
 
 

Int. J. of Applied Mechanics and Engineering, 2013, vol.18, No.4, pp.1115-1150 
DOI: 10.2478/ijame-2013-0070 

 
 

EFFECT OF CHEMICAL REACTION AND RADIATION ON DOUBLE 
DIFFUSIVE FLOW OF A VISCOUS, DISSIPATIVE FLUID THROUGH 

POROUS MEDIUM IN A RECTANGULAR CAVITY WITH HEAT 
SOURCES 

 
T.L. RAJU and P. MURALIDHAR* 

Dept. of Engineering Mathematics 
A.U. College of Engineering (A), Andhra University  

Visakhapatnam-530 003, A.P., INDIA 
E-mail: tlraju45@yahoo.com; muralidhar.pmd@gmail.com 

 
 

In this paper, an attempt is made to discuss the combined influence of radiation and dissipation on the 
convective heat and mass transfer flow of a viscous fluid through a porous medium in a rectangular cavity using 
the Darcy model. Making use of the incompressibility, the governing non-linear coupled equations for the 
momentum, energy and diffusion are derived in terms of the non-dimensional stream function, temperature and 
concentration. The Galerkin finite element analysis with linear triangular elements is used to obtain the global 
stiffness matrices for the values of stream function, temperature and concentration. These coupled matrices are 
solved using an iterative procedure and expressions for the stream function, temperature and concentration are 
obtained as linear combinations of the shape functions. The behavior of temperature, concentration, the Nusselt 
number and Sherwood number is discussed computationally for different values of the governing parameters, 
such as the Rayleigh Number (Ra), heat source parameter (), Eckert number (Ec), Schmidt Number (Sc), Soret 
parameter (S0), buoyancy ratio (N). 
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1. Introduction 

 
The study of heat transfer and mixed convection flow in porous medium enclosures of various 

shapes has received much attention. Interest in these natural convection flows and heat transfer in a porous 
medium has been motivated by a broad range of applications, including geothermal systems, crude oil 
production, storage of nuclear waste materials, ground water pollution, fiber and granular insulations, 
solidification of castings, etc. In a wide range of such problems, the physical system can be modeled as a 
two-dimensional rectangular enclosure with vertical walls held at different temperatures and the connecting 
horizontal walls considered adiabatic. Convective heat transfer in a rectangular porous duct, whose vertical 
walls are maintained at two different temperatures and horizontal walls insulated, is a problem which has 
received attention of many investigators. Some of these works include numerical results. 
 The investigation of heat transfer in enclosures containing porous media began with the experimental 
work of Verschoor and Greebler (1952). Verschoor and Greebler (1952) were followed by several other 
investigators interested in porous media heat transfer in rectangular enclosures. In particular, Bankvall (1972; 
1973; 1974) published a great deal of practical work concerning heat transfer by natural convection in 
rectangular enclosures completely filled with porous media. Burns et al. (1926) described a porous medium 
heat transfer flow in a rectangular geometry. Cheng and Hi (1987) studied the flow and heat transfer rate in a 
rectangular box with solid walls using a Brinkman model, when the box is differentially heated in the 
horizontal direction. Chen et al. (1970) considered enclosures with the aspect ratio greater than or equal to 
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one. Their numerical computations indicate that when the Darcy number based on the width of the 
enclosures is less than 10-9, Darcy’s law and the Brinkman equation virtually give the same results for the 
heat transfer rate. Joseph et al. (1964) considered laminar forced convection in rectangular channels with 
unequal heat addition on adjacent sides. Teomann Ayhan et al. (1998) considered heat transfer and flow 
structure in a rectangular channel with wing-type vortex generator. Han-Chieh Chiu et al. (2007) discussed 
mixed convection heat transfer in horizontal rectangular ducts with radiation effects. Chittibabu et al. (2006) 
discussed convective flow in a porous rectangular duct with differentially heated side walls using a 
Brinkman model. 
 When heat and mass transfer occur simultaneously, it leads to a complex fluid motion called double-
diffusive convection. Double-diffusion occurs in a wide range of scientific fields such as oceanography, 
astrophysics, geology, biology and chemical processes. Viskanta et al. (1985) published complete reviews on 
the subject. Bejan (1979) wrote a fundamental study of scale analysis relative to heat and mass transfer 
within cavities submitted to horizontal combined and pure temperature and concentration gradients. 
Kamotani et al. (1985) conducted experiments on mass transfer and flow pattern in shallow enclosures 
(H\L=0, 13-0.55) filled with a fluid (Pr = 7, Sc = 2100) in cases where the combined buoyancy effect is 
dominated by the buoyancy due to the concentration gradient. Other experimental studies dealing with 
thermo solute convection in rectangular enclosures were reported by Lee et al. (1990). Lee and Hyun (1985; 
1990), Hyun and Lee (1990) reported numerical solutions for unsteady double-diffusive convection in a 
rectangular enclosure with aiding and opposing temperature and concentration gradients that were in good 
agreement with reported experimental results. The most recent review of this activity is the one published by 
Viskanta et al. (1985), where it is stressed that the two requirements for the occurrence of double-diffusive 
convection are that the fluid contains two or more components with different molecular diffusivities and that 
these components make opposing contributions to the vertical density gradients. Trevisan and Bejan (1987) 
analyzed natural convection in a rectangular enclosure with uniform heat and mass fluxes along the vertical 
sides analytically and numerically. He obtained Oseen linearised solution for all spaces filled with mixtures 
characterized by Le = 1 and arbitrary buoyancy ratios.  
 The effect of varying the Lewis number (Le) is documented by a similarity solution valid for Le > 1 
in heat transfer driven flows and for Le < 1 mass transfer driven flows. Mass line patterns are used to 
visualize the convective mass transfer rate and the flow reversal is observed when the buoyancy ratio n = 1. 
Also Trevisan et al. (1987) studied natural convection heat and mass transfer through a vertical porous layer 
subjected to uniform fluxes of heat and mass from the side. The Oseen linearised solution that yielded the 
overall heat and mass transfer correlation was developed for a porous medium and a buoyancy effect ruled 
by both temperature and concentration variations in the high Rayleigh number region where the heat and 
mass transfer rates differ greatly from estimates based on the assumption of pure diffusion. The similarity 
solution that produced the overall mass transfer was developed for different parametric domains.  
 The effect of viscous dissipation on heat transfer has been studied for different geometries. 
Beckermann (1987) studied the viscous dissipation effect on natural convection in a horizontal cylinder 
embedded in a porous medium. Their study showed that the viscous dissipation affect the natural convection 
in a porous cavity and found that the heat transfer rate at hot surface decreases with increase of viscous 
dissipation parameter. Thermal radiation plays a significant role in the overall surface heat transfer where 
convective heat transfer is small. Verschoor et al. (1952) studied the effect of viscous dissipation and 
radiation on an unsteady magnetohydrodynamic free convection flow past a vertical plate in a porous 
medium. They found that the temperature profile increases when viscous dissipation increases. A good 
amount of work has been done to understand natural convection in a porous cavity. In spite of many efforts 
to study heat transfer in a porous cavity, the combined effect of viscous dissipation and radiation on a porous 
medium filled inside a square cavity has not received much attention in the literature. Badruddin et al. (2006) 
investigated the radiation and viscous dissipation on convective heat transfer in a porous cavity. Recently 
Padmavathi (2009) analyzed the connective heat transfer through a porous medium in a rectangular cavity 
with heat sources and dissipation under varied conditions. Ranga Reddy (1997) discussed the natural 
convective heat and mass transfer in a porous rectangular cavity with differentially heated side walls using 
the Brinkman model by solving the governing equations with the Galerkin finite element analysis. Sivaiah et 
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al. (2004) investigated the double-diffusive convective heat transfer flow of a viscous fluid through a porous 
medium with a rectangular duct with thermo-diffusion effect by using the finite element technique. Reddaiah 
et al. (2010) analyzed the effect of viscous dissipation on convective heat and mass transfer flow of a viscous 
fluid in a duct of a rectangular cross section by employing the Galerkin finite element analysis. 
 

 
 

Fig.I. Schematic diagram of the flow model. 
 

2. Formulation of the problem 
 

 We consider the mixed convective heat and mass transfer flow of a viscous incompressible fluid in a 
saturated porous medium confined in the rectangular duct (Fig.I) whose base length is “a”, height “b”. The 
heat flux on the base and top walls is maintained constant. The Cartesian coordinate system O (x, y) is 
chosen with the origin on the central axis of the duct and its base parallel to the x-axis. We assume that 

i) The convective fluid and the porous medium are everywhere in local thermodynamic equilibrium. 
ii) There is no phase change of the fluid in the medium. 
iii) The properties of the fluid and of the porous medium are homogeneous and isotropic. 
iv) The porous medium is assumed to be closely packed so that Darcy’s momentum law is adequate in the 

porous medium. 
v) The Boussinesq approximation is applicable. 

Under these assumption the governing equations are given by 
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where, u and v are Darcy velocities along the x- and y- directions, respectively. T, C, p and g are the 
temperature; concentration, pressure and acceleration due to gravity. Tc, Cc, Th and Ch are the temperature 
and concentration on the cold and warm side walls, respectively. , ,  and  are the density, coefficients 
of viscosity, kinematic viscosity and thermal expansion of the fluid, k is the permeability of the porous 
medium, K1 is the thermal conductivity, Cp is the specific heat at constant pressure, Q is the strength of the 
heat source, k11 is the cross diffusivity, * is the volume coefficient of expansion with mass fraction 
concentration, k is the concentration coefficient and qr is the radiative heat flux. The boundary conditions are 
 
  u = v = 0   on the boundary of the duct 
 
  T = Tc,         C=Cc  on the side wall to the left 
 

T = Th,           C=Ch                     on the side wall to the right (2.7) 
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             u v 0                                   walls (y = 0) which are insulated. 
 

Invoking Rosseland approximation for radiation  
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4
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. 

 
Expanding T4 in Taylor’s series about Te and neglecting higher order terms  
 

               4 3 4
e eT 4T T 3T   . 

 
We now introduce the following non-dimensional variables 
 

  x = ax;             y = by ; h = b/a, 
 

u = (/a) u;      v = (/a) v;       p = (2/a2) p,           (2.8) 
 

T = T0 +  (Th – Tc),         C = C0 + C (Th – Tc).  
 

The governing equations in the non-dimensional form are 
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In view of the equation of continuity, we introduce the stream function  as 
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Eliminating p from Eqs (2.9) and (2.10) and making use of Eq.(2.11) the equations in terms of  and  are 
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The boundary conditions are  
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3. Finite element analysis and solution of the problem 
 
 The region is divided into a finite number of three node triangular elements, in each of which the 
element equation is derived using the Galerkin weighted residual method. In each element ei, fi is an 
approximate solution for an unknown f in the variational formulation and can be expressed as a linear 

combination of shape function,   , , ,i
kN k 1 2 3  which are linear polynomials in x and y. This approximate 

solution of the unknown f coincides with actual values at each node of the element. The variational 
formulation results in a 3 x 3 matrix equation (stiffness matrix) for the unknown local nodal values of the 
given element. These stiffness matrices are assembled in terms of global nodal values using inter element 
continuity and boundary conditions resulting in a global matrix equation. 
 In each case, there are r distinct global nodes in the finite element domain and fp (p = 1, 2, ……r) are 

the global nodal values of any unknown f defined over the domain. Then   
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determined from the global matrix equation. Based on these lines, we now make a finite element analysis of the 
given problem governed by Eqs (2.14)-(2.16) subjected to the conditions (2.17)-(2.18). 
 Let i, i and Ci be the approximate values of ,  and C in an element i. 
 

           ,i i i i i i i
1 1 2 2 3 3N N N        (3.1a) 

 

            ,i i i i i i i
1 1 2 2 3 3N N N        (3.1b) 

 

           i i i i i i
1 1 2 2 3 3C N C N C N C   . (3.1c) 

 

Substituting the approximate value i, i and Ci for ,  and C, respectively, in Eq.(2.13) the error is 
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Under the Galerkin method this error is made orthogonal over the domain of ei to the respective 

shape functions (weight functions) where 
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where, I is the boundary of ei. 
Substituting L.H.S. of Eqs (3.1a) - (3.1c) for i, i and Ci in Eqs (3.6) and (3.7), we get 
 

  

    

    

i ii i
k kL L

1 ei

i ii i
i im mL L
m l i

k
1 ei ei

N NN N4N
1

3 x x y y

N NN N
P d N N d

y x x y

           

   
            



    

   Ec     , ,  ,  , , ,

i

2 2 i i
i i
k x y i k

ei

d N n n d Q l m k 1 2 3
y x x y



                               
   (3.8) 
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    Sc     
i i i ii i i i

i ik k m mL L L L
m

1 1ei ei

N N N NN N N N
C d

x x y y y x x y

         
                    

  
 

  
ScSo

    

i

i ii i
i i ik kL L

i

ei e

N NN N
C d

N x x y y

   
            

  
 

(3.9)

 

  =
ScSo ScSo

  ,
i i i i

i C
k x y i i

i

N n n d Q
x N x y N y



      
                


 

  (l, m, k = 1, 2, 3)   
 

where, i
k

i
k

i
k

i
k

i
k QQQQQ ,321  ’s being the values of i

kQ  on the sides s = (1, 2, 3) of the element ei. The 

sign of i
kQ ’s depends on the direction of the outward normal with respect to the element. Choosing different 

i
kN ’s as weight functions and following the same procedure we obtain matrix equations for three unknowns 

( i
pQ ), viz. 

 

    i i i
p p ka Q    (3.10) 

 

where,  i
pka

 
is a 3 x 3 matrix,    ,i i

p kQ
 
are column matrices. Repeating the above process with each of s 

elements, we obtain sets of such matrix equations. Introducing the global coordinates and global values for 
i
p  

and making use of inter element continuity and boundary conditions relevant to the problem the above 

stiffness matrices are assembled to obtain a global matrix equation. This global matrix is r x r square matrix 
if there are r distinct global nodes in the domain of the flow considered. 

Similarly, substituting i, i and i in Eq.(2.12) and defining the error 
 

  
Ra ,

x x
i 2 2
3

C
E M N

             
(3.11) 

 
and following the Galerkin method we obtain 
 

  
.i i

3 jE d 0


    (3.12) 

 
Using Green’s theorem (3.8) reduces to 
 

  

    Ra  

   .

i i i ii i
i ik k k k

i i
i i i
k x y i k x i

N N N N
C d

x x y y x x

N n n d N n d
x y



 

      
                

  
         



   

 (3.13) 

 
In obtaining (3.13) Green’s theorem is applied with respect to derivatives of  without affecting  terms. 

Using Eqs (3.1) and (3.2) in Eq.(3.13) we have 
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Ra

i i i i
i k m m k
m i

m

i i
i i i iL L
L i k L i k

L

N N N N
d

x x y y

N N
N d C N N d

x x



 

                
       

  

 

    (3.14) 

  

    .
i i

i i i i
k x y i k i kN n n d N d

x y 

  
           
 

  

In the problem under consideration, for computational purposes, we choose a uniform mesh of 10 
triangular elements (Fig.II). The domain has vertices whose global coordinates are (0, 0), (1, 0) and (1, c) in 
the non-dimensional form. Let e1, e2…..e10 be the ten elements and let 1, 2, … 10 be the global values of  
and 1, 2,…,10 be the global values of  at the ten global nodes of the domain (Fig.II). 

 

 
Fig.II. Schematic diagram of the configuration. 

 

4. Shape of functions and stiffness of matrices 
 

Range functions in 
ji

n
,

;  i = element, j = node. 
 

  ,
,

1 1
n 1 3x 

,
,

1 2

3y
n 3x

h
 

,
,

2 1

3y
n 1

h
 

,
,

2 2

3y
n 1

h
  

 
 

  ,
,

2 3

3 y
n 1 3x

h
  

,
,

3 1
n 2 3x 

,
,

3 2

3y
n 1 3x

h
   

,
,

3 3

3y
n

h


 
 

  ,
,

4 1

3y
n 1

h
 

,
,

4 2
n 2 3x  

,
,

4 3

3y
n 2 3x

h
  

,
,

5 1
n 2 3x 

 
 

  ,
,

5 2

3y
n 1 3x

h
   

,
,

5 3

3y
n

h


,
,

6 1
n 2 3x 

,
,

6 2

3 y
n 3x

h
    

 

  ,
,

6 3

3y
n 1

h
 

,
,

7 1

3y
n 2

h
 

,
,

7 2
n 2 3x  

,
,

7 3

3y
n 1 3x

h
  

 

  ,
,

8 1
n 3 3x 

, , ,
, , .

8 2 9 2 9 3

3y 3y 3y
n 1 3x n 3x n 1

h h h
        

 

(1, h) 

   
(2/3, 2h/3) (y=2h/3)

   (1/3, h/3)    (2/3, h/3) (y=h/3)

 
(x=0)   (x=1/3)      (x=2/3) (x=1) 
(0, 0) 
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Substituting the above shape functions in Eqs (3.8), (3.9) and (3.14) with respect to each element and 
integrating over the respective triangular domain we obtain the element in the form Eq.(3.8). The 3x3 matrix 
equations are assembled using connectivity conditions to obtain 8x8 matrix equations for the global nodes 
p, p and Cp. 

The global matrix equation for  is 
 

3 3 3A X B . (4.1) 
 

The global matrix equation for C is 
 

4 4 4A X B . (4.2) 
 

The global matrix equation for  is 
 

5 5 5A X B  (4.3) 
where, 
 

   

12 13

22 23

32 33 34 35

43 44 45

53 54 55 56 57

65 66 673

75 76 77 78 79

87 88 89

97 98 99 910

109 1010

119 111

1 a a 0 0 0 0 0 0 0 0

0 a a 0 0 0 0 0 0 0 0

0 a a a a 0 0 0 0 0 0

0 0 a a a 0 0 0 0 0 0

0 0 a a a a a 0 0 0 0

0 0 0 0 a a a 0 0 0 0A

0 0 0 0 a a a a a 0 0

0 0 0 0 0 0 a a a 0 0

0 0 0 0 0 0 a a a a 0

0 0 0 0 0 0 0 0 a a 0

0 0 0 0 0 0 0 0 a a



 ,

0 1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

   

, ,

, ,

, , , ,

, , ,

, , , , ,

, , ,

, , , , ,

, , ,

, , , ,

1 2 1 3

2 2 2 3

3 2 3 3 3 4 3 5

4 3 4 4 4 5

5 3 5 4 5 5 5 6 5 7

4 6 5 6 6 6 7

7 5 7 6 7 7 7 8 7 9

8 7 8 8 8 9

9 7 9 8 9 9 9 10

1 b b 0 0 0 0 0 0 0 0

0 b b 0 0 0 0 0 0 0 0

0 b b b b 0 0 0 0 0 0

0 0 b b b 0 0 0 0 0 0

0 0 b b b b b 0 0 0 0

0 0 0 0 b b b 0 0 0 0A

0 0 0 0 b b b b b 0 0

0 0 0 0 0 0 b b b 0 0

0 0 0 0 0 0 b b b b 0

0 0 0 0



, ,

, , ,

,

10 9 10 10

11 9 11 10 11 11

0 0 0 0 b b 0

0 0 0 0 0 0 0 0 b b b

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
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    ,5

1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0
A

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

 
  
 
  
 

  
 
 
 
 
  
  

 

    , , ,

1 1 1

2 2 2

3 3 3

4 4 4

5 5 5

3 6 4 6 5 6

7 7 7

8 8 8

9 9 9

10 10 10

11 11 11

C u

C u

C u

C u

C u

X X C X u

C u

C u

C u

C u

C u

     
          
     
     
     
          

        
          
     
     
     
          
          

 

 

    , ,

1 1 1

2 2 2

3 3 3

4 4 4

5 5 5

3 4 5
6 6 6

7 7 7

8 8

9 9

10 10

11 11

ar br cr

ar br cr

ar br cr

ar br cr

ar br cr

B ar B br B cr

ar br cr

ar br cr

ar br

ar br

ar br

   
   
   
   
   
   
   
   
   
   
   
     
   
   
   
   
   
   
   
   
   
   
      

.

8

9

10

11

cr

cr

cr

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
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The global matrix equations are coupled and are solved under the following iterative procedures. At 
the beginning of the first iteration the values of (i) are taken to be zero and the global Eqs (4.1) and (4.2) 
are solved for the nodal values of  and C. These nodal values (i) and (Ci) obtained are then used to solve 
the global Eq.(4.3) to obtain (i). In the second iteration these (i) values are obtained and used in Eqs (4.1) 
and (4.2) to calculate (i) and (Ci) and vice versa. The three equations are thus solved under the iteration 
process until two consecutive iterations differ by a reassigned percentage. 
 The domain consists of three horizontal levels and the solution for Ψ and θ at each level may be 
expressed in terms of the nodal values as follows, 

In the horizontal strip 0 ≤y ≤
h

3  
 

        ,1 1 1
1 1 2 2 7 7 1N N N H 1        

 

        ,1 2 7 1
y 4 y 1

1 4x 4 x 1 0 x
c h 3

               
   

 

 

  
   

   

   

 ,

3 3 3
2 2 3 3 6 6 2

2 2 2
2 2 7 7 6 6 3

N N N H 1

1 1
N N N H 1 x

3 3

       

           
 

 

 

      2 3 6 2
4 y 4 y

2 1 2x 4x 1 H 1
h h

                   
    

 

      ,2 7 6 3
4 y 4 y

1 1 4x 4x 1 H 1
h h

                   
    

 

 

        ,5 5 5
3 3 4 4 5 5 3N N N H 1        

 

           ,4 4 4
3 3 5 5 6 6 4

2
N N N H 1 x 1

3
          
 

  

 

       3 4 6 3
2 y 4 y

3 4x 2 2x 1 4x 3 H 1
h h

                     
    

 

          .3 5 6 4
4 y 4 y

1 4x 3 H 1
h h

              
   

 

 

Along the strip 
h

3
≤ y≤

2h

3
   

 

  
       

   

     

  ,   ,

6 6 6 7 7 7
7 7 6 6 8 8 2 6 6 9 9 8 8 3

8 8 8
6 6 5 5 9 9 4

N N N H 1 N N N H 1

1
N N N H 1 x 1

3

            

          
 
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            7 6 8 3
4 y

2 1 2x 4x 3 1 H 1
h

                
  

 

     6 9 8 4
2 y 4 y 4 y

2 1 1 1 4x H 1
h h h

                       
      

 

                .6 5 9 5
4 y 2 y

4 1 x 4x 1 2 1 H 1
h h

                   
    

 

 

Along the strip 
2h

3
≤ y≤1 

 

  
   

   

  

 ,

9 9 9
8 8 9 9 10 10 6

8 9 10 6

N N N H 1

y 4 y 2
4 1 x 4 x 2 3 H 1 x 1

h h 3

       

                       
      

  

   

where  τ1= 4x,               τ2 = 2x,               τ3 =
4x

3
, 

 

  τ4=
y

4 x
h

  
 

,     τ5=
y

2 x
h

  
 

,      τ6 = ,
4 y

x
3 h
  
 

 

 
and H represents the Heaviside function. 

The expressions for θ are: 

In the horizontal strip 0≤ y≤
h

3
  

 

                     ,1 2 7 1
y 4 y 1

1 4x 4 x H 1 0 x
h h 3

                              
 

 

     2 3 6 2
4 y 4 y

2 1 2x 4x 1 H 1
h h

                    
    

 

                     ,2 7 6 3
4 y 4 y 1 2

1 1 4x 4x 1 H 1 x
h h 3 3

                       
     

 

 

       3 4 6 3
2 y 4 y

3 4x 2 2x 1 4x 3 H 1
h h

                    
   

 

       .3 5 6 4
4 y 4 y 2

1 4x 3 H 1 x 1
h h 3

                       
      

 

 

Along the strip 
h

3
≤ y≤

2h

3  
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                  7 6 8 3
4 y

2 1 2x 4x 3 1 H 1
h

                
  

 

      (6 9 8 4
2 y 4 y 4 y

2 1 1 1 4x H 1
h h h

                        
      

 

       .6 5 9 5
4 y 4 y 1 2

4 1 x 4x 1 2 1 H 1 x
h h 3 3

                         
      

 

 

Along the strip 
2h

3
≤ y≤1 

 

                    .8 9 10 6
y 4 y 2

4 1 x 4 x 3 H 1 x 1
h h 3

                         
      

 

 

The expressions for C are  
 

           1 2 7 1
y 4 y

C C 1 4x C 4 x C H 1
h h

              
    

                       ,
1

0 x
3

   
 

 

 

          2 3 6 2
4 y 4 y

C C 2 1 2x C 4x 1 C H 1
h h

                
    

 

                                       ,2 7 6 3
4 y 4 y 1 2

C 1 C 1 4x C 4x 1 H 1 x
h h 3 3

                    
     

 

 

           3 4 6 3
2 y 4 y

C C 3 4x 2 C 2x 1 C 4x 3 H 1
h h

                
   

 

                                                  .3 5 6 4
4 y 4 y 2

C 1 C 4x 3 C H 1 x 1
h h 3

                    
      

 

 

 Along the strip 
h

3
≤ y≤ ,

2h

3  
 

          7 6 8 3
4 y

C C 2 1 2x C 4x 3 C 1 H 1
h

            
  

                           

      6 9 8 4
2y 4 y 4 y

C 2 1 C 1 C 1 4x H 1
h h h

                       
      

 

          .6 5 9 5
4 y 4 y 1 2

C 4 1 x C 4x 1 C 2 1 H 1 x
h h 3 3

                      
      

 

 

 Along the strip 
2c

3
≤ y≤1, 

 

           8 9 10 6
y 4 y

C C 4 1 x C 4 x C 3 H 1
h h

               
    

                       .
2

x 1
3

   
 

 

 

The dimensionless Nusselt numbers (Nu) and Sherwood Numbers (Sh) on the non-insulated 
boundary walls of the rectangular duct are calculated using the formula 
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  Nu = 
x 1x 

 
  

         and              Sh = .
x 1

C

x 

 
  

 

 

The Nusselt numbers on the side wall x=1 in different regions are 
 

  Nu1=2 – 43         / ,0 y h 3   
 

  Nu2=2 – 45         / / ,h 3 y 2h 3   
 

  Nu3=2 – 47          / .2h 3 y h   
 

The Sherwood numbers on the side wall x=1 in different regions are 
 

  Sh1=2 – 4C3         / ,0 y h 3   
 

  Sh2=2 – 4C5          / / ,h 3 y 2h 3   
 

  Sh3=2 – 4C7         / .2h 3 y h   
 

5. Discussion of the numerical results 
 

 We analyze the effect of radiation, dissipation and chemical reaction on the convective heat and mass 
transfer flow of a viscous fluid through a porous medium in a rectangular cavity. Using the Galerkin finite 
element analysis the governing equations are solved with linear triangular elements. The temperature, 
concentration, rate of heat and mass transfer are analysed for different variations of the governing parameters. 

The non-dimensional temperature () is shown in Figs 1-32 for different values of Ra, , Ec, Sc, S0, 

N and  at different horizontal levels 
h

y
3

  and 
2h

y
3

  and vertical levels 
1

x
3

  and 
2

x
3

 . The variation 

of  with the Rayleigh number Ra is shown in Figs 1, 9, 17 and 26 at different levels. With the convention 
that the non-dimensional temperature is positive or negative (the actual temperature (T) is greater or lesser 

than TC), it is found that the actual temperature increases with an increase in Ra at 
1

x
3

  and 
h

y
3

  and 

2h
y

3
  levels. At 

2
x

3


 
level the actual temperature (T) decreases with Ra2x102 and increases with a 

higher Ra3x102 (Fig.9). Figures 2, 10, 18 and 26 represent  with the radiation parameter N1. It is found that 
the higher the radiative heat flux, the larger the actual temperature and for further higher radiative heat flux, 

the smaller the temperature at 
1

x
3

 , 
2

x
3

  and 
h

y
3

  levels. At a higher horizontal level 
2h

y
3

 , the 

actual temperature decreases with an increase in N10.03 and increases with N10.07 (Fig.18). Figures 3, 11, 

19, and 21 represent  with the heat source parameter  at different levels. It is found that at 
1

x
3

 , the 

actual temperature increases in the horizontal strip (0, 0.134) and decreases in the region (0.201, 0.333). At 
2

x
3

  the actual temperature increases with an increase in 4 and for higher 6, the actual temperature 

increases in the horizontal strip (0, 0.333) and decreases in the region (0.391, 0.666). At 
h

y
3

  level, the 

actual temperature decreases with  in the entire flow region. At a higher horizontal level 
2h

y
3

  the actual 

temperature increases with 4 and decreases with higher 6 (Fig.19). The effect of dissipation on  is 
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shown in Figs 4, 12, 20 and 28. It is found that the actual temperature at 
2

x
3

  and 
2h

y
3

  increases with 

Ec, while at 
1

x
3

  and 
h

y
3

  levels the actual temperature increases with Ec  0.03 and decreases with 

higher Ec  0.05 (Figs 4 and 28). With respect to Sc, we find that the lesser the molecular diffusivity, the 
larger the actual temperature and for further lower molecular diffusivity, the smaller  and for still lower 

molecular diffusivity, the larger the actual temperature at 
h

y
3

  and 
2h

y
3

  levels (Figs 21 and 29). At 

1
x

3
  level, the actual temperature grows with an increase in Sc0.3 and it decreases with S0 = 1.3, whereas 

at Sc = 2.01, the actual temperature increases in the region (0, 0.201), then the actual temperature decreases 
in the region (0.268. 333) (Fig.5). From Fig.13, we notice that the actual temperature increases with lower 
and higher values of Sc, but at Sc =1.3, it decreases in the horizontal strip (0, 462) and increases in the region 

(0.528, 666). With reference to the Soret parameter S0, we find that an increase in S0>0 decreases at 
h

y
3

  

and increases at 
2h

y
3

 , while with an increase |S0| (<0) increases at 
h

y
3

  level and reduces at 
2h

y
3

  

level, (Figs 22 and 30). At the vertical levels 
1

x
3

  and 
2

x
3

  levels the actual temperature increases in the 

region (0y0.201) and it decreases in the region (0.268, 0.33) with S0>0, while it increases at both the levels 
(Figs 6 and 14). When the molecular buoyancy force dominates over the thermal buoyancy force the actual 
temperature increases when the buoyancy forces are in opposite directions at all horizontal and vertical 

levels, but for the forces acting in the same direction the actual temperature increases at 
h

y
3

  level and 

decreases at 
2h

y
3

  level. At the vertical levels: 
1

x
3

  and 
2

x
3

  the actual temperature reduces in the 

horizontal strip (0, 0.134) and increases in the strip (0.201, 0.333) (Figs 7 and 15). The variation of  with 

the chemical reaction parameter  is shown in Figs 8, 16, 24, and 32. At 
h

y
3

  and 
1

x
3

  the actual 

temperatures decrease in the case of a chemical reaction. At 
2h

y
3

  and 
2

x
3

  the actual temperature 

decreases with 0.5 and increases with 2.0, while at 
2h

y
3

 , it reduces with ||  0.5, grows with ||  2 

and at 
2

x
3

 , it reduces with ||0.5 and reduces with ||2 at 
1

x
3

 , an increase in   0.5, enhances the 

actual temperature in the horizontal strip (0, 0.201) and reduces it in the region (0.268, 0.333). At 
h

y
3

  

level, an increase in 0.5, enhances the actual temperature in the region (0.333, 0.663) and reduces in the 
region (0.729, 1) and for higher 2, a reversed effect is noticed in the behavior of the actual temperature 
(Fig.32). 
 The non-dimensional concentration (C) is shown in Figs 33-64 for different parametric values at 
different horizontal and vertical levels. Figures 33, 41, 49 and 58 represent the concentration (C) with the 

Rayleigh number Ra. The concentration enhances at 
1

x
3

  level and depreciates at 
2h

y
3

  level. At 
h

y
3

  

level it reduces with Ra2x102 and enhances with higher Ra3x102. At 
2

x
3

  with an increase in Ra2x102 
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the concentration (C) decreases in the region (0, 0.264) and grows in the region (0.33y 0.666) while for 
higher Ra3x102, the concentration increases in the region (0, 0.264) and decreases in the region (0.33, 

0.666) (Fig.41). The effect of radiation on C is shown in Figs 34, 42, 50 and 58. At 
h

y
3

  and 
2

x
3

  levels 

the actual concentration increases with an increase in the radiation parameter N1 (Figs 42 and 58). At 
2h

y
3

  

level, it decreases with N10.03 and grows with N10.05 (Fig.50). At 
1

x
3

  level the concentration increases 

with N10.03 and for higher N10.05, it decreases in the horizontal strip (0, 0.201) and grows in the strip 
(0.268, 0.333) (Fig.34). With respect to the heat source parameter  we find that the actual concentration 

grows with an increase in 4 and reduces with higher 6 at 
h

y
3

  and 
2h

y
3

  levels. At 
1

x
3

  level the 

concentration grows with 4 and for 6, it reduces in the horizontal strip (0, 0.268) except in a narrow 

region adjacent to y =0.333 (Fig.35). At 
2

x
3

  level, the concentration increases in the horizontal region (0, 

0.264) and reduces in the region (0.33, 0.666) for 4 and reduces in the entire flow region for 6 (Fig.43). 

The effect of dissipation on C is shown in Figs 36, 44, 52 and 60. It is found that at horizontal levels 
h

y
3

  

and 
2h

y
3

  and vertical level 
1

x
3

 , the actual concentration decreases with Ec0.03 and grows with higher 

Ec0.05 (Figs 36, 52 and 60). At 
2

x
3

  level the actual concentration grows with Ec0.03 except in the 

region (0.396, 0.462) and for higher Ec0.05, the concentration grows in the region (0, 0.396) and reduces in 
the region (0.462, 0.666) (Fig.44). The effect of the Schmidt number Sc on C is shown in Figs 37, 45, 53, 61. 

The lesser molecular diffusivity, the larger is the actual concentration at 
2h

y
3


 
level. At 

h
y

3
  level, the 

actual concentration grows with Sc1.3 and decreases with Sc2.01 (Fig.61). At 
1

x
3

  level the actual 

concentration decreases with Sc = 0.6 and grows with Sc at y = 0 and in the remaining region it grows at Sc 

= 0.6, then decreases with Sc = 2.01 (Fig.37). At 
2

x
3

  level, for lower (Sc=0.6) and higher values of Sc 

=2.01 the actual concentration decreases in the region (0, 0.333) and grows in the region (0.396, 0.666), 
while at Sc =1.3, it depreciates in the strip (0.396, 0.666) (Fig.45). With respect to the Soret parameter S0, we 

find that the actual concentration grows with |S0| at all horizontal levels and vertical level at 
1

x
3

  (Figs 38, 

54, 62). At the vertical level 
2

x
3

 , the concentration grows in the region (0, 0.333) and depreciates in the 

region (0.462, 0.666) (Fig.46). When the molecular buoyancy force dominates over the thermal buoyancy 

force, the actual concentration at 
1

x
3

 , 
h

y
3

  and 
2h

y
3

  levels decreases irrespective of the directions of 

the buoyancy forces (Figs 39, 55 and 63). At 
2

x
3

  level the actual concentration reduces in the horizontal 

strip (0.462, 0.666) with an increase in N>0 and depreciates with |N| (<0) (Fig.47). The variation of C with 
the chemical reaction parameter  is shown in Figs 40, 48, 56 and 64. It is found that the actual concentration 

decreases at 
1

x
3

 , 
2

x
3


 
and 

h
y

3
  levels and grows at 

2h
y

3
  in the case of a chemical reaction. In the 
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case of no chemical reaction the actual concentration grows at 
h

y
3

  level and decreases at 
2h

y
3

  level 

with 0.5, but a reversed effect is noticed at  = 2 (Figs 56 and 64). At the vertical level 
2

x
3

 , the actual 

concentration grows in the strip (0, 0.264) and reduces in the strip (0.33, 0.666) for 0.5 and for higher 2, 
we notice depreciation in the entire flow region (0y0.666) (Fig.48). 
 

 
 

Fig.1. Variation of   with Ra at 
1

x
3

  level           Fig.2. Variation of   with Ra at 
1

x
3

  level 

I II III

Ra 2 2 210 2 10 3 10 
                                               

I II III

Rad . . .0 01 0 03 0 07
 

 

 
 

Fig.3. Variation of   with   at 
1

x
3

  level               Fig.4. Variation of   with Ec at 
1

x
3

  level 

I II III

2 4 6
                                                            

I II III

Ec . . .0 001 0 003 0 005
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Fig.5. Variation of   with Sc at 
1

x
3

  level                  Fig.6. Variation of   with 0S  at 
1

x
3

  level 

I II III IV

Sc . . . .0 24 0 6 1 3 2 01
                                                           

0

I II III IV

S . .0 5 1 0 5 1 
 

 

Fig.7. Variation of   with N at 
1

x
3

  level                 Fig.8. Variation of   with   at 
1

x
3

  level 

I II III IV

. .N 1 2 0 5 0 8 
                                                     

I II III IV V VI

. . . .0 2 0 5 2 0 2 0 5 2   
 

 

Fig.9. Variation of   with Ra at 
2

x
3

  level            Fig.10. Variation of   with Ra at 
2

x
3

  level 

I II III

Ra 2 2 210 2 10 3 10 
                                                     

I II III

Rad . . .0 01 0 03 0 07
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Fig.11. Variation of   with   at 
2

x
3

  level               Fig.12. Variation of   with Ec at 
2

x
3

  level 

I II III

2 4 6
                                                        

I II III

Ec . . .0 001 0 003 0 005
 

 

Fig.13. Variation of   with Sc at 
2

x
3

  level              Fig.14. Variation of   with 0S  at 
2

x
3

  level 

I II III IV

Sc . . . .0 24 0 6 1 3 2 01
                                                         

0

I II III IV

S . .0 5 1 0 5 1 
 

 

Fig.15. Variation of   with N at 
2

x
3

  level                 Fig.16. Variation of   with   at 
2

x
3

  level 

I II III IV

. .N 1 2 0 5 0 8 
                                                     

I II III IV V VI

. . . .0 2 0 5 2 0 2 0 5 2   
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            Fig.17. Variation of   with Ra at 
2h

y
3

  level           Fig.18. Variation of   with Ra at 
2h

y
3

  level 

                          
I II III
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I II III
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       Fig.19. Variation of   with   at 
2h

y
3

  level                Fig.20. Variation of   with Ec at 
2h

y
3

  level 
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           Fig.21. Variation of   with Sc at 
2h

y
3

  level           Fig.22. Variation of   with 0S  at 
2h

y
3

  level 
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         Fig.23. Variation of   with N at 
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           The rate of heat transfer (Nu) at x = 1 is shown in Tabs 1-3 for different levels. Table 1 shows the 
variation of Nu with the Rayleigh number Ra and heat source parameter . It is found that the rate of heat 
transfer increases with an increase in Ra2x102 and depreciates with higher Ra3x102 in all the three 
quadrants. With respect to , we find that the Nusselt number decreases in the lower and middle quadrants 
and increases in the upper quadrant with an increase in . When the molecular buoyancy force dominates 
over the thermal buoyancy force the Nusselt number grows in the lower and middle quadrants and 
depreciates in the upper quadrant when the buoyancy forces act in the same directions and for the forces 
acting in opposite directions, |Nu| decreases at all the three quadrants with respect to the Schmidt number Sc. 
We find that the lesser the molecular diffusivity, the larger |Nu| and for still lower molecular diffusivity, the 
larger |Nu| at all the quadrants. The variation of Nu with the Soret parameter S0 shows that the rate of heat 
transfer decreases with |S0| in the first quadrant and increases with |S0| in the middle and upper quadrants 
(Tab.2). With respect to the radiation parameter N1 we find that the Nusselt number decreases with N10.03 
and increases with higher N10.07 in all the quadrants. The higher the dissipative heat, the smaller |Nu| and 
for further higher dissipative heat (Ec0.005), the larger |Nu| in all the three quadrants. The variation of Nu 
with the chemical reaction parameter  shows that the Nusselt number in all the three quadrants increases 
with 1.5 and decreases with higher 2.5. In the generating chemical reaction case the Nusselt number in 
the lower and middle quadrants grows with || while in the upper quadrant, it depreciates with ||1.5 and 
grows with ||2.5 (Tab.3). 
 
Table 1. Nusselt number (Nu) at different levels. 
 

 I II III IV V 
Nu1 5.89625 6.19412 5.46543 5.54957 5.4746 
Nu2 4.35776 4.54913 4.03072 4.23018 4.374 
Nu3 2.81926 2.88152 2.596 3.15086 3.2734 
Ra 10 2 2×10 2 3×10 2 10 2 10 2 
α 2 2 2 4 6 

                                                 
Table 2. Nusselt number (Nu) at different levels. 
 

 I II III IV V VI VII VIII IX X 
Nu1 5.89625 8.09168 2.01284 1.969 3.8048 3.48837 2.09389 5.6592 2.08116 2.0535 
Nu2 4.35776 4.72671 1.89901 1.86854 4.254 3.35474 1.96231 4.3808 2.00948 2.124146 
Nu3 2.81926 1.35575 1.78519 1.76807 4.7032 3.22112 1.83072 3.1024 1.95224 2.2684 

N 1 2 -0.5 -0.8 1 1 1 1 1 1 
Sc 1.3 1.3 1.3 1.3 0.24 0.6 2.01 1.3 1.3 1.3 
S0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1 -0.5 -1 

                                     
Table 3. Nusselt number (Nu) at different levels. 
 

 I II III IV V VI VII VIII IX X XI 
Nu1 2.12654 1.93846 2.40676 2.18783 2.103 1.55902 5.89625 2.18555 -1.0392 1.83438 2.075676
Nu2 1.99172 1.86078 2.12364 2.0305 1.9609 1.90722 4.35776 2.07458 0.82518 1.829688 1.951196
Nu3 1.85689 1.78312 1.8405 1.87318 1.8187 2.25541 2.81926 1.96362 2.68957 1.824992 1.82672
Rad 0.01 0.03 0.07 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 
Ec 0.001 0.001 0.001 0.003 0.005 0.001 0.001 0.001 0.001 0.001 0.001 
Γ 0.2 0.2 0.2 0.2 0.2 0.2 0.5 2 -0.2 -0.5 -2 

 
           The rate of mass transfer (Sh) in all the three quadrants is shown in Tabs 4-6 for different parametric 
values. It is found that the rate of mass transfer in the lower and upper quadrants decreases with an increase 
in Ra and that in the middle quadrant it grows with Ra. With respect to the heat source parameter  we find 
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that the Sherwood number in the middle and upper quadrants grows with an increase in , while in the lower 
quadrant it decreases with  (Tab.4). When the molecular buoyancy force dominates over the thermal 
buoyancy force the rate of mass transfer in the lower and upper quadrants increases, while in the middle 
quadrant it decreases when the buoyancy forces act in the same direction and for the forces acting in opposite 
directions the Sherwood number increases in the lower and middle quadrants and decreases in the upper 
quadrant. With respect to the Schmidt number Sc, we find that the Sherwood number in the lower and upper 
quadrants increases with Sc1.3 and decreases with higher Sc2.01, while in the middle quadrant, it 
decreases with Sc1.3 and increases with Sc2.01. With reference to S0, we find that an increase in S0>0 
reduces Sh in all the three quadrants, while an increase in |S0| (<0) diminishes Sh in the lower and middle 
quadrants and increases in the upper quadrant (Tab.5). Table 6 shows that variation of Sh with the radiation 
parameter N1, Eckert number Ec and chemical reaction parameter . It is found that an increase in N1 reduces 
Sh in all the three quadrants. Thus the higher the dissipative heat, the larger the rate of mass transfer in all the 
three quadrants and for further higher Ec0.05, the smaller Sh in all the three quadrants. The rate of mass 
transfer experiences an enhancement in the case of no chemical reaction case, while in the case of a chemical 
reaction, it is found to grow in the lower and middle quadrants and decreases in the upper quadrant (Tab.6).            
 
Table 4. Sherwood number (Sh) at different levels. 
 

 I II III IV V 
sh1 -37.949 28.5738 7.7496 -27.99 -19.689
sh2 0.43571 5.77304 9.1027 0.83571 -13.419
sh3 38.8204 -17.028 7.61476 48.8204 166.73 
Ra 10 2 2×10 2 3×10 2 10 2 10 2 
α 2 2 2 4 6 

 
Table 5. Sherwood number (Sh) at different levels. 
 

 I II III IV V VI VII VIII IX X 
sh1 -37.949 -28.176 3.09948 4.68824 -2.0915 31.1623 12.0954 -40.04 8.1621 3.3357 
sh2 0.43257 2.52872 2.5096 2.51196 19.856 9.78076 3.68836 0.444 3.6005 3.0479 
sh3 38.8204 33.2336 1.91969 0.33572 10.803 -11.601 -4.71868 41.36 -0.961 2.7602 
N 1 2 -0.5 -0.8 1 1 1 1 1 1 
Sc 1.3 1.3 1.3 1.3 0.24 0.6 2.01 1.3 1.3 1.3 
S0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1 -0.5 -1 

 
Table 6. Sherwood number (Sh) at different levels. 
 

 I II III IV V VI VII VIII IX X XI 

sh1 12.7969 10.6176 8.73688 28.8124 12.988 -1.4026 -2.94896 -3.2822 10.1396 10.55628 10.9834

sh2 3.99816 3.01012 2.45208 10.3831 4.0639 0.34006 0.43571 -2.986 2.57584 2.9558 3.51308
sh3 -4.8006 -4.5973 -3.8327 -8.0463 -4.8599 2.08272 2.2036 -2.6897 -4.988 -4.64464 -3.95724
Rad 0.01 0.03 0.05 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 
Ec 0.001 0.001 0.001 0.003 0.005 0.001 0.001 0.001 0.001 0.001 0.001 
γ 0.2 0.2 0.2 0.2 0.2 0.2 0.5 2 -0.2 -0.5 -2 

 
Nomenclature 
 
 C – concentration 
 Cp – specific heat at constant pressure 
 Ec – Eckert number 



Effect of chemical reaction and radiatıon on double diffusive … 1145 

 fp ( p= 1,2,3…..) – global nodal values 
 g´ – acceleration due to gravity 
 H – Heaviside function 
 K – concentration coefficient 
 K1 – thermal conductivity 
 k – permeability of the porous medium 
 k11 – cross diffusivity 
 Le – Lewis number 
 N – buoyancy ratio 
 N1  – radiation parameter 

 i
kN  (k= 1,2,3….) – linear combination of shape function 

 Nu – Nusselt number 
 p´ – pressure 
 Q – strength of the heat source 
 qr  – radiative heat flux 
 Ra – Rayleigh number 
 Sc – Schmidt number 
 Sh – Sherwood number 
 S0 – Soret number 
 T' – temperature 
 Tc  and Cc – temperature and concentration on the cold side walls 
 Th and Ch – temperature and concentration on the warm side walls 
 u' and v' – Darcy velocities along x and y directions 
 α – heat source parameter 
 β – thermal expansion of the fluid 
 β* – volume coefficient 
 θ1, θ2… θ10 – global values of θ 
 μ – coefficients of viscosity of the fluid 
 ν – kinematics viscosity of the fluid  
 ρ' – density of the fluid 
 ψ – stream function 
 ψ1, ψ2…ψ10  – global values of ψ 
 ψi, θi, Ci  – approxiamate values of ψ, θ and C 
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