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In this work, a compact form of different theories of thermoelasticity is considered. The governing equations 
for particle motion in a homogeneous isotropic thermoelastic medium are presented. Uniqueness and reciprocity 
theorems are proved. The plane wave propagation in a homogeneous isotropic thermoelastic medium is studied. 
For a three dimensional problem there exist four waves, namely a P-wave, two transverse waves (S1, S2) and a 
thermal wave (T). From the obtained results the different characteristics of waves such as the phase velocity and 
attenuation coefficient are computed numerically and presented graphically. Some special cases are also 
discussed. 
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1. Introduction 
 
 Biot (1956) formulated the coupled thermoelasticity theory to eliminate the paradox inherent in the 
classical uncoupled theory that elastic deformation has no effect on the temperature. 
 The generalized theory of thermoelasticity is one of the modified versions of the classical uncoupled 
and coupled theory of thermoelasticity and has been developed in order to remove the paradox of physical 
impossible phenomena of infinite velocity of thermal signals in the classical coupled thermoelasticity. 
Hetnarski and Ignaczak (1999) examined five generalizations of the coupled theory of thermoelasticity. 
 The first generalization is due to Lord and Shulman (1967) who formulated the generalized 
thermoelasticity theory involving one thermal relaxation time. This theory is referred to as the LS theory or 
extended thermoelasticity theory (ETE) in which the Maxwell-Cattaneo law replaces the Fourier law of heat 
conduction by introducing a single parameter that acts as a relaxation time. 
 The second generalization is given by Green and Lindsay (1972), they developed a temperature rate-
dependent thermoelasticity that includes two thermal relaxation times. This theory is called as the GL theory 
or temperature rate dependent theory (TRDTE). One can refer to Hetnarski and Ignaczak (1996) for a review 
and presentation of generalized theories of thermoelasticity.  
 The third generalization of the coupled theory of thermoelasticity is developed by Hetnarski and 
Ignaczak and is known as the low temperature thermoelasticity. The fourth generalization to the coupled 
theory of thermoelasticity was introduced by Green and Nagdhi (1992). They posulated a new concept of 
thermoelasticity which is called the thermoelasticity without energy dissipation. In this theory, the classical 
Fourier law is replaced by a heat flux rate-temperature gradient relation. The general idea is posulated by 
Green and Nagdhi (1991) in making use of the general entropy balance. Three types of constitutive response 
functions are suggested. Type I, after linearization of the theory, is the same as the classical heat conduction 
theory (based on Fourier’s law), while the types II and III permit propagation of thermoelastic disturbances 
with a finite speed, only type II without energy dissipation. Also GN model III of thermoelasticity theory 
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involves a heat conduction law and one that involves the thermal displacement gradient among the 
constitutive variables.  
 The fifth generalization to the coupled theory of thermoelasticity is developed by Tzou (1995) and 
Chandrasekhariah (1998) and is referred to as the dual phase-lag thermoelasticity. Tzou (1995) proposed a 
generalized heat conduction law, referred to as the heat conduction law with dual-phase-lags, in which 
microstructural effects in the heat transfer mechanism have been considered in the macroscopic formulation 
by taking into account that photon-electron interactions on the macroscopic level cause a delay in the 
increase of the lattice temperature. A corresponding thermoelastic model with two phase lag was reported by 
Chandrasekharaiah (1998). In the models (Tzou, 1995; Chandrasekharaiah, 1998) two different phase lags, 
i.e., one for the heat flux vector and the other for the temperature gradient have been introduced in the 
Fourier’s law. The phase-lag of the heat flux vector is interpreted as the relaxation time due to fast transient 
effects of thermal inertia and the phase-lag of temperature gradient is interpreted as the delay time caused 
due to the microstructural interactions, a small scale effect of heat transport in space, such as photon-electron 
interaction or photon scattering. Roychoudhary (2007) formulated a three-phase-lag model of the linearized 
theory of coupled thermoelasticity by considering the heat conduction law that includes the temperature 
gradient and the thermal displacement gradient among the constitutive variables.  
 Sherief and Dhaliwal (1980) proved a uniqueness theorem and a variational principle and Dhaliwal 
and Sherief (1981) investigated a reciprocity theorem and integral representation for generalized 
thermoelasticity. Uniqueness in thermoelasticity with one relaxation time was given by Ignaczak (1982). 
Sherief (1987) discussed the uniqueness and stability in generalized thermoelasticity. Uniqueness and 
reciprocity theorems for generalized thermoviscoelasticity with two relaxation times were given by Ezzat 
and El-Karamany (2002). Uniqueness, reciprocity theorems and variational principle in the theory of 
thermoelastic materials with voids were established by Iesan (1986). Uniqueness and reciprocity theorems 
for the equations of generalized thermoleastic diffusion problem, in isotropic media, were proved by Sherief 
et al. (2004) on the basis of variational principle equation. Aouadi (2007; 2008) proved the uniqueness and 
reciprocity theorems for the equations of the generalized thermoleastic diffusion problem in both isotropic 
and anisotropic media by using the Laplace transformation method. Sherief et al. (2010) introduced a new 
model of thermoelasticity using fractional calculus, proved a uniqueness theorem, and derived a reciprocity 
relation and a variational principle. El-Karamany and Ezzat (2011) introduced two models where the 
fractional derivatives and integrels are used to modify the Cattaneo heat conduction law (1958) and in the 
context of two temperature thermoelasticity theory, uniqueness and reciprocity theorems are proved, the 
convolution principle is given and is used to prove a uniqueness theorem with no restrictions imposed on the 
elasticity or thermal conductivity tensors except symmetry conditions.  
 Chadwick and Sheet (1970) and Chadwick (1979) discussed propagation of plane harmonic waves in 
transversely isotropic and homogeneous anisotropic heat conduction solids respectively. Banerjee and Pao 
(1974) studied the thermoelastic waves in anisotropic solids. Sharma (2010) discussed the existence of 
longitudinal and transverse waves in anisotropic thermoelastic media. Plane wave propagation in anisotropic 
thermoelastic diffusive medium was given by Kumar and Kansal (2012). 
 The study is an attempt to combine the thermoelasticity theories and uniqueness and reciprocity 
theorems. Plane wave propagation in an isotropic thermoelastic medium for different theories of 
thermoelasticity is also studied. Some special cases are also deduced. 
 
2. Basic equations 
 
 Compact forms of the equations for thermoelasticity theories in the absence of an external heat 
source are: 
 
(i)   The equations of motion 
 
  , .ij j i iF u      (2.1) 
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(ii)  The stress-strain-temperature relation 
 

  .ij ij kk ij ij 12 e e 1
t

             
  (2.2) 

 
(iii)   The displacement-strain relation 
 

   , , .ij i j j i
1

e u u
2

    (2.3) 

 
(iv)   The energy equation 
 
  , .i i 0q T S     (2.4) 

 
(v)   The modified Fourier’s law 
 

  , .
2

1 3 i i2
K n t t q

t t
  
        

  (2.5) 

 
(vi)   The entropy-strain-temperature relation 
 

  

2 3 4

0 E 1 0 2 42 3 4

2 3 4

0 1 0 0 2 4 kk2 3 4

T S C n t t
t t t t

T n n t t e
t t t t

    
             

    
          



 (2.6) 

 
where divkk 11 22 33e e e e   u , the dot notation is used to denote time(partial) derivative, the comma(,) 
before an index represents partial space differentiation. 
 
3. Uniqueness theorem 
 
Theorem. Assuming that a linear isotropic thermoelastic material occupies a regular region V with the 

boundary surface A in a three-dimensional space, there is only one solution of functions:    , , ,iu t tx x  of 

class    mC m 2 and    , , ,ij ijt e t x x  of class  1C   for V x   having coordinates  , ,1 2 3x x xx at 

t 0  which satisfy Eqs (2.1)-(2.6) subject to the boundary conditions 
 

         i iu x t U x t T x t x t           (3.1) 

 
and the initial conditions at t=0  
 

  0 0 0 0
i i i iu u u u T T T T           (3.2) 
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where 0 0 0 0
i iu u T T    are known functions. 

 We assume that the Laplace transforms of all field variables exist, and the material parameters satisfy 
the inequalities 
 
  .0 0 1 ET 0 0 0 C 0 0              (3.3) 
 

Proof. Let    1 1
iu T   and    2 2

iu T   be two solution sets of Eqs (2.1)-(2.6) with homogeneous initial and 
boundary conditions Let us take 
 

         .1 2 1 2
i i iu u u T T T       (3.4) 

 
    The functions iu  and T  satisfy the governing equations and homogeneous initial and boundary conditions  
 
  ,ij j iu     (3.5) 

 

  ij ij kk ij ij 12 e e 1
t

             
  (3.6) 

 

   , ,ij i j j i
1

e u u
2

     (3.7) 

 
  ,i i 0q T S    (3.8) 

 

  ,

2

1 3 i i2
K n t t q

t t
  
         

  (3.9) 

 

  

2 3 4

0 E 1 0 2 42 3 4

2 3 4

0 1 0 0 2 4 kk2 3 4

T S C n t t
t t t t

T n n t t e
t t t t

    
             

    
           



  (3.10) 

 
     , , , , , ,iu x t 0 T x t 0 x A t 0      

 
     , , , , , ,iu x t 0 T x t 0 x V t 0      (3.11) 

 
     , .iu x t 0 T x t 0 x V t 0          (3.12) 

 
 Performing the Laplace integral transform defined as 
 

         ,st

0

f x s L f x t f x t e dt s 0


        (3.13) 
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on Eqs (3.5)-(3.11) and omitting the bars for simplicity, we obtain 
 

  ,
2

ij j is u    (3.14) 

 
   ij ij kk ij ij 12 e e 1 s             (3.15) 

 

   , ,ij i j j i
1

e u u
2

     (3.16) 

 
  ,i i 0q T sS     (3.17) 

 

    ,
2

1 3 i iK n t s t s q         (3.18) 

 

     2 3 4 2 3 4
0 E 1 0 2 4 0 1 0 0 2 4 kkT sS C n s s t s t s T n s n s t s t s e                 (3.19) 

 
     , , , , .iu x s 0 T x t 0 x A     (3.20) 

 
Consider the integral 
 

   , ,
,

.ij ij ij i j ij i ij j i
j

V V V V

e dV u dV u dV u dV            (3.21) 

 
 Using the divergence theorem and taking into consideration Eq.(3.20), we obtain 
 

   
,

ij i i ij j
j

V A

u dV u n dA 0        (3.22) 

 
thus Eq.(3.21) takes the form 
 

  , .ij ij ij j i

V V

e dV u dV 0       (3.23) 

 
 By the use of Eqs (3.14) and (3.15), Eq.(3.23) can be written in the form 
 

      .2 2 2
ij ij KK i 1 kk

V V

2 e e e s u dV 1 s e dV 0                                (3.24) 

 

 In order to obtain the integral ij

V

e dV , let us after Biot (1956) introduce a vector i connected with 

entropy through the relation 
 
  , .i 0 i i iq T S        (3.25) 
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 Substituting the value of iq  and S  from Eqs (3.25) in Eq.(3.18) and Eq.(3.19), respectively and 

assuming that    , ,i ix 0 x 0 0    , we obtain, respectively 

 

   ,
2

0 i i 1 3sT K n t s t s         (3.26) 

 

     , .2 3 4 2 3 4
0 i i E 1 0 2 4 0 1 0 0 2 4 kkT s C n s s t s t s T n s n s t s t s e               (3.27) 

 
 Multiplying both sides of Eq.(3.26) by i and integrating over the region of the body, we obtain 
 

   , .2
i 1 3 0 i i

V

K n t s t s sT dV 0           (3.28) 

 
 Using the divergence theorem and taking into consideration Eq.(3.20), we get 
 

    , .2 2
1 3 i i 0 i

V V

K n t s t s dV sT dV 0          (3.29) 

 
 Using Eq.(3.27) in Eq.(3.29) yields 
 

  

  

   .

2 2 3 4
0 1 3 1 0 0 2 4 kk

V

2 2 2 2 2 3 4 2
0 i E 1 3 1 0 2 4

V V

K T n t s t s n s n s t s t s e dV

s T dV C K n t s t s n s s t s t s dV





        

          



 
 (3.30) 

 
 Equation (3.24) with the help of Eq.(3.30) yields 
 

        

    

     .

2 2 3 4 2 2 2
0 1 3 1 0 0 2 4 ij ij KK i

V

2 2 2 2 2 3 4 2
1 0 i E 1 3 1 0 2 4

V V

KT n t s t s n s n s t s t s 2 e e e s u dV

1 s s T dV C K n t s t s n s s t s t s dV 0





           

 
               
 
 



 
  (3.31) 

 
 Since the material parameters are positive and the integrand function in Eq.(3.31) is a sum of 
squares, thus we conclude that  
 
  i ij iju T e 0        (3.32) 

 
 That is, the Laplace transforms of the difference functions Eq.(3.4) are zeros and according to 
Learch’s theorem (Churchill, 1972) the inverse Laplace transform of each is unique, consequently 
 

         .1 2 1 2
i iu u T T     (3.33) 

 
 This proves the uniqueness of the solution to the complete system of field equations subjected to the 
initial and boundary conditions. 
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4. Reciprocity theorem 
 
 We shall consider a homogeneous isotropic elastic body occupying the region V  and bounded by the 
surface A . We assume that the stresses ij  and the strains ije  are continuous together with their first 

derivatives whereas the displacements iu  and temperature T are continuous and have continuous derivatives 

up to the second order, for ,x V A t 0     These functions satisfy the equations of motion  
 
  , .ij j i iF u       (4.1) 

 
 Substituting Eq.(2.2) in Eq.(4.1), we have 
 

    , , .i ij j ij 1 i iu e u 1 F
t

                
   (4.2) 

 
 Using Eq.(2.4), Eq.(2.6) reduces 
 

  

,

.

2 3 4

i i E 1 0 2 42 3 4

2 3 4

0 1 0 0 2 4 kk2 3 4

q C n t t
t t t t

T n n t t e
t t t t

    
             

    
          

 (4.3) 

 
 Taking divergence on both sides of Eq.(2.5) and using Eq.(4.3), we arrive at the equation of heat 
conduction given by 
 

  

,

.

2 2 3 4

1 3 ii E 1 0 2 42 2 3 4

2 3 4

0 1 0 0 2 4 kk2 3 4

K n t t C n t t
t tt t t t

T n n t t e
t t t t

        
                      
    

          

 (4.4) 

 
 In a compact form, the governing equations for the displacement and temperature field consist of the 
equation of motion (4.2) and the equation of heat conduction (4.4) together with the constitutive Eqs (2.2) 
and (2.6). 
 We assume the system of Eqs (4.2) and (4.4) to be given with the following boundary conditions 
 
        , ,ij j in h x t x t x t x A t 0              (4.5) 

 
and homogeneous initial conditions Eqs (3.11) and (3.12) where nj is the outward unit normal of V   
 We derive the dynamic reciprocity relationship for a thermoelastic body subjected to the action of 

body forces  ,iF x t  and heating of the surface to the temperature  , .x t  

 Applying the Laplace transform to Eqs (4.1), (4.2) and (4.4) in view of Eqs (3.11) and (3.12) and 
omitting the bars, we obtain the following system in the Laplace transformed domain 
 

  ,
2

ij j i iF s u       (4.6) 
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     , ,
2

i ij j ij 1 i is u e u 1 s F               (4.7) 

 

  
   

 
,

.

2 2 3 4
1 3 ii E 1 0 2 4

2 3 4
0 1 0 0 2 4 kk

K n t s t s C n s s t s t s

T n s n s t s t s e

           

    
 (4.8) 

 
 We now consider two problems where the applied body force and the surface temperature are 
specified differently. Let the variables involved in these two problems be distinguished by superscripts in 

parentheses. Thus, we have        1 1 1 1
i ij iju e T   

 
… for the first problem and        2 2 2 2

i ij iju e T    … for the 

second problem. Each set of variables satisfies the system of Eqs (3.11), (3.12) and (4.5)-(4.8). 
 Using the strain-displacement relation, the assumption ij ji    and the divergence theorem, with 

the aid of Eqs (4.5) and (4.6), we obtain 
 

                  .1 2 1 2 1 2 1 22
ij ij i i i i i i

V A V V

e dV h u dA s u u dV F u dV          (4.9) 

 

 A similar expression is obtained for the integral    2 1
ij ij

V

e dV , from which together with Eq.(4.9), it 

follows that 
 

                          .1 2 2 1 1 2 2 1 1 2 2 1
ij ij ij ij i i i i i i i i

V A V

e e dV h u h u dA F u F u dV                          (4.10) 

 

 Now multiplying Eq.(4.7) by  2
ije  and  1

ije  for the first and second problem, respectively, 

subtracting and integrating over the region V, we obtain 
 

  

               

          .

1 2 2 1 2 11 2
ij ij ij ij ij ij ij ij

V V

2 11 2
1 ij ij ij ij

V

e e dV e e e e dV

1 s e e dV

                

         

 


  (4.11) 

 

 Since ij ije e  , we obtain 

 

                    .1 2 2 1 2 1 1 2
ij ij ij ij 1

V V

e e dV 1 s e e dV                  (4.12) 

 
 Equating Eqs (4.10) and (4.12), we get the first part of the reciprocity theorem 
 

  

               

          ,

1 2 2 1 1 2 2 1
i i i i i i i i

A V

1 2 2 1
1

V

h u h u dA F u F u dV

1 s e e dV 0

             

      
 

 


  (4.13) 
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which contains the mechanical causes of motion i iF h   

 To derive the second part, multiplying Eq.(4.8) by  2  and  1  for the first and second problem 
respectively, subtracting and integrating over the region V, we obtain 
 

  

          
          

, ,

.

1 22 12
1 3 ii ii

V

1 2 2 12 3 4
0 1 0 0 2 4

V

K n t s t s dV

T n s n s t s t s n e e dV 0

       

         




 (4.14) 

 
Since 
 

              
, , , ,

,

1 1 1 22 2
ii i i i

i
        and                          

, , , ,
,

.2 2 2 11 1
ii i i i

i
        

 
 Using Eq.(4.5) and the divergence theorem, Eq.(4.14) can be written as 
 

  

          
          

, ,
1 22 12

1 3 N N

V

2 1 1 22 3 4
0 1 0 0 2 4

V

K n t s t s dV

T n s n s t s t s e e dV 0

       

         




  (4.15) 

 
where N i iN  , the derivative of   in the direction of the normal to the surface A, iN is the outward-

pointing unit normal to the surface A, generally i in N . Equation (4.15) constitutes the second part of the 

reciprocity theorem which contains the thermal causes of motion  . 

 Eliminating the integral        1 2 2 1

V

e e dV  
   from Eqs (4.13) and (4.15), we obtain 

 

  

         

         

           , , .

1 2 2 12 3 4
0 1 0 0 2 4 i i i i

A

1 2 2 12 3 4
0 1 0 0 2 4 i i i i

V

1 22 12
1 1 3 N N

V

T n s n s t s t s h u h u dA

T n s n s t s t s F u F u dV

K 1 s n t s t s dV 0

         

          

          







  (4.16) 

 
 This is the general reciprocity theorem in the Laplace transform domain. 
To invert the Laplace transform in Eqs (4.13), (4.15) and (4.16) we shall use the convolution theorem 
 

               ,
t t

1

0 0

L F s G s f t g d g t f d              (4.17) 

 
and the symbolic notations 
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       

         

2

1 3 2

2 3 4

1 0 0 2 42 3 4

f x f x
M f n f x t t

f x f x f x f x
N f n n t t

    
    

 

       
     

   

  (4.18) 

 
 Inverting Eq.(4.13), we obtain the first part of the reciprocity theorem in the final form 
 

  

               

       
   

.

t t
1 2 1 2

i i i i

A 0 V 0

t 2
1 2 12

0 1 21

V 0

h x t u x d dA F x t u x d dV

e x
T x t e x d dV S

           

  
           
  

   

 
  (4.19) 

 
 Inverting Eq.(4.15), we obtain the second part of the reciprocity theorem in the final form 
 

                   , .
t t

1 12 2 12
0 21N

A 0 V 0

x t M x d dA T x t N e x d dV S                    (4.20) 

 
 Finally, inverting Eq.(4.16), we obtain the general reciprocity theorem in the final form 
 

  

                 
       

   
, .

t t
1 2 1 2

0 i i 0 i i

A 0 V 0

t 2
1 2 12

1 21N
A 0

T h x t N u x d dA T F x t N u x d dV

x
K x t M x d dA S

             

  
            
  

   

 
  (4.21) 

 

 Here 12
21S  indicates the same expression as on the left-hand side except that the superscripts in Eqs 

(2.1) and (2.2) are interchanged. 
 
Plane wave propagation 
 
 For plane harmonic waves, we assume the solution of the form  
 

        exp1 2 3 1 2 3 1 2 3 m mu u u T x x x t U U U T i x n t                   (4.22) 

 
where  is the circular frequency and  is the complex wave number. U1, U2, U3 and T* are undetermined 
amplitude vectors that are independent of time t and coordinates xi , nm is the unit wave normal vector. 
 Substituting Eqs (4.22) in (4.2) and (4.4), we have 
 

  
   

   

2 2 2 2 2
1 1 2 1 2

2
3 1 3 1 1

U n U n n

U n n T n 1 0

                   
                 

  (4.23) 



Uniqueness, reciprocity theorems and plane wave propagation … 1077 

 

  
   

   

2 2 2 2 2
1 1 2 2 2

2
3 2 3 2 1

U n n U n

U n n T n 1 0

                
                

 (4.24) 

 

  
   

   

2 2
1 1 3 2 2 3

2 2 2 2
3 3 3 1

U n n U n n

U n T n 1 0

             
                  

 (4.25) 

 

  2
1 1 0 2 2 0 3 3 0U n T A U n T A U n T A T cA K B 0                             (4.26) 

 
where 
 

  2 3 4 2
1 0 2 4 1 3A n t t B n t t              

 
 The non-trivial solution of the system of Eqs (4.23)-(4.26) is ensured by a determinantal equation 
given by 
 

  

       
       
       

2 2 2 2 2 2
1 1 2 1 3 1 1

2 2 2 2 2 2
1 2 2 2 3 2 1

2 2 2 2 2 2
1 3 2 3 3 3 1

2
1 0 2 0 3 0

n n n n n n 1

n n n n n n 1
0

n n n n n n 1

n T A n T A n T A cA K B

                  

                  
 

                  

        

 (4.27) 

 
 Equation (4.27) leads to the following equation in  as 
 

  8 6 4 2
1 2 3 4 5H H H H H 0           (4.28) 

 
where 
 

       3 2 2
1 2H KB H KB 2 5 cA 2                 

 

       2 2 2 4 2 2
3 0 1H cA 2 5 KB 4 2 T A 1                  

 

     3 4 3 6 2 4
4 0 1H cA KB T A 1                 

 

  4 6
5 EH C A     

 
 Solving Eq.(4.28), we obtain eight roots of , that is,  1 2 3   and 4 . Corresponding to these 
roots, there exist four waves, namely a P-wave, two transverse waves (S1, S2) and a thermal wave (T) in a 
descending order of their velocities  .iV i 1 2 3 4      

 Now we derive the expressions of phase velocity and the attenuation coefficient of these types of 
waves as 
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Phase velocity 
 
 The phase velocities are given by 
 

  
 Rei

i

V i 1 2 3 4


     


  (4.29) 

 
where  iV i 1 2 3 4     are, respectively, the velocities of P, S1, S2 and T waves. 

 
Attenuation coefficient 
 
 The attenuation coefficient is defined as 
 
   Im i iQ i 1 2 3 4         (4.30) 

 
where  iQ i 1 2 3 4     are, respectively, the attenuation coefficients of P, S1, S2 and T waves. 

 
5. Special cases 
 

Case 1: When 0 1 0 1 1 2 3 4n 1 n 0 n 1 0 0 t 0 t 0 t 0 t 0                  , coupled theory of thermoelasticity 
is obtained. 

Case 2: When 0 1 1 1 2 3 4n 1 n 1 n 1 0 t 0 t 0 t 0 t 0                , the Lord-Shulman theory of 
thermoelasticity is obtained. 

Case 3: When 0 1 1 2 3 4n 1 n 0 n 1 t 0 t 0 t 0 t 0              , the Green-Lindsay theory of thermoelasticity is 
obtained. 

Case 4: When 0 1 0 1 2 3 4n 0 n 1 n 0 1 t 1 t 0 t 0 t 0                , the Green-Nagdhi (Type-III) theory of 
thermoelasticity is obtained as 
 

  , .ii 0 kkK n c T e
t

          
    (5.1) 

 Here n  is a constant which has the dimension 
sec

1
,     and n K K   is a constant 

characteristic of the theory. 
 Thus, Equation (5.1) yields 
 

  , , .ii ii 0 kkK K c T e         (5.2) 

 
Subcase : When K 0  in Eq.(5.2), the Green-Nagdhi (Type-II) theory of thermoelasticity is obtained. 

Case 5: When 
2
q

0 q 0 1 1 1 T 2 3 4n 1 n 1 n 1 0 t t t 0 t 0
2

 
                   , the two phase lag theory of 

thermoelasticity is obtained. 

Case 6: When 
2
q

0 0 1 1 1 2 q 3 T 41 n 1 n 0 0 t 1 n t t t
2





                     , the three phase lag theory of 

thermoelasticity is obtained. 
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6. Numerical results and discussion 
 
 We now present some numerical results for a copper material (Sherief and Saleh, 2005) the physical 
data for which is given below 
 

  

. , . , . ,

. , . ,

. , . .

10 1 2 10 1 2 3
0

3 1 1 5 1
E t

3 3 3 1 1

7 76 10 Kgm s 3 86 10 Kgm s T 0 293 10 K

C 3831 10 JKg K 1 78 10 K

8 954 10 Kgm K 0 383 10 Wm K

   

   

  

       

    

    

 

 
 The relaxation times are 
 
  . , . , . , . , . .0 1 q T0 2 s 0 9 s 0 6 s 0 4 s 0 5 s           

 
 The parameter n is taken as 
 

  . sec .10 1n 3 8710 10    
 
 We can solve Eq.(4.28) with the help of the software Matlab 7.0.4 and after solving Eq.(4.28) 
and using the formulas given by Eqs (4.29) and (4.30) we can compute the values of phase velocity and 
the attenuation coefficient for intermediate values of frequency () and different theories of 
thermoelasticity. 
 The symbols (///), (\\\) corresponds to the Coupled theory (CT) and Lord-Shulman (LS) theory of 
thermoelasticity whereas sparse slant squares, horizontal line, vertical line, squares and dense sparse slant 
squares correspond respectively to the Green-Lindsay (GL), Green-Nagdhi (GN)-(III), Green-Nagdhi (GN)-
(II), 3 phase and 2 phase lag theories of thermoelasticity. 
 
Phase velocity 
 
 Figures 1-4 show the variation of phase velocities (V1, V2, V3, V4) of different waves with respect 
to  for different theories of thermoelasticity. It is clear from Fig.1 that initially the values of V1 for CT, 
LS, 3 Phase and 2 Phase lag theories of thermoelasticity decrease and then increase and become constant 
for higher values of  whereas for GL, GN(III) and GN(II) theories, they decrease slowly and then 
increase sharply. The variation in values of phase velocity for CT and GL theory remains higher and a 
minimum variation occurs for 2 phase lag theory. Figure 2 exhibits that behavior and variation in the 
values of V2 is opposite to that of V1 in Fig.1 with difference in their magnitude values. Figure 3a depicts 
that phase velocity V3 decreases sharply for CT, LS, GL and 3 Phase lag theories of thermoelasticity for 

3 and then shows a stationary behavior. The values of V3 for these four theories remain higher in 
comparison to GN(III), GN(II) and 3 phase lag theories of thermoelasticity. The variation in the values of 
the phase velocity V3 for GN(III), GN(II) and 3 phase lag theories of thermoelasticity is shown in Fig.3b 
and it shows that for GN(III) it increases initially and then becomes stationary. The behavior and variation 
of 3 phase lag theory is opposite to that of GN(III) theory. Due to a small variation in its values GN(II) 
shows almost a constant pattern. Figure 4a shows that the values of the phase velocity V4 for CT and GL 
theories remain higher and increase continuously in comparison to the other theories of thermoelasticity. 
The values of phase velocity for LS and 2 phase lag theories increase for 3  and show a constant 
behavior for other values of  . In order to depict the variation in the values of the phase velocity V4 for 
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GN(III), GN(II) and 3 phase lag theories in comparison to the other theories of thermoelasticity, these are 
shown seperately in Fig.4b. The figure shows that the value of the phase velocity V4 for GN(III) increases 
continuously whereas for 3 phase lag it increases for 3  and then decreases and attains a minimum 
value. The values of V4 for GN(II) are small in comparison to other theories. The values of phase 
velocities V1, V2, V3 are magnified by multiplying the original values by 104 and values of V4 are 
demagnified by dividing the original values by 10. 
 

 
 

Fig.1. Variation of phase velocity (V1) with respect to frequency (). 
 

 
 

Fig.2. Variation of phase velocity (V2) with respect to frequency (). 
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Fig.3a. Variation of phase velocity (V3) with respect to frequency (). 
 
 

 
 

Fig.3b. Variation of phase velocity (V3) with respect to frequency (). 
 

4.15792

4.15794

4.15796

4.15798

4.15800

4.15802

4.15804

0

1

2

3

4

5

2 PHASE

3 PHASE

GN(II)

GN(III)

GL
LS

CT

 

 CT
 LS
 GL
 GN(III)
 GN(II)
 3 PHASE
 2 PHASE

P
ha

se
 V

el
o

ci
ty

 (
V

3)

Fre
qu

en
cy

4.157920

4.157922

4.157924

4.157926

4.157928

4.157930

4.157932

4.157934

4.157936

4.157938

0

1

2

3

4

5

3 PHASE

GN(II)

GN(III)

 

 GN(III)
 GN(II)
 3 PHASE

P
ha

se
 V

el
oc

ity
 (

V
3)

Frequency



1082  R.Kumar and V.Gupta 

 
 

Fig.4a. Variation of phase velocity (V4) with respect to frequency (). 
 

 
 

Fig.4b. Variation of attenuation coefficient (Q1) with respect to frequency (). 
 

 
Attenuation coefficient 
 
 Figures 5-8 show the variation of the attenuation coefficient of different waves with respect to  for 
different theories of thermoelasticity. Figure 5 shows that for CT, GL, GN(III) and 3 phase lag theory of 
thermoelasticity, initially the attenuation coefficient increases with a small variation in its values but 
increases sharply for higher values of . For LS and 2 phase lag theories, Q1 increases slowly and then 
becomes constant. GN(II) shows that the attenuation coefficient Q1 increases smoothly with a small 
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fluctuation in its values. Figure 6 shows that the attenuation coefficient Q2 shows the same behavior and 
variation as Q1 with the difference in the magnitude values. Figure 7 shows that the attenuation coefficient 
Q3 increases continuously for LS, GL, GN(II). A minimum variation occurs for CT theory whereas 
maximum for GL theory. Figure 8 shows that the attenuation coefficient Q4 for CT, LS, GL and 2 phase 
theory increases initially and then becomes constant whereas for GN(III), GN(II) and 3 phase lag theories, it 
increases continuously. Minimum variation in values of the attenuation coefficient Q4 occurs for GN(II) 
theory. The values of attenuation coefficients Q1, Q2, Q3 and Q4 are magnified by multiplying the original 
values by 104, 104, 102 and 10, respectively. 
 

 
 

Fig.5. Variation of attenuation coefficient (Q1) with respect to frequency (). 
 

 
 

Fig.6. Variation of attenuation coefficient (Q2) with respect to frequency (). 
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Fig.7. Variation of attenuation coefficient (Q3) with respect to frequency (). 
 

 
 

Fig.8. Variation of attenuation coefficient (Q4) with respect to frequency (). 
 

7. Conclusion 
 

 A model of isotropic, homogeneous thermoelastic solids based on coupled, Lord-Shulman, Green-
Lindsay, Green-Nagdhi-III, Green-Nagdhi-II, 3 phase lag and 2 phase lag theories of thermoelasticity is 
given. All the above theories can be deduced from this model as special cases. The uniqueness theorem of 
the solution of the initial boundary value problem is proved, and the dynamic reciprocity theorem is derived 
for the given model. The propagation of plane waves in this model of thermoelasticity is studied. It is found 
that their exist a P-wave, two transverse waves (S1, S2) and a thermal wave (T). The phase velocity and 
attenuation coefficients are computed numerically and presented graphically. 
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 From the figures it is observed that values of phase velocity remain higher for the coupled theory of 
thermoelasticity. For phase velocities (V3, V4) and the attenuation coefficient (Q4), a minimum variation 
occurs for GN(II) theory of thermoelasticity. 
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Nomenclature 
 

 EC   – specific heat at constant strain 

  ij jie e   – components of the strain tensor 

 iF   – components of body force per unit mass 

 K   – thermal conductivity 

 0 1 1 3 2 4n n n t t t t        – parameters 

 iq   – heat conduction vector 

 S   – entropy per unit mass 
 T   – absolute temperature 
 0T   – reference uniform temperature such that / 0T 1   

 iu   – components of the displacement vector 

 t   – coefficient of thermal linear expansion  

    –   t3 2     

 ij   – Kronecker’s delta 

  0T T     – temperature change 

    – Lame’s constants 
    – density 

  ij ji     – components of the stress tensor 

 0 1    – thermal relaxation times with 1 0 0     

 q   – phase lag of heat flux 

 T   – phase lag of temperature gradient 

    – phase lag of thermal displacement gradient 
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