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The present investigation deals with the reflection of plane periodic waves incident at the surface of a 
homogeneous initially stressed transversely isotropic fibrereinforced thermoelastic medium. The wave equations 
are solved by imposing proper conditions on displacements, stresses and temperature distribution. Numerically 
simulated results have been depicted graphically for different angles of incidence with respect to frequency. Some 
special cases of interest have also been deduced from the present investigation. 
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1. Introduction 
 
 The influence of pre-existing stress on elasticity of solids referred as initial stress and strain or 
external stress is quite an important subject and has been investigated by a number of researchers. The 
propagation of elastic waves of a fiber-reinforced medium plays a great role in the practical problems of civil 
engineering and geophysics. The effects of earthquakes on artificial structures near the surface of the earth is 
also of prime importance. A structure is excited during an earthquake and similar disturbances, which may 
cause more or less violent vibrations. These vibrations depend on the ground vibration as well as on the 
physical properties of the structures (Richter, 1958). Most concrete constructions on or near the surface of 
the earth include steel reinforcing. The characteristic property of a reinforced concrete member is that its 
components, namely concrete and steel, act together as a single anisotropic unit as long as they remain in the 
elastic condition, i.e., the components are bound together without relative displacement. However, due to the 
mismatch of material properties, there exists a residual stress during the manufacture process of fiber-
reinforced material. On the contrary, to prevent the fiber-reinforced material from brittel fracture, the layered 
structure is usually pre-stressed during the manufacture process. During the last five decades considerable 
attention has been directed towards this phenomenon. Biot (1965) in his work depicted the difference 
between the acoustic propagation under initial stress and in stress free state. 
 Acharya and Roy (2008) discussed the propagation of plane waves and their reflection at the 
free/rigid boundary of a fiber-reinforced magnetoelastic semispace. The influence of rotation, magnetic field, 
initial stress and gravity on Rayleigh waves in a homogeneous orthotropic elastic medium was investigated 
by Abd- Alla et al. (2010). However, to the author’s knowledge, no work has been carried out so far to 
discuss the reflection of waves in an initially stressed transversely isotropic fiber-reinforced thermoelastic 
������������������������������������������������������������
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half space. In this article, we will analytically investigate the reflection of waves in an initially stressed 
transversely isotropic fibre-reinforced thermoelastic medium. The propagation of waves in such materials 
has many application in various fields of science and technology, namely, atomic physics, industrial 
engineering, thermal power plants, submarine structures, pressure vessel, aerospace, chemical pipes and 
metallurgy. A graphical representation is given for amplitude ratios of various reflected waves for different 
incident waves at different angles of incidence, i.e., for � = 30o,45o. 
 
2. Basic equations  
 
 The linear equations governing thermoelastic interactions in a homogeneous transversely isotropic 
initially stressed fibre-reinforced thermoelastic solid are 
 
Constitutive relations Following Belfield et al. (1983) 
 

  

� �
� �� � � � .
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 The deformation tensor is defined by 
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Balance law: The balance laws for initially stressed fiber-reinforced linearly elastic medium whose preferred 

direction is that of a are (Spencer, 1972; Dhaliwal and Sherief, 1980; Montanaro, 1999) 
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Equation of heat conduction: Following Lord and Shulman (1967) 
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 (2.3) 
 
 

where 
  is the mass density, ijt  are components of stress, iu  the mechanical displacement, ije
 are 

components of infinitesimal strain, 11P t�  is the normal initial stress, � �, , ,ij j i i ju u 2� � 
 T the temperature 

change of a material particle, 0T  the reference uniform temperature of the body, ijK  the heat conduction 

tensor, ij�  the thermal elastic coupling tensor, *c  the specific heat at constant strain, ja  are components of 
a, all referred to Cartesian coordinates. The vector a may be a function of position. The coefficients 

, , ,L T� � � 	  and �  are elastic constants with the dimension of stress. We choose a (Belfield et al., 1983) so 
that its components are (1, 0, 0). The comma notation is used for spatial derivatives and a superimposed dot 
represents time differentiation.  
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3. Problem formulation 
 
 Following Slaughter (2002) appropriate transformations have been used on the set of Eq.(2.1), for 
deriving the equations for a transversely isotropic medium our analysis is restricted to the two dimensional 
problem. 
 In the present paper, we take the origin of the coordinate system � �, ,1 2 3x x x  at the free surface of the 
half space. The 1 2x x
 plane is chosen to coincide with the free surface and 3x  axis pointing normally into 
the half-space, which is thus represented by 3x 0� . We consider plane waves in plane such that all particles 
on a line parallel to the 2x -axis are equally displaced. Therefore, all the field quantities will be independent 
of 2x  coordinate. So, we assume the components of the displacement vector of the form  
 

  � �, ,1 2u u 0�u ,                                                                               (3.1) 
 
and assume that the solutions are explicitly independent of 3x , i.e., / 3x 0� � � . Thus the field equations and 
constitutive relations for such a medium reduces to 
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where � � � �, , ,1 11 13 1 13 2 2 33 13 55 1 33 2 11 L Tc c c c c c c c 2 4 2� � � 	 � 	 � � � 
 	 � 	 � � � 	 � � 
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  and , , , ,L T� 	 � � �  are material 
constants, ,1 2K K  are coefficients of thermal conductivity, o�  is thermal relaxation time, ,1 2u u  are the 
components of the displacement vector.  
 For further considerations, it is convenient to introduce the non-dimensional quantities defined by 
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4. Solution of the problem 
 
 Let � �, ,1 2p p 0�p  denote the unit propagation vector, c and k are respectively the phase velocity 
and the wave number of the plane waves propagating in the 1 2x x -plane. We seek a plane wave solution of 
the equations of motion of the form 
 

  � � � � � �, , , , 1 1 2 2i p x p x ct
1 2 1 2u u T u u T e � � 
� .                       (4.1)  

 
 With the help of Eqs (2.9) and (3.1) in Eqs (2.5)-(2.8), we get four homogeneous equations with four 
unknowns. Solving the resultant system of equations for non-trivial solution, we obtain 
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 The roots of this equation give three values of c2. Three positive values of c will be the velocities of 
propagation of three possible waves. The waves with velocities c1, c2, and c3 correspond to three types of 
quasi waves. Let us name these waves as quasi-longitudinal displacement (qLD) wave, quasi transverse 
displacement wave (qTD) and quasi thermal (qT) wave. 
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5. Reflection of waves 
 
 We consider a homogeneous initially stressed transversely isotropic fibre-reinforced thermoelastic 
half-space occupying the region 2x 0� . The incident qLD or qT or qTD wave at the interface will generate 
reflected qLD, qT and qTD waves in the half space 2x 0� . The total displacements and temperature 
distribution are given by  
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�  is the angular frequency. Here subscripts 1,2,3 respectively denote the quantities corresponding to the 
incident qLD, qT and qTD wave whereas the subscripts 4,5 and 6 respectively denote the corresponding 
reflected waves and  
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 For the incident qLD-wave: sin , cos ,1 1 2 1p e p e� � ; qT-wave: sin , cos ,1 2 2 2p e p e� �  qTD-wave: 

sin , cos ,1 3 2 3p e p e� �  For the reflected qLD-wave: sin , cos ,1 4 2 4p e p e� � ; qT-wave: 

sin , cos ,1 5 2 5p e p e� �  qTD-wave: sin , cos1 6 2 6p e p e� � . 
 Here e1 = e4, e2 = e5 and e3 = e6, i.e., the angle of incidence is equal to the angle of reflection in the 
generalized thermoelastic transversely isotropic medium, so that the velocities of reflected waves are equal to 
their corresponding to incident waves i.e., c1 = c4, c2 = c5 and c3 = c6. 
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6. Boundary conditions 
 
 The boundary conditions are given by 
 

  
, ,22 21

2

Tt 0 t 0 hT 0
x
�

� � � �
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(6.1) 

 
where h is the surface heat transfer coefficient; 
h � 0 corresponds to thermally insulated boundaries and 
h � � refers to isothermal boundaries. 
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 The wave numbers , , ,.....j j 1 2 6� �  and the apparent velocity , , ,.....jc j 1 2 6�  are connected by the 
relation  
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at the surface 3x 0� . Relation (6.2) may also be written in order to satisfy the boundary conditions (6.1) as 
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 Making use of Eqs (3.4), (4.1), (6.2) and (6.3) into thermally insulated boundary conditions (6.1), we 
obtain  
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Incident qLD-wave 
 
 In the case of incident qLD- wave, 2 3A A 0� � . Dividing the set of Eq.(6.5) throughout by 1A , we 
obtain a system of three non-homogeneous equations with three unknowns which can be solved by Gauss 
elimination method and we have  
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Incident qT-wave 
 
 In the case of the incident qT- wave, 1 2A A 0� � and thus we have 
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Incident qTD-wave 
 
 In the case of the incident qTD- wave, 1 2A A 0� �  and thus we have 
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7. Numerical results and discussion 
 
 In order to illustrate the theoretical results obtained in the preceding sections, we now present some 
numerical results. For the purpose of numerical computations, we have used Matlab’s Programming. The 
following relevant physical constants are taken (Singh, 2006) for a fiber-reinforced transversely isotropic 
material, 
 
       . / , . / , . / , . / ,3 3 10 2 10 2 10 2

T L2 66 10 Kg m 5 65 10 N m 2 46 10 N m 5 66 10 N m
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	 � 
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      . deg , . deg , . deg ,3 1 1 1 4 1 4 1

2 1 2K 0963 10 Jm s 017 10 015 10
 
 
 
 
� ' 	 � ' 	 � '  
 
       * . deg , , , . ,3 1 1 1

0 0c 0 787 10 J Kg T 293K P 100 05 s 2 s
 
 
� ' � � � � �� . 
 

 A graphical representation is given for the variations of amplitude ratios of reflected qLD, qTD and qT 
waves when three types of waves, viz., qLD, qTD and qT waves are incident at the free surface to compare the 
results in two cases, one for the waves incident from initially stressed fiber- reinforced thermoelastic 
transversely isotropic (ISFRTIT) and other from initially stressed fiber-reinforced thermoelastic isotropic 
(ISFRIT). In Figs 1-3, a graphical representation is given for variations of amplitude ratios |Z1|, |Z2| and |Z3| in 
the case of the incident qLD wave. Figures 4-6 and 7-9, respectively show the same cases when qTD and qT 
waves are incident. Here |Z1|, |Z2| and |Z3| are, respectively, the amplitude ratios of reflected qLD, qTD and 
qT waves. These variations are shown for two angles of incidence, viz., � = 30o, 45o. In these figures the solid 
curves correspond to the case of ISFRTIT, while broken curves correspond to the case of ISFRIT. Also, the 
curves without a center symbol correspond to the case, when � = 30o and curves with a center symbol (�o � 
o�) represent the variation corresponding to the case of � = 45o. 
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Fig.1. Amplitude ratio 1Z  when qLT wave is incident. 
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Fig.2. Amplitude ratio 2Z  when qLT wave is incident. 
 

 
 

Fig.3. Amplitude ratio 3Z  when qLT wave is incident. 
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Incident qLD � wave 
 
 It is evident from Figs 1 and 2 that the amplitude ratios |Z1| and |Z2| of the reflected qLD and qTD 
wave, for � = 30o and for both ISFRTIT and ISFRIT, first oscillate within the interval (0,2), then sharply 
increase to attain a maximum value up to � = 20, then become constant for ISFRTIT and decrease to become 
constant for ISFRIT. Similar variations are depicted for � = 45o but with a difference in their amplitudes. 
Figure 3 indicates the variation of the amplitude ratio |Z3| of reflected qT-waves, which shows that for the 
case of ISFRTIT and ISFRIT, its value shows the similar variations as those depicted in the case of |Z1|, with 
difference in their initial region of oscillation. In the present case for � = 30o its value strictly increases with 
an increase in frequency up to � = 20. The variations are almost similar for � = 45o except with difference in 
their amplitudes. 
 
Incident qTD � wave 
 
 The variation in the amplitude ratio of the reflected wave for incident qTD wave is shown in Figs 4-
6. It is follows from these figures that the value of amplitude ratio of |Z1| starts with initial oscillation within 
the interval (0, 10) and then becomes constant. 
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Fig.4. Amplitude ratio 1Z  when qTD wave is incident. 
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Fig.5. Amplitude ratio 2Z  when qTD wave is incident. 
 

 
 

Fig.6. Amplitude ratio 3Z  when qTD wave is incident. 
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Incident qT � wave 
 
 Figures 7-9 illustrates the variations of amplitude ratios of Zi, i = 1, 2, 3, with frequency. It can be 
seen from these figures that the variation pattern of the amplitudes is almost similar with a difference in their 
peak values. Their values show a hump within an interval and after that they tend to attain a constant value. 
The amplitude ratio of the first wave gets increased due to anisotropy, while for the remaining two waves, its 
value gets decreased. It is also seen from the graphs that at � = 30o and ISFRTIT the values of amplitude 
ratios of Zi, i = 1, 2, 3, initially oscillate with small amplitude and then flatten to become constant. The value 
of amplitude ratio Z1 becomes increased with an increase in the angle � for both the cases of ISFRTIT and 
ISFRIT. 
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Fig.7. Amplitude ratio 1Z  when qT wave is incident. 
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Fig.8. Amplitude ratio 2Z  when qT wave is incident. 
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Fig.9. Amplitude ratio 3Z  when qT wave is incident. 
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8. Conclusion 
 
 The importance of thermal stresses in causing structural damages and changes in functioning of the 
structure is well recognized whenever thermal stress environments are involved. Plane wave reflection from 
the free surface of initially stressed transversely isotropic fiber-reinforced thermoelastic medium has been 
discussed. An appreciable effect of anisotropy and angle of incidence is observed on amplitude ratios of 
various reflected waves. It is concluded from the graphs that the values of amplitude ratios |Z1| and |Z2| get 
decreased due to an increase in anisotropy for both the angle of oscillation, while the reverse behavior is 
observed for the amplitude ratio |Z3|. 
 
Nomenclature 
 

 ja
 

– components of a, all referred to Cartesian coordinates 

 
*c  – specific heat at constant strain 

 ije
 

– components of infinitesimal strain 

 ijK
 

– heat conduction tensor 

 11P t�
  

– the normal initial stress 

 0T  – reference uniform temperature of the body 

 ijt
 

– components of stress 

 iu  – mechanical displacement 

 ij�
 

– thermal elastic coupling tensor 

 
  – mass density 

 � �, ,ij j i i ju u 2� � 
 , T – temperature change of a material particle 
 
The vector a may be a function of position.  
Coefficients , , ,L T� � � 	  and �  are elastic constants with the dimension of stress.  
a is choosen in a way so that its components are (1, 0, 0).  
The comma notation is used for spatial derivatives and a superimposed dot represents time differentiation.  
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