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In this paper, we study the onset of cellular convection in a horizontal fluid layer heated from below, with a 
free-slip boundary condition at the bottom when the driving mechanism is surface tension at the upper free 
surface, in the light of the modified analysis of Banerjee et al. (Jour. Math. & Phys. Sci., 1983, 17, 603). This 
leads to a formulation of the problem which depends upon whether the liquid layer is relatively hotter or cooler. It 
is found that the phenomenon of surface tension driven instability problems should not only depend upon the 
Marangoni number which is proportional to the maintained temperature differences across the layer but also upon 
another parameter that arises due to variation in the specific heat at constant volume on account of the variations 
in temperature. Numerical results are obtained for the problem wherein the lower free boundary is perfectly 
thermally conducting.  
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1. Introduction 

 
 The problem of the onset of convective instability in a thin layer of the fluid heated from below has 
its origin in the experimental observations of Bénard (1901). The mechanism of convective instability driven 
either by buoyancy arising due to expansion of a heated liquid or by surface tension variation with 
temperature has been the subject of a great deal of theoretical and experimental investigations since the 
pioneering works of Rayleigh (1916) and Pearson (1958). The mechanism associated with buoyancy is 
usually called the Rayleigh-Bénard instability since there appears a non-dimensional number R called the 
Rayleigh number and that associated with surface tension is called the Marangoni-Bénard instability since 
there appears a non-dimensional number M called the Marangoni number. Usually, in practice both 
buoyancy and surface tension are operative, therefore, Nield (1964) combined both mechanisms into a single 
analysis and found that as the depth of the layer decreases the surface tension mechanism becomes more 
dominant and when the depth of the layer is at most 0.1 cm the buoyancy effect can safely be neglected for 
most liquids. The pioneering works of Pearson and Nield have subsequently been extended and refined by 
many researchers (see for example, Vidal and Acrivos (1966), and Takashima (1970; 1981)). 
 In almost all these works pertaining to the Marangoni-Bénard instability, the treatments used are 
based on the classical Rayleigh’s theory and therefore, do not distinguish whether the layer of the liquid is 
hotter or cooler and predicts the same Marangoni number at the onset of instability in both the cases which is 
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contrary to physical intuition. More recently, Pearson’s problem of surface tension driven convection has 
been reformulated by Gupta and Shandil (2011b), which does significantly depend upon whether the liquid 
layer is hotter or cooler, using the modified analysis of Banerjee et al. (1983) given for the case of buoyancy 
driven convection.  
 In this paper, we study the onset of convection in a horizontal fluid layer heated from below, with 
free-slip boundary condition at the bottom when the driving mechanism is surface tension at the upper 
surface, in the light of the modified argument of Banerjee et al. (1983). It is found that the phenomenon of 
surface tension driven instability problems should not only depend upon the Marangoni number which is 
proportional to the maintained temperature differences across the layer but also upon another parameter that 
arises due to variation in the specific heat at constant volume on account of the variations in temperature. 
This application makes a provision in the theory so as to recognize the fact that a relatively hotter layer with 
its heat diffusivity apparently increased/decreased as a consequence of an actual decrease/increase 
(depending upon the liquid) in its specific heat at constant volume must exhibit convection of the type 
observed by Bénard at a higher/lower Marangoni number than a cooler layer under almost identical 
conditions otherwise.  
 
2. Formulation of the problem 

 
 We consider an infinite horizontal layer of a viscous fluid of uniform thickness d  at rest, whose 
lower surface is assumed to be free and perfectly heat conducting, and the upper one to be free and finitely 
conducting where surface tension gradients arise due to temperature perturbations. We choose a Cartesian 
coordinate  system of axes with the x and y axes in the plane of the lower surface and the  
z axis along the vertically upward direction so that the fluid is confined between the planes at z 0  and 
z d . A temperature gradient is maintained across the layer by maintaining the lower boundary at a constant 
temperature ( )0T 0  and the upper boundary at ( )1 0T T . It is assumed that surface tension is given by the 

simple linear law ( )1 1T T      where the constant 1  is the unperturbed value of   at the unperturbed 

surface temperature 1T T  and ( / )
1T TT     represents the rate of change of surface tension with 

temperature, evaluated at temperature 1T , and surface tension being a monotonically decreasing function of 

temperature,   is positive. 
 Following Banerjee et al. (1983), we can write the modified and linearized equations governing the 
small perturbations in the relevant context (neglecting buoyancy) as 
 

  

2 2w w 0
t

      
,          (2.1) 

 

  
( ) 2

2 01 T w
t

        
 (2.2) 

 
where w  and   denote, respectively, the z-component of velocity perturbation and temperature perturbation; 
  is the temperature gradient which is maintained;  is the kinematic viscosity;   is the thermal diffusivity 

and they are each assumed constant. Further, the coefficient 2  (due to variation in the specific heat at 

constant volume on account of variations in the temperature) is a constant that lies in the range of 410  to

410 ; 
2 2 2

2
2 2 2x y z

  
   

  
 and t denotes time.  

 It should be noted that equation of heat conduction differs from Pearson’s corresponding equation by 
the multiplication by the factor  2 01 T  on the left hand side as compared to 1. 
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 In seeking solutions of Eqs (2.1) and (2.2), we must satisfy certain boundary conditions, The 
boundary conditions at the lower free surface z = 0 are straightforward and given by 
 

  w 0 ,          (2.3) 
  

  

2

2

w
0

z





,          (2.4) 

 

  0            (2.5) 
 
 The boundary conditions at the upper free surface z = d are more complicated.  
 Because of the non-deflecting surface, the normal component of the velocity must vanish, that is, 
  

  w 0 . (2.6) 
 
 The stress-balance condition satisfies the equation 
  

  

2
2
12

w

z


   


 (2.7)  

 

here   is the density and 
2 2

2
1 2 2x y

 
  

 
. The boundary condition (2.7) is usually referred to as the 

Marangoni boundary condition. Finally, if we consider conservation of heat transport across the upper free 
surface, then we have 
 

  
k q

z


  

  
(2.8) 

 
where k  is the thermal conductivity of the fluid and q  is the heat transfer coefficient. 

  We now suppose that the perturbations w  and   are of the form 
 
  ( , , , ) ( )exp[ ( ) ]  x yw x y z t w z i a x a y pt , 

 

  
( , , , ) ( )exp[ ( ) ]   x yx y z t z i a x a y pt  

 

where 2 2
x ya a a   is the wave number of the disturbance and p is a time constant (which can be complex). 

We now introduce the non-dimensional quantities using , , 2d d d   and d    as the appropriate scales 

for length, velocity, time and temperature, respectively and putting ݖ∗ ൌ 	 ݖ ݀⁄ , ܽ∗ ൌ ∗݌ ,݀ܽ	 ൌ ଶ݀݌	 ⁄ߥ , 
∗ݓ ൌ ݀ݓ	 ⁄ߥ , θ∗ ൌ 	θκ β݀⁄ ν, and ܦ∗ ൌ 	݀ሺ݀ ⁄ݖ݀ ሻ. We now let x, y and z stand for co-ordinates in the new 
units and omitting the asterisk for simplicity, Eqs (2.1)-(2.2) and boundary conditions (2.3)-(2.8) can be 
reduced to the following non-dimensional form 
 

    2 2² ²   0D a D a p w    , (2.9) 

 

  
  rP  ( )2 2

2 0 2 0D a 1 T p 1 T w      , (2.10) 
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  ( )w 0 0 ,         (2.11) 

 

  ( )2D w 0 0      (2.12) 

 

  ( )0 0  , (2.13) 
 
evaluated on the lower free boundary z 0 , and 
  

  ( )w 1 0 ,        (2.14) 
 

   ( ) M ( )2 2D w 1 a 1   ,        (2.15) 
 
  ( ) L ( )D 1 1    ,        (2.16) 
 

evaluated on the upper free surface z 1 , where M
2d




 is the Marangoni number, rP





 is the Prandtl 

number and L
qd

k
  is the Biot number. 

           Gupta and Shandil (2011a) established numerically that the ‘principle of exchange of stabilities’ is valid 
for the present problem, the marginal state is, therefore, characterized by p 0  and Eqs (2.8) and (2.9) become 
 

   22 2D a w 0  ,       (2.17) 

 

     2 2
2 0D a 1 T w      .       (2.18) 

 
 A solution to Eqs (2.17)–(2.18) is sought subject to boundary conditions (2.11)–(2.16). Thus we have 
an eigenvalue problem. 
 
3. Solution of the problem 

 
 The solution of Eq.(2.17) subject to boundary conditions (2.11)-(2.12) and (2.14) is given by 
 

  

a a z a a z

a

C S zS C
w A

S

 
  

 
 (3.1) 

 
where sinhaS a , coshaC a , sinha zS az , cosha zC az

 
and A  is the constant of integration. 

 The solution of Eq.(2.18), using the expression (3.1) for w and boundary conditions (2.13) and (2.16) 
is given by 
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 (3.2) 
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 Now substitution from Eqs (3.1) and (3.2) into the remaining boundary condition (2.15) yields 
finally the neutral stability condition 
 

  
 

 
 

L
M

( )

2
a a a

3 2
2 0 a a a

8aS aC S1

1 T C aS 2a 1 C
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      

.

 

      (3.3)

 

 
4. Numerical results and discussion 

 
 Since some of the algebraic manipulations involved are rather lengthy a symbolic algebra package is 
used to compute the minimum values of the Marangoni number M with respect to the wave number a  for 
fixed values of the parameters 2 0T  and L, using relation (3.3). The critical Marangoni number cM  and the 

corresponding wave number ca  for various values (which cover usual laboratory conditions) of the 

parameter 2 0T  when L = 0, 2, 4 and 6 are presented in Tab.1. It is found that, for a given value of L, an 

increase in the value of 2 0T  leads to an increased value of cM  if 2  is positive and a decrease in the value 

of 2 0T  leads to a decreased value of cM  if 2  is negative.  
 
Table 1. The numerical values of cM  and ca  for various values of 2 0T  and L. 

 

α2T0 

L = 0 L = 2 L = 4 L = 6 

Mc ac Mc ac Mc ac Mc ac

-0.9 30.3148 1.7003 61.4274 2.0244 91.0147 2.1524 120.168 2.2247 

-0.7 33.8812 1.7003 68.6542 2.0244 101.722 2.1524 134.306 2.2247 

-0.5 38.3987 1.7003 77.808 2.0244 115.285 2.1524 152.213 2.2247 

-0.2 47.9984 1.7003 97.2601 2.0244 144.107 2.1524 190.267 2.2247 

0 57.598 1.7003 116.712 2.0244 172.928 2.1524 228.32 2.2247 

0.2 71.9976 1.7003 145.89 2.0244 216.16 2.1524 285.4 2.2247 

0.5 115.196 1.7003 233.424 2.0244 345.856 2.1524 456.64 2.2247 

0.7 191.993 1.7003 389.04 2.0244 576.426 2.1524 761.066 2.2247 

0.9 575.98 1.7003 1167.12 2.0244 1729.28 2.1524 2283.2 2.2247 

 
   The value of the critical wave number ca  remains unchanged for various values of 2 0T . The values 

of Mc and the corresponding wave number ac when 2 0T  = 0 agree with the values obtained by Boeck and 

Thess (1997) for the corresponding given values of L . In particular, for L = 0 we have cM  = 57.598 and ca  

= 1.7003 to be compared with Mc = 79.607 and ca  = 1.993 as obtained by Pearson (1958) for the conducting 
case of the lower rigid boundary. The higher value of the critical Marangoni number in the conducting case 
of lower rigid boundary is due to the stabilizing effect of friction at the bottom, which is also known from 
buoyancy driven Rayleigh-Bénard convection (Chandrashekhar, 1961).  
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 As L increases, the critical Marangoni number Mc as well as the corresponding wave number ac 
increase. In the limit L → ∞ we find that Mc becomes asymptotically proportional to L while  

ca  → amax ≈ 2.5054 remains finite. The value of Mc as a function of 2 0T  in this limit ( L  → ∞) can easily 

be obtained by inserting amax and the value of 2 0T  into Eq.(3.3).  
 

                     
 
        Fig.1a. Neutral stability cuwes for various               Fig.1b. Neutral stability cuwes for various 
                   values of 2 0T  when L=0.                                       values of 2 0T  when L=2. 
 

                     
 
        Fig.1c. Neutral stability cuwes for various               Fig.1b. Neutral stability cuwes for various 
                   values of 2 0T  when L=4.                                       values of 2 0T  when L=6. 
 
 The relation (3.3) is plotted in Figs 1a-d, as the neutral stability curves for L = 0, 2, 4 and 6 
respectively, for various values of 2 0T . For any given value of L, the instability threshold is given by the 
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minimum of M with respect to a for various values of 2 0T . We observe from Figs 1a-d that the critical 
Marangoni number does significantly depend upon whether the liquid layer is relatively hotter or cooler, and 
the hotter the liquid layer the more the onset of instability is postponed provided α₂ is positive, and for the 
liquid layer for which α₂ is negative the onset of instability would be preponed for the hotter layer. In other 
words, for a fixed value of L, the onset of instability is preponed or postponed for a cooler layer than for a 
relatively hotter layer of the same liquid for α₂ > 0 or α₂ < 0.  
 The wave number ac remains unchanged for various values of 2 0T  as shown in Fig.2.  
 

 
 

Fig.2. Wave number ac as a function of 2 0T  when L = 0, 2, 4 and 6. 
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Nomenclature 
 

 
2 2
x ya a   – resultant wave number 

 d  – depth of the liquid layer in the unperturbed state 
 k   – thermal conductivity 
 q   –  heat transfer coefficient between the upper free surface and the air phase 
 T0  – temperature of the lower boundary surface 
 T1   – temperature of the upper boundary surface 
 w   – z-component of velocity perturbation 

 2    – the coefficient of variation of specific heat at constant volume 

     – z-component of temperature perturbation 

     – thermal diffusivity 

   – kinematic viscosity 

    – density 

     – rate of change of surface tension with temperature  
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