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An unsteady flow formation in Couette motion of an electrically conducting fluid subject to transverse 
magnetic field has been analyzed in the presence of suction/injection through the porous plates when one of the 
porous plates is in ramped motion. It is assumed that the porous plates are uniformly permeable and the fluid is 
entering the flow region through one of the porous plates at same rate as it is leaving through the other porous 
plate. The resulting boundary value problem has been solved exactly under the assumption of a negligible 
induced magnetic field, external electric field and pressure gradient. Unified closed form expressions for the 
velocity field and skin-friction corresponding to the case of a magnetic field fixed relative to the fluid or to the 
moving porous plate have been presented. In order to highlight the impact of the ramp motion of the porous plate 
on the fluid flow, it has also been compared with Couette flow between porous plates when one of the porous 
plates has been set into an impulsive motion. 
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1. Introduction 
 
 The study of the effects of a magnetic field on the laminar flow of an incompressible electrically 
conducting fluid in a channel is an important problem with applications to many engineering problems. 
These applications abide in areas such as MHD power generators, MHD pumps, aerodynamic heating, 
nuclear reactor cooling, etc. Such problems have engaged the attention of several researchers. Hartmann 
(1937) studied the influence of a transverse, uniform, magnetic field on the flow of a conducting fluid 
between two infinite parallel plates. Since then a lot of research work concerning the Hartmann flow has 
been done under different physical situations (Schlichting and Gerstein, 2000; White, 1991; Panton, 1996; 
Longwell, 1966; Katagiri, 1962; Singh and Kumar, 1983).  
 Shalybkov (2006) discussed the stability of the hydrodynamic and hydromagnetic Couette flow. A 
detailed study of the effects of rotation and the magnetic field on an unsteady MHD Couette flow was carried 
out by Chandran et al. (1993), Guria et al. (2006) and Singh et al. (1994). This work is further extended by 
Jha and Apere (2010), taking into account the additional effects of Hall current and ion slip. A theoretical 
analysis of an unsteady MHD flow through and bounded by two parallel porous plates the lower plate being 
stationary and the other moving in its own plane is presented by Hassanien and Mansour (1990). In all the 
above discussed works, flow formation is due to impulsive/ accelerated motion of the plate. Recently, Jha 
and Jibril (2012) investigated the effects of transpiration on the MHD Flow near a porous plate having 
ramped motion. He observed among others that the impact of the magnetic field is to increase the velocity 
when the magnetic field is fixed with respect to the moving porous plate, which is the reverse when it is 
fixed with respect to the fluid. The objective of the present work is to study the unsteady hydromagnetic 
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Couette flow between two parallel porous plates due to ramped motion of one of the porous plates. It is 
assumed that both plates are uniformly permeable and that the fluid enters and leaves the porous plates at the 
same constant rate. 
 
2.  Governing equations and solutions 
 
 The physical configuration of the flow is shown in Fig.1 in which we considered the motion of a 
viscous, incompressible and electrically conducting fluid between two infinite parallel porous plates due to 
the ramped motion of the lower plate. 
 

 
 

Fig.1. Flow configuration. 
 
 The x -axis is chosen along the lower plate in the horizontal direction and the y  -axis normal to it. 

The fluid flows between the two porous plates in the x -direction in the presence of a uniform magnetic field 
acting normal to the flow direction. At time t ≤ 0, the fluid, the porous plates and the magnetic lines of force 
are assumed to be at rest. At time t >0 the porous plates begins to move in its own plane with a velocity 

proportional to  0U f t . A uniform magnetic field of strength 0B  is acting perpendicular to the porous 

plates. The magnetic Reynolds number of the flow is assumed to be small enough so that the induced 
magnetic field can be neglected. The flow is assumed to be in the x  direction along the porous plate and the 
y   axis is normal to the porous plate. Since the porous plates are infinite in extent all physical variables are 

functions of a y   and t   only. 
 The momentum equation for this investigation based on the above physical conditions is 
 

  

.
22

0
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Bu u u
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(2.1) 

 

 Equation (2.1) is valid when the magnetic lines of force are fixed relative to the fluid. If the magnetic 

field is also in ramp motion with the same velocity as the porous plate the relative motion must be accounted 

for. In this case Eq.(2.1) is replaced by Chandran et al. (1993) 
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which is valid when the magnetic lines of force are fixed relative to the moving porous plate. 
 Equations (2.1) and (2.2) can be combined together to obtain 
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  (2.3) 

 
where  
 

  

  if the magnetic field is fixed relative to the fluid

  if the magnetic field is fixed relative to the plate

0
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
 
  

 
 The initial and boundary conditions are 
 

  : , for ,t 0 u 0 0 y d       
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 (2.4) 

 
 Introducing the non-dimensionless quantities 
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where all the physical quantities are defined in the nomenclature, the momentum Eq.(2.3) becomes 
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 (2.5) 

 
 The initial and boundary conditions Eq.(2.4) in the dimensionless form for the physical system 
considered in the present study are 
 
For   ,       for all  ,t 0 u 0 y 0    
 

  t >0, 
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       at  .

u f t y 0

u 0 y h
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  (2.6) 

 

 In the present work  f t  is specified as the ramp function 
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 Equation (2.7) can be written as 
 

  
       .

.0 0
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f t H t t t H t t

t t
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  (2.8) 

 
 The solution of the partial differential Eq.(2.5) subject to conditions (2.6) is attempted by the 
operational method of Laplace transformation, (Carslaw and Jaeger, 1963). Let  
 

  
       , , , exp ,
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be the Laplace transform of  ,u y t , then Eqs (2.5), (2.6) and (2.7) reduce to 

 

  
   M M ,

2
2 2

2

d u du
S s u K f s

dydy
       (2.10) 
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 The solution of Eq.(2.10), under the conditions (2.11) and (2.12), is 
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where 
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 In Eq.(2.13), the summation term is due to expansion of the term  . Exp
1

21 2h C s


     
 by 

Binomial theorem. 
 The exact solution for velocity field can be obtained from Eq.(2.13), by taking the inverse transforms 
(Abramowitz and Stegun, 1965; Carslaw and Jaeger, 1963). After detailed simplifications and shifting on the 
t -axis, the solution can be expressed as 
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 Using the expression (2.14), the frictional forces acting at the lower and upper plates are 
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2

      
   

           

(2.16)

 

  

 
   

     

Sh
; ; : Exp ; ; ;

M
; ; : ; ; ; ; ; :

4 1 0 2 3 0

02

4 3 0 2 4 0 4 4 0

S
2F c C t t F c C t t

2 2K
H t t

S
F c C t t F c C t t F c C t t

2

      
    

           

  

 
Sh

; ; : . Exp ; ; ; .
Exp M

M
; ; : . ; ; ; . ; ; : .

2 4 1 2 3

2

4 3 2 4 4 4

S S S
2F c t 0 0 F c t 0 0

K t 2 2 2 2

S S S S
F c t 0 0 F c t 0 0 F c t 0 0

2 2 2 2

                                               
 

   
  

 

Sh
; ; ; Exp ; ; ;

Exp M

M
; ; : ; ; ; ; ; :

2 4 1 0 2 3 0
0

02

4 3 0 2 4 0 4 4 0

S S S
2F c t t F c t t

K t t 2 2 2 2
H t t

S S S S
F c t t F c t t F c t t

2 2 2 2

                                                   

 

 
where 
 

  , , ,1 2 3b 2mh b 2mh 2h b 2mh h      
   (2.17) 

  , , .1 3 4c 2mh h c 2mh 2h c 2mh        
 
Special case: Impulsive motion of one of the porous plates 
 

 For 0t 0 , the expression (2.14) reduces to  



1046  B.K.Jha and H.M.Jibril 

  
       , Exp . ; ; ; . ; ; ; ;2 1 2 2

m 0

Sy
u y t 1 K F a C t 0 0 F a C t 0 0

2





           
  

   Exp M ; ; ; . ; ; ; .2
2 1 2 2

S S
K t F a t 0 0 F a t 0 0

2 2

                 

  +    Sh
Exp ; ; ; . ; ; ; .2 3 2 4K F a c t 0 0 F a c t 0 0

2
           

(2.18) 

  +  Sh
Exp Exp M ; ; ; . ; ; ; .

1

2
2 3 2 4

S S
K t F a t 0 0 F a t 0 0

2 2 2

                     
 

  +  Exp M ,2K t      

 
and the skin friction at the lower and upper plates is, respectively 
 

  
0

y 0

u

y 


   


 

  
     . ; ; ; . ; ; ; ;

12 1 2 2
m 0

S
1 K F b C t 0 0 F b C t 0 0

2





        


 

   Exp M ; ; ; . ; ; ; .2
2 1 2 2

S S
K t F b t 0 0 F b t 0 0

2 2

                 
(2.19)

 
  +      . ; ; ; . ; ; ; ;

2 44 1 21 K F b C t 0 0 F b C t 0 0       

  
 Exp M ; ; ; . ; ; ; .2

4 1 4 2
S S

K t F b t 0 0 F b t 0 0
2 2

                 

  +    Sh Sh
Exp ; ; ; . Exp Exp M ; ; ; . ,

1

2
4 3 4 3

S
2K F b c t 0 0 2K t F b t 0 0

2 2 2

                          

  
  

  
h

y h

u

y 


   


 

  
   Sh Sh

Exp Exp ; ; ; . ; ; ; ;2 3 2 4
m 0

S
K F C C t 0 0 F C C t 0 0

2 2 2





                  


 

   Exp M ; ; ; . ; ; ; .2
2 3 2 4

S S
K t F C t 0 0 F C t 0 0

2 2

                 

  +  Sh
( )Exp ; ; ; .4 12 1 K F c c t 0 0

2
        

 (2.20)
 

  
     Exp M ; ; ; . ; ; ; . ; ; ; .2

4 1 4 3 4 4
S

2K t F C t 0 0 K F c c t 0 0 F c c t 0 0
2

                

  
 Exp M ; ; ; . ; ; ; . .2

4 3 4 4
S S

K t F c t 0 0 F C t 0 0
2 2

                  
 
 The functional , ,  and 1 2 3 4F F F F  used in the above equations are defined as 
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 

   

; ; ;

.
Exp . Erfc

. .

1 1 2 3 4

1 1
1 2 2 3 4 3 4

23 4

F X X X X

X X1
X X X X X X X

2 2 X2 X X



    
              

  

   Exp . Erfc ,
.

1 1
1 2 2 3 4 3 4

23 4

X X
X X X X X X X

2 X2 X X

   
               

(2.21) 

 

  

   .
; ; ; Exp Erfc

.
1

2 1 2 3 4 1 2 2 3 4
3 4

X1
F X X X X X X X X X

2 2 X X

  
          

(2.22)

 

  

 Exp Erfc ,1
1 2 2 3 4

3 4

X
X X X X X

2 X X

 
          

 

  

      
 

Exp
; ; Erfc ,

2
1 2 3

3 1 2 3 1 1 1 2 3
2 3

X X X
F X X X X X X X X

X X

  
    
     

 (2.23) 

 

  

        ; ; Exp2 3 2
4 1 2 3 1 2 3 1 2 3

1

X X1
F X X X X X X X X X

2X

  
            

(2.24) 

  

      Exp2 3 2
1 2 3 1 2 3

1

X X1
X X X X X X

2X

   
                

 
where Erfc  is the complementary error function defined as 
 

  

   Erfc Exp .22
X dX





  
 

                                                                        

(2.25) 

 
3. Steady state solution 
 
 As time increases, the response of the velocity with respect to time becomes insignificant. This 
implies that the flow velocity has attained its steady state value at that time. In this case the expression for 

velocity distribution of the problem at this state can be obtained by setting 
u

0
t





 in Eq.(2.5). This reduces 

the equation to 
 

  
M M .

2
2 2

2

d u du
S u K

dydy
      (3.1) 
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 Equation (3.1) is solved under the boundary conditions 
 

  

at ,

at .

u 1 y 0

u 0 y h

 

 

  (3.2) 

 
 The solution of Eq.(3.1) subject to the boundary conditions (3.2) is expressed as 
 

  

Sh
exp ( )sinh( ( )) exp exp sinh( )

sinh( ) sinh( )

Sy Sy
1 K C h y Cy

2 2 2
u K 1

Ch Ch

                      
 
  

  (3.3) 

 

where   C= M .
2

2

4


   (3.4) 

 
 Using expression (3.3), the frictional forces at the lower and upper porous plates are 
 

  
0

y 0

du

dy 

  =
 

sinh( ) cosh( )
sinh( )

1 K S
Ch C CH

Ch 2

     

Sh
exp

,
sinh( )

KC
2

Ch

  
    (3.5)

 
 

  
h

y h

du

dy 

  =
     Sh

exp cosh .
sinh

C S
K 1 K Ch K

Ch 2 2

        
  (3.6)

 
 
4. Results and discussions 
 
 In order to illustrate the effects of the controlling parameters, such as the Hartmann number, the 
suction/injection parameter, the velocity and skin friction where computed taking the value of 0t 2  and 

.h 1 0 . The results are illustrated in Figs 2 to 11. 
 Figure 2 shows the variation of the velocity due to the ramp motion of the moving porous plate for 
different values of the suction/injection parameter S when the magnetic lines of force are fixed relative to the 
moving porous plate or fluid for a fixed value of the magnetic field M . It is seen from this figure that the 
velocity increases in the presence of the injection parameter and decreases with suction at the porous moving 
plate, whether the magnetic lines of force are fixed with respect to the fluid or moving porous plate. It also 
shows that velocity is higher when the magnetic lines of force are fixed relative to the moving porous plate 
than when fixed relative to the fluid in the presence of suction or injection.  
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Fig.2. Variation of velocity for different values of S. 
 
 The variation of velocity due to the ramp motion of the porous moving plate for different values of 
time for a fixed magnetic field M with injection and suction when the magnetic lines of force are fixed 
relative to the fluid or moving porous plate is depicted in Figs 3 and 4, respectively. 
 

 
 

 
Fig.3. Variation of velocity for different values of t and K. 

t0=2.0, h=1.0 
 
M=0.5 

t0=2.0, h=1.0 
 
S=5.0 
 

M=0.5 
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Fig.4. Variation of velocity for different time t and K. 
 
 From these figures it is evident that velocity increases with an increase in time for a fixed value of 
the suction/injection parameter. 
 These figures also reveal that velocity is higher when the magnetic lines of force are fixed with 
respect to the moving porous plate than when fixed relative to the fluid. 
 Figure 5 presents the development of velocity due to the ramp motion of the moving porous plate for 
different time t and S , when the magnetic field lines are fixed relative to the fluid or moving porous plate 
for a fixed value of the Hartmann number M . This velocity profile shows under mass suction or injection 
velocity increases with an increase in time, whether the magnetic lines of force are fixed relative to the fluid 

 K 0  or moving porous plate  K 1 . Furthermore it is seen that velocity is higher when the magnetic 

lines of force are fixed relative to the moving porous plate than when fixed relative to the fluid whether there 
is injection or suction at the moving porous plate. 
 Figures 6 and 7 illustrate velocity variation due to the ramp and impulsive motion of the porous plate 
for different values of time, and the injection/suction parameter, for fixed M  for .K 0 0  and .K 1 0 , 
respectively. From these figures it is observed that when the magnetic lines of force are fixed relative to the 
fluid  .K 0 0 or relative to the moving porous plate  .K 1 0  velocity increases with an increase in time, in 

the presence of mass injection or suction, due to the ramp or impulsive motion of the porous plate. These 
figures also show that injection increases the velocity while suction reduces it. It is also evident that the 
velocity due to the impulsive motion is higher than the velocity due to the ramp motion when the magnetic 
lines of force are fixed with respect to the moving porous plate of fluid. 
 

t0=2.0, h=1.0 
 
S=-5.0 
 

M=0.5 
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Fig.5. Variation of velocity for different S and t. 
 
 

 
 

Fig.6. Variation of velocity for different S and t. 

t0=2.0, h=1.0 
 
M=0.5 

t0=2.0, h=1.0 
M=0.5 
K=0.0 
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Fig.7. Variation of velocity for different S and t. 
 

 The variation of the skin friction at the lower and upper porous plate for different values of the 
injection/suction parameter for a fixed value of the magnetic field M, when .K 0 0  and .K 1 0  is shown in 
Figs 8 and 9, respectively. 
 Figure 8 shows that at the lower porous plate , in the presence of suction, the skin friction decreases 
with an increase in time for a certain range of time  0t t  and attains its minimum value. The skin friction 

increases with an increase in time and reaches its steady state value. This figure also reveals that the skin 
friction at the lower moving porous plate is higher for a certain range of time when the magnetic lines of 
force are fixed relative to the moving porous plate than when fixed relative to the fluid. The steady state skin 
friction is however higher when the magnetic lines of force are fixed relative to the fluid than when fixed 
relative to the moving porous plate. It is interesting to note that the skin friction in the presence of mass 
injection remains constant with time.  
 

 
 

Fig.8. Variation of skin-friction for different S and t at y=0. 

t0=2.0, h=1.0 
 

M=0.5 
K=1.0 

t0=2.0, h=1.0 
 
M=0.5 
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 Figure 9 reveals that, in the presence of injection at the lower porous plate, the skin friction at the 
upper porous plate decreases with an increase in time for a certain range of time  0t t  and attains its 

minimum value. The skin friction increases with an increase in time and reaches its steady state value. This 
figure also reveals that under injection lower porous plate, the skin friction at the upper plate is higher for a 
certain range of time when the magnetic lines of force are fixed relative to the fluid than when fixed relative 
to the moving porous plate. 
 

 
 

Fig.9. Variation of skin-friction for different S and K at y=1. 
 
 The steady state skin friction is however higher when the magnetic lines of force are fixed relative to 
the moving porous plate than when fixed relative to the fluid. It is interesting to note that the skin friction in 
the presence of suction remains constant with respect to time.   
 Figures 10 and 11 give a comparative view of the skin friction at the lower moving and upper porous 
plate, for different values of S , when the plate is in ramp or impulsive motion, when .K 0 0  or .K 1 0  
respectively. 
 Figure 9 reveals that under mass suction the skin friction due to ramp motion of the lower boundary 
decreases with an increase in time and attains its minimum value and then increases and reaches its steady 
state value, whether .K 0 0  or .K 1 0 . Also, it is clear that the skin friction due to ramp motion of the 
porous plates coincides with impulsive motion at large values of time. Hence, we concluded that in the case 
of a steady state the skin friction is almost same whether the plate is in impulsive or ramp motion. 
 Figure 10 shows the variation of the skin friction versus time at the upper porous plate, for different 
values of S, when the plate is in ramp or impulsive motion when .K 0 0  or .K 1 0 . It is observed that in the 
presence of mass injection the skin friction decreases with an increase in time and attains its minimum value 
and then increases and reaches its steady state value when .K 0 0  or .K 1 0 . It is also clear that the skin 
friction due to ramp motion as well as impulsive motion of the boundary coincides at large values of time.  
 

t0=2.0, h=1.0 
 
M=0.5 
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Fig.10. Variation of skin-friction for different S and K at y=0. 
 

 
 

Fig.11. Variation of skin-friction for different S and K at y=1. 
 
5. Summary and conclusion  
 
 The effects of viscosity, magnetic field and mass leakage on the unsteady MHD Couette flow of an 
incompressible, viscous and electrically conducting fluid have been analyzed when the flow is generated due 
to ramped motion of the porous plate. A unified closed form analytical solution has been obtained for fluid 
velocity and skin-friction corresponding to the cases of a magnetic field fixed relative to the fluid or moving 
porous plate. The variations of velocity and skin-friction have been discussed for different values of the 
Hartmann number and suction/injection parameter. The flow formation due to ramped motion of one of the 
porous plates has also been compared with the flow formation due to constant motion of one of the porous 

t0=2.0, h=1.0,              M=0.5 

t0=2.0, h=1.0,              M=0.5 
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plates. It has been observed that the effect of injection increases the velocity while suction decreases it. It is 
seen from the figures that the velocity increases in the presence of the injection parameter and decreases with 
suction at the moving porous plate, whether the magnetic lines of force are fixed with respect to the fluid or 
the moving porous plate. It also shows that velocity is higher when the magnetic lines of force are fixed 
relative to the moving porous plate than when fixed relative to the fluid in the presence of suction or 
injection. Furthermore, the results indicate that the effect of injection increases the velocity while suction 
decreases it. 
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Nomenclature 
 

 0B
 

 – magnetic field strength 

 d    – distance between the porous plates 

 h   – dimensionless distance between the porous plates 

 M   – Hartmann number  

 S   – dimensionless suction/injection parameter 

 t   – dimensionless time  

 t   – dimensional time 

 0U
 

 – constant having dimensionless velocity  

 u   – dimensionless velocity of the fluid 

 u   – dimensional velocity of the fluid 

 0V
 

 – suction/injection velocity 

 y   – dimensionless transverse co-ordinate  

 y   – dimensional transverse co-ordinate 

    – dynamic viscosity of the fluid 

    – kinematic viscosity of the fluid 

    – density of the fluid 

    – electrical-conductivity of the fluid 

 0  
 – dimensionless skin friction at y 0  

 1   – dimensionless skin friction at y h  
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