at critical buckling. 
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Fig.7. Variation of frequency parameter with P/Pcr for various cutout sizes (g/a) for simply supported 

stiffened square plate having one central stiffener subjected to partial edge load at one end.  
c/b = 0.4. 
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Fig.8. Variation of frequency parameter with P/Pcr for various values of load width (c/b) for simply 

supported stiffened square plate having one central stiffener subjected to partial edge load at one end. 
g/a = 0.4. 

 
5. Conclusion 

 
 Theoretical investigations of the buckling, vibration behaviour of stiffened plates with cutout, 
subjected to in-plane uniform and partial edge loadings at the plate boundary have been carried out using the 
finite element formulation and presented in this present work. Conclusions based on the results and 
discussions are summarized below. 
 The buckling and vibration behaviour for stiffened plates with cutout is more pronounced in 
comparison to the unstiffened plates. The cutouts have considerable influence on the buckling load parameter 
and vibration frequencies. Vibration frequencies increase with the increase of restraint at the edges. 
Vibration frequencies increase with the increase of the cutout size (g/a). A similar behaviour is also observed 
for higher modes of oscillation.  
 The vibration frequency parameter decreases with the increase of the load factor. The frequency 
parameter values increase with the increase of the cutout size. The rate of increase of frequencies also 
increases with the increase in the size of the hole.  
 The buckling load parameter of a stiffened plate with cutout reduces with an increase in the size of 
the cutouts. The stiffened plates are less susceptible to buckling under the localized loading near the ends of 
the loaded edges. As the load width increases, the edge restraint effect decreases and consequently the 
buckling load decreases. The effects of load width (c/b) on vibration frequencies for the simply supported 
end condition are not very appreciable. The frequency parameter decreases with the increase of P/Pcr and it 
becomes zero at critical buckling 
 Buckling and vibration behaviour of the stiffened plates with/ without cutout is greatly influenced by 
the stiffener parameters, the type and position of loads. So the designer has to be cautious while dealing with 
structures subjected to non-uniform loading. This can be used to the advantage of tailoring during design of 
stiffened plate structures. 
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Nomenclature 
 
 A S  – cross sectional area of the stiffener 

 a – plate dimension in longitudinal direction 
 b – plate dimension in the transverse direction 

 b s , d s  – web thickness and depth of an x-stiffener 

 [D P ] – rigidity matrix of plate 

 [D S ] – rigidity matrix of stiffener 

 d – cutout width 
 E, G – Young’s and shear moduli for the plate material 
 g – cutout length 
 g/d – cutout width ratio  

 SI  – moment of inertia of the stiffener cross-section about the reference axis 

 [K e ] – elastic stiffness matrix of plate 

 [K G ] – geometric stiffness matrix 

 [K S ] – elastic stiffness matrix of stiffener 

 
 ,p SM M    

– consistent mass matrix of plate, stiffener 

 [N] r  – matrix of a shape function of a node r 

 P cr  – critical buckling load 

 SP  – polar moment of inertia of the stiffener element 

 {q} r  – vector of nodal displacement a rth node 

 ST  – torsional constant 

 t – plate thickness 

  ,   – non –dimensional element coordinate 

   – Poisson’s ratio 

 
References 
 
Ali R. and Atwal S.J. (1980): Prediction of natural frequencies of rectangular plates with rectangular cutouts. – 

Computer and Structures, vol.12, pp.819-823. 

Corr R.B. and Jennings A.A. (1976): Simultaneous iteration for symmetric eigen value problem. – Int. Journal of 
Numerical Method Engng., vol.10, pp.647-663. 

Dickinson S.M. and Kalidas M.M. (1981): Vibration and buckling calculation for rectangular plates subjected to 
complicated in-plane stress distribution by using numerical integration in a Rayleigh- Ritz analysis. – Journal of 
Sound and Vibration, vol.75, pp.151-162. 

Deolasi P.K., Datta P.K. and Prabhakar D.L. (1995): Buckling and vibration of rectangular plates subjected to partial 
edge loading (Compression or tension). – Journal of Structural Engineering, vol.22, No.3, pp.135-144. 

Lam K.Y. and Hung K.C (1990): Vibration study on plates with stiffened openings using orthogonal polynomials and 
partitioning method. – Computer and Structures, vol.33, No.3, pp.295-301. 

Leggett D.M.A. (1937): The effect of two isolated forces on the elastic stability of a flat rectangular plate. –Proceeding 
of the Cambridge Philosophical Society, vol.33, pp.325-329. 

Mei C. and Yang T.Y. (1972): Free vibration of finite element plates subjected to complex middle plane force system. – 
Journal of Sound and Vibration, vol.23, No.2, pp.145-156. 



Dynamical analysis of stiffened plates under patch loading                                                                                        553 

 

Monahan I.J., Nemergut P.J. and Maddux G.E. (1970): Natural frequencies and mode shapes of plates with interior 
cutouts. – The Shock and Vibration Bulletin, vol.41, pp.37-49. 

Mukhopadhyay M. and Mukharjee (1990): A finite element buckling analysis of stiffened plates. – Computer and 
Structures, vol.34, No.6, pp.795-803. 

Mundkur G., Bhat R.B. and Neria S. (1994): Vibration of plates with cutouts using boundary characteristics orthogonal 
polynomial functions in the Rayleigh-Ritz method. – Journal of Sound and Vibration, vol.176, No.1, pp.136-144. 

Paramsivam P. and Sridhar Rao J.K. (1969): Free vibration of rectangular plates of abruptly varying stiffnesses. –
International Journal of Mechanical Sciences, vol.11, pp.885-895. 

Paramasivam P. (1973): Free vibration of square plate with square openings. – Journal of Sound and Vibration, vol.30, 
No.2, pp.173-178. 

Ritchie D. and Rhodes J. (1975): Buckling and post-buckling behaviour of plates with holes. – Aeronautical Quarterly, 
vol.24, pp.281-296. 

Shastry B.P. and Rao G.V. (1977): Vibration of thin rectangular plates with arbitrary oriented stiffeners. – Computer 
and Structures, vol.7, pp.627-629. 

Sivasubramonian B., Kulkarni A.M. and Rao G.V. (1997): A free vibration of curved panels with cutout. – Journal of 
Sound and Vibration, vol.20, No.2, pp.227-234.  

Srivastava A.K.L., Datta P.K. and Sheikh A.H. (2003): Vibration and dynamic instability of stiffened plates subjected to 
in-plane harmonic edge loading. – International Journal of Structural Stability and Dynamics, vol.2, No.2, pp.185-
206. 

Sundersasan P., Singh G. and Rao G.V. (1998): Buckling of moderately thick rectangular composite plates subjected to 
partial edge compression. – International Journal of Mechanical Sciences, vol.40, No.11, pp.1105-1117. 

Timoshenko S.P. and Gere J.M. (1963): Theory of Elastic stability. (Second edition). – New York: McGraw-Hill.  

Uenoya M. and Redwood R.G. (1986): Elastic-plastic shear buckling of square plates with circular holes. – Computer 
and Structures, vol.22, No.4, pp.589-594. 

Yamaki N. (1953): Buckling of rectangular plate under locally distributed forces applied on the two opposite edges. – 
Report of the institute of High Speed Mechanics, Tohoko University, Japan, 26: 71-87 and No 27: 89-98. 

 

 

Received: May 4, 2012 

Revised:   January 12, 2013 

 
 
 
 
 
 
 


