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In this paper, an attempt is made to discuss the combined influence of radiation and dissipation on the
convective heat and mass transfer flow of a viscous fluid through a porous medium in a rectangular cavity using
the Darcy model. Making use of the incompressibility, the governing non-linear coupled equations for the
momentum, energy and diffusion are derived in terms of the non-dimensional stream function, temperature and
concentration. The Galerkin finite element analysis with linear triangular elements is used to obtain the global
stiffness matrices for the values of stream function, temperature and concentration. These coupled matrices are
solved using an iterative procedure and expressions for the stream function, temperature and concentration are
obtained as linear combinations of the shape functions. The behavior of temperature, concentration, the Nusselt
number and Sherwood number is discussed computationally for different values of the governing parameters,
such as the Rayleigh Number (Ra), heat source parameter (o), Eckert number (Ec), Schmidt Number (Sc), Soret
parameter (S), buoyancy ratio ().
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1. Introduction

The study of heat transfer and mixed convection flow in porous medium enclosures of various
shapes has received much attention. Interest in these natural convection flows and heat transfer in a porous
medium has been motivated by a broad range of applications, including geothermal systems, crude oil
production, storage of nuclear waste materials, ground water pollution, fiber and granular insulations,
solidification of castings, etc. In a wide range of such problems, the physical system can be modeled as a
two-dimensional rectangular enclosure with vertical walls held at different temperatures and the connecting
horizontal walls considered adiabatic. Convective heat transfer in a rectangular porous duct, whose vertical
walls are maintained at two different temperatures and horizontal walls insulated, is a problem which has
received attention of many investigators. Some of these works include numerical results.

The investigation of heat transfer in enclosures containing porous media began with the experimental
work of Verschoor and Greebler (1952). Verschoor and Greebler (1952) were followed by several other
investigators interested in porous media heat transfer in rectangular enclosures. In particular, Bankvall (1972;
1973; 1974) published a great deal of practical work concerning heat transfer by natural convection in
rectangular enclosures completely filled with porous media. Burns et al. (1926) described a porous medium
heat transfer flow in a rectangular geometry. Cheng and Hi (1987) studied the flow and heat transfer rate in a
rectangular box with solid walls using a Brinkman model, when the box is differentially heated in the
horizontal direction. Chen et al. (1970) considered enclosures with the aspect ratio greater than or equal to
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one. Their numerical computations indicate that when the Darcy number based on the width of the
enclosures is less than /07, Darcy’s law and the Brinkman equation virtually give the same results for the
heat transfer rate. Joseph et al. (1964) considered laminar forced convection in rectangular channels with
unequal heat addition on adjacent sides. Teomann Ayhan er al. (1998) considered heat transfer and flow
structure in a rectangular channel with wing-type vortex generator. Han-Chieh Chiu et al. (2007) discussed
mixed convection heat transfer in horizontal rectangular ducts with radiation effects. Chittibabu et al. (2006)
discussed convective flow in a porous rectangular duct with differentially heated side walls using a
Brinkman model.

When heat and mass transfer occur simultaneously, it leads to a complex fluid motion called double-
diffusive convection. Double-diffusion occurs in a wide range of scientific fields such as oceanography,
astrophysics, geology, biology and chemical processes. Viskanta et al. (1985) published complete reviews on
the subject. Bejan (1979) wrote a fundamental study of scale analysis relative to heat and mass transfer
within cavities submitted to horizontal combined and pure temperature and concentration gradients.
Kamotani et al. (1985) conducted experiments on mass transfer and flow pattern in shallow enclosures
(H\L=0, 13-0.55) filled with a fluid (P, = 7, Sc = 2100) in cases where the combined buoyancy effect is
dominated by the buoyancy due to the concentration gradient. Other experimental studies dealing with
thermo solute convection in rectangular enclosures were reported by Lee et al. (1990). Lee and Hyun (1985;
1990), Hyun and Lee (1990) reported numerical solutions for unsteady double-diffusive convection in a
rectangular enclosure with aiding and opposing temperature and concentration gradients that were in good
agreement with reported experimental results. The most recent review of this activity is the one published by
Viskanta et al. (1985), where it is stressed that the two requirements for the occurrence of double-diffusive
convection are that the fluid contains two or more components with different molecular diffusivities and that
these components make opposing contributions to the vertical density gradients. Trevisan and Bejan (1987)
analyzed natural convection in a rectangular enclosure with uniform heat and mass fluxes along the vertical
sides analytically and numerically. He obtained Oseen linearised solution for all spaces filled with mixtures
characterized by Le = / and arbitrary buoyancy ratios.

The effect of varying the Lewis number (Le) is documented by a similarity solution valid for Le > /
in heat transfer driven flows and for Le < / mass transfer driven flows. Mass line patterns are used to
visualize the convective mass transfer rate and the flow reversal is observed when the buoyancy ratio n = 1.
Also Trevisan et al. (1987) studied natural convection heat and mass transfer through a vertical porous layer
subjected to uniform fluxes of heat and mass from the side. The Oseen linearised solution that yielded the
overall heat and mass transfer correlation was developed for a porous medium and a buoyancy effect ruled
by both temperature and concentration variations in the high Rayleigh number region where the heat and
mass transfer rates differ greatly from estimates based on the assumption of pure diffusion. The similarity
solution that produced the overall mass transfer was developed for different parametric domains.

The effect of viscous dissipation on heat transfer has been studied for different geometries.
Beckermann (1987) studied the viscous dissipation effect on natural convection in a horizontal cylinder
embedded in a porous medium. Their study showed that the viscous dissipation affect the natural convection
in a porous cavity and found that the heat transfer rate at hot surface decreases with increase of viscous
dissipation parameter. Thermal radiation plays a significant role in the overall surface heat transfer where
convective heat transfer is small. Verschoor et al. (1952) studied the effect of viscous dissipation and
radiation on an unsteady magnetohydrodynamic free convection flow past a vertical plate in a porous
medium. They found that the temperature profile increases when viscous dissipation increases. A good
amount of work has been done to understand natural convection in a porous cavity. In spite of many efforts
to study heat transfer in a porous cavity, the combined effect of viscous dissipation and radiation on a porous
medium filled inside a square cavity has not received much attention in the literature. Badruddin et al. (2006)
investigated the radiation and viscous dissipation on convective heat transfer in a porous cavity. Recently
Padmavathi (2009) analyzed the connective heat transfer through a porous medium in a rectangular cavity
with heat sources and dissipation under varied conditions. Ranga Reddy (1997) discussed the natural
convective heat and mass transfer in a porous rectangular cavity with differentially heated side walls using
the Brinkman model by solving the governing equations with the Galerkin finite element analysis. Sivaiah et
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al. (2004) investigated the double-diffusive convective heat transfer flow of a viscous fluid through a porous
medium with a rectangular duct with thermo-diffusion effect by using the finite element technique. Reddaiah
et al. (2010) analyzed the effect of viscous dissipation on convective heat and mass transfer flow of a viscous
fluid in a duct of a rectangular cross section by employing the Galerkin finite element analysis.

Fig.l. Schematic diagram of the flow model.
2. Formulation of the problem

We consider the mixed convective heat and mass transfer flow of a viscous incompressible fluid in a
saturated porous medium confined in the rectangular duct (Fig.I) whose base length is “a”, height “b”. The
heat flux on the base and top walls is maintained constant. The Cartesian coordinate system O (x, y) is
chosen with the origin on the central axis of the duct and its base parallel to the x-axis. We assume that

i)  The convective fluid and the porous medium are everywhere in local thermodynamic equilibrium.
ii) There is no phase change of the fluid in the medium.
iii) The properties of the fluid and of the porous medium are homogeneous and isotropic.
iv) The porous medium is assumed to be closely packed so that Darcy’s momentum law is adequate in the
porous medium.
v) The Boussinesq approximation is applicable.
Under these assumption the governing equations are given by
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where, ' and V' are Darcy velocities along the x- and y- directions, respectively. 7', C, p' and g’ are the
temperature; concentration, pressure and acceleration due to gravity. 7., C., T, and C, are the temperature
and concentration on the cold and warm side walls, respectively. p’, 1, v and P are the density, coefficients
of viscosity, kinematic viscosity and thermal expansion of the fluid, £ is the permeability of the porous
medium, K is the thermal conductivity, C, is the specific heat at constant pressure, Q is the strength of the
heat source, k;; is the cross diffusivity, * is the volume coefficient of expansion with mass fraction
concentration, k is the concentration coefficient and g, is the radiative heat flux. The boundary conditions are

u=v=0 on the boundary of the duct

T=T, C=C. on the side wall to the left

T =T, C=C, on the side wall to the right 2.7
a@—: =0, % =0 on the top (y = 0) and bottom

u=v=_0 walls (y = 0) which are insulated.

Invoking Rosseland approximation for radiation

_ o' ar”
3Pr

qr

Expanding 77 in Taylor’s series about 7, and neglecting higher order terms
7" =471 - 317
We now introduce the following non-dimensional variables
x' = ax; V' =by ; h = b/a,
W =Wlayu, V=Wa)v, p=Npld)p, (2.8)

T'=T,+06(T),-T.), C'=Cy+C(T)-T.).

The governing equations in the non-dimensional form are
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In view of the equation of continuity, we introduce the stream function y as
v v (2.13)

- oy’ ox

Eliminating p from Eqs (2.9) and (2.10) and making use of Eq.(2.11) the equations in terms of y and 0 are
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where
T,-T.)a’
G= gB(h—ZC)a (Grashof number), P = p ¢,/K; (Prandtl number)
v
z Bg (Tg B TC )Ka :
o = Qa’/K; (heat source parameter), Ra=———— (Rayleigh number)
v
3PBRK
N, = B .R 13 (radiation parameter), Sc=—~ (Schmidt number)
40" :T; D
¢ *(C,-C,
So= @ (Soret parameter), N= M (buoyancy ratio)
VB 5(T h Tc)
a’ k,I?
Ec =| ——— | (Eckert number), y = -~ (chemical reaction parameter).
WKK AT D,

The boundary conditions are
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N_y My on x=0, and 1, 2.17)
Ox oy

0=1, c=1 on x=0,

0=0, c=0 on x=1. (2.18)

3. Finite element analysis and solution of the problem

The region is divided into a finite number of three node triangular elements, in each of which the
element equation is derived using the Galerkin weighted residual method. In each element e, f; is an
approximate solution for an unknown f in the variational formulation and can be expressed as a linear

combination of shape function, (N ,’C) k=1,2,3, which are linear polynomials in x and y. This approximate

solution of the unknown f coincides with actual values at each node of the element. The variational
formulation results in a 3 x 3 matrix equation (stiffness matrix) for the unknown local nodal values of the
given element. These stiffness matrices are assembled in terms of global nodal values using inter element
continuity and boundary conditions resulting in a global matrix equation.

In each case, there are r distinct global nodes in the finite element domainand f, (p = 1, 2, ...... r) are

§ r
the global nodal values of any unknown f defined over the domain. Then f = ZZ Sy @', where the first
i=l p=I
summation denotes summation over s elements and the second one represents summation over the independent
global nodes and (D; =N Ii\,, if p is one of the local nodes, say k of the element e;= 0, otherwise. f,’s are
determined from the global matrix equation. Based on these lines, we now make a finite element analysis of the
given problem governed by Egs (2.14)-(2.16) subjected to the conditions (2.17)-(2.18).
Let ', 0’ and C' be the approximate values of y, 6 and C in an element 6,.

V=N g F Ny owh+ NGy, (3.1a)
0 =N; 0, + N5 05+ N} 65, (3.1b)
C=N)Ci + N, C5+ N} C5. (3.1c)

Substituting the approximate value ', 6’ and C' for y, 0 and C, respectively, in Eq.(2.13) the error is
as follows

. 20i  A2ni i Api i g
P TR i LS A e A
3N, Jox? o’ oy ox ox 0oy

, ) (3.2)
—-00+ Ec N +(6—W J ,
oy Ox
. 2 i 2 ~i i i i i 2 i 2 i
E2=8C2' +8CZ' _Se oy. oC oy oC +ScSo o°C +8 C e (3.3)
ol oy oy  oOx ox oy N [ a? o7’

Under the Galerkin method this error is made orthogonal over the domain of ¢; to the respective
shape functions (weight functions) where
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JE}N,idQ =0,

ei

j ELNLAQ =0,

el

.[Nllc]+4 ae+ae _Palai_al@_i_
. 3N, L ax? oy’ oy Ox ox Oy
—-a0+| Ec 6\|/ +(5‘Uj dQ =0,

oy ox

J-N 8C+8C2 _Se oy’ oc' oy’ oC N
o’ oy oy Ox ox Oy

ei

550108 08 1 clan=0
N | ox oy

(3.4)

(3.5)

Using Green’s theorem we reduce the surface integral Eqs (3.4) and (3.5) without affecting y terms
and obtain
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where, ['; is the boundary of e;. _
Substituting L.H.S. of Eqs (3.1a) - (3.1¢) for v/, ® and C' in Eqs (3.6) and (3.7), we get
ZI( 4NJ ON; ON} . ON; N} .
Ox oy oy

; ¢ ON', ONi ON' oON! ;
—PZme[ay e ayLJdQ—OLZGJ;N]IYlin+

1 el

2 .
0 oo’ 00’ ;
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oN, &N, oN, ON; oN., N, N, N
ch[_k_ Ny _kJ_ ey, j[@y E N @V}zm

+sCsOZe,I(aNk ON} _ oN; aNkJ‘VICiinfZ (3.9)
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(Lm k=1,2,3)

where, Q! =Q,, +QO;, + 0.,,0; ’s being the values of O; on the sides s = (1, 2, 3) of the element e,. The
sign of Q;{ ’s depends on the direction of the outward normal with respect to the element. Choosing different

N ,’{ ’s as weight functions and following the same procedure we obtain matrix equations for three unknowns

(Q,), viz.

(";)(O;)Z(Q/i) (3.10)

where, (a;k) is a 3 x 3 matrix, (6;),(Q,i) are column matrices. Repeating the above process with each of s

elements, we obtain sets of such matrix equations. Introducing the global coordinates and global values for
9;, and making use of inter element continuity and boundary conditions relevant to the problem the above

stiffness matrices are assembled to obtain a global matrix equation. This global matrix is 7 x 7 square matrix
if there are r distinct global nodes in the domain of the flow considered.
Similarly, substituting ', 0’ and ¢' in Eq.(2.12) and defining the error

E;=V?y-M?y+Ra (@”\,acj (3.11)
ox ox

and following the Galerkin method we obtain

j Ely'dQ=0. (3.12)

Using Green’s theorem (3.8) reduces to

j[aN,’; o' aNp oy +Ra(6i oNp i aNkJ ]dQ:
0

ox  Ox oy oy X ox

i

(3.13)

J.N,{— n, +6W

Jdri +[ Nino'ar,.
oy r

In obtaining (3.13) Green’s theorem is applied with respect to derivatives of v without affecting 0 terms.
Using Egs (3.1) and (3.2) in Eq.(3.13) we have
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- Q| ox ox oy oy
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In the problem under consideration, for computational purposes, we choose a uniform mesh of 10
triangular elements (Fig.Il). The domain has vertices whose global coordinates are (0, 0), (I, 0) and (I, ¢) in
the non-dimensional form. Let e;, e,.....e;9 be the ten elements and let 6,, 0,, ... 0, be the global values of 6
and y;, V,..., o be the global values of y at the ten global nodes of the domain (Fig.II).

(1, h)

(2/3, 2h/3) (y=2h/3)

(1/3,h/3 23 3y (v=h/3)

x=0) (x=1/3) (x=2/3) (x=1)
0. 0

Fig.II. Schematic diagram of the configuration.

4. Shape of functions and stiffness of matrices

Range functions in 7 ; i = element, j = node.
i,j

n=1-3x, n=3x—3—y, n=]—3—y, n:—1+3—y,

11 1,2 h 2,1 h 2,2 h
n=1—3x+3—y, n=2-3x, n——1+3x—3—y, n=3—y,
2,3 h 3.1 3,2 h 33 h
n=1—3—y, n =-2+3x, n=2—3x+—y, n =2-3x,
4,1 h 4,2 4 5,1
n=—1+3x——y, n=3—y, n=2-3x, n=3x—3—y,
5,2 53 h 6,1 6,2 h
n=]+—y, = —3—y, n =-2+3x, n=]—3x+3—y,
6,3 h 7.1 h 7,2 7.3 h
n =3-3x, n =—1-|—3x—3—y, n =3x—3—y, n =—1+3—y.
8,1 8.2 h 9,2 h 9,3 h
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Substituting the above shape functions in Eqs (3.8), (3.9) and (3.14) with respect to each element and
integrating over the respective triangular domain we obtain the element in the form Eq.(3.8). The 3x3 matrix
equations are assembled using connectivity conditions to obtain §x8 matrix equations for the global nodes
V,, 0, and C,.

The global matrix equation for 0 is

The global matrix equation for C is

The global matrix equation for v is

A; X5 = B; (4.3)
where,
(-1 a;, a3 0 0 0 0 0 0 0 0]
0 a,, a3 0 0 0 0 0 0 0 0
0 a; az azy az;s 0 0 0 0 0 0
0 0 ay ay as 0 0 0 0 0 0
0 0 a5 as; ass ass as; 0 0 0 0
A=10 0 0 0 ag ag ag 0 0 0 0|,
0 0 0 0 a5 ay a; az Gy 0 0
0o 0 0 0 0 0 ag ag ag 0 0
0o 0 0 0 0 0 a9, agg ag agy 0
o o0 0 0 0 0 0 0 ayg aqg, 0
o0 0 0 0 0 0 0 a9 ayy -I]
(7 b b 0 0 0 0 0 0 0 0
12 13
0O b b 0 0 0 0 0 0 0 0
22 23
0O b b b b 0 0 0 0 0 0
32 33 34 35
0o 0 b b b 0 0 0 0 0 0
43 44 45
0o 0 b b b b b 0 0 0 0
53 54 55 56 57
4,=l0 0 0 0 b b b 0 0 0 0
4 6.5 6.6 67 ’

75 76 77 7.8 7.9

87 88 89

9,7 9,8 99 9,10

11,9 11,10 11,11 |
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-1 0 0 0 0 0 0 0 0 0
o -1 0 0 0 0 0 0 0 0
o 0 -1 0 0 0 0 0 0 0
o 0 0 -1 0 0 0 0 0 0
A= o 0 o0 0 -1 0 0 0 0 0
1o 0o 0 0 0 000 0 o0
o 0 0 0 0 0 0 0 0 0
o 0 o0 0 0 0 0 0 0 0
o 0 0 0 0 0 0 0 -1 0
Lo 0 0 0 0 00 0 0 -]
_61 ) _C] ) _u] 1
0, G U
05 Cs Us
X3 = 96 . X4 = C6 5 X5 =l Us s
0, & Uy
05 Cs Ug
0y Gy Ug
0,0 Cr Ujp
0, LC U
ar br cr
i i 1
ar br cr
2 2 2
ar br cr
3 3 3
ar br cr
4 4 4
ar br cr
5 5 5
B; = , B,=|br|, B; =
3 a6r 4 6]" 5 c6r
ar br cr
7 7 7
ar br cr
8 8 8
ar br cr
9 9 9
ar br cr
10 10 10
ar br cr
11 L 11 ] 11
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The global matrix equations are coupled and are solved under the following iterative procedures. At
the beginning of the first iteration the values of (y;) are taken to be zero and the global Eqgs (4.1) and (4.2)
are solved for the nodal values of 6 and C. These nodal values (0,) and (C;) obtained are then used to solve
the global Eq.(4.3) to obtain (y;). In the second iteration these () values are obtained and used in Eqgs (4.1)
and (4.2) to calculate (0;) and (C;) and vice versa. The three equations are thus solved under the iteration
process until two consecutive iterations differ by a reassigned percentage.

The domain consists of three horizontal levels and the solution for ¥ and 0 at each level may be
expressed in terms of the nodal values as follows,

In the horizontal strip 0 <y S%
W= (WN] YNNG ) H (1),
y 4y 1
=W, (1-4x)+ ¥V, 4| x—= +‘P77(1—11) 0< ¥<2J,
C

W= (VN + W N+ WN ) H (1-75)+

+(WoN3 + W N7+ WNG ) H (1-15) Gs xﬁé),

w,2(1-2x) +‘P3[4x—47y—IJ+T6(%JJH(1—T2)+

(
[‘{12(1—%}% (1+47y—4xj+‘1’6 (4x—1)]H(1—t3),

J’_

W= (WNG YN+ NG | H (1-5),

+(WNT N NG H (1) [zs xS]),

=(‘I’3(3—4x) +‘1’42£2x—27y—1j+‘}’6£47y—4x+3DH(1—r3)+
+\1!3( —%yj +W¥s5(4x-3) +‘P6[47yBH (1-14).

Along the strip %S yi%

W= (W N+ WNG +WgNG ) H (1) +(WNG +WoNg +W NG ) H(1-15)

H(WNG +WsNS +WNS ) H(1-7,), (és xglj,
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\y:[ W, 2(1-2x) +¥, (4x3) wg(‘%_zn H (1-1y)+

+‘P6[2( 2yj \Pg(? 1)+‘{’8(1+47y—4xDH(1—t4)+

h

+‘I’6(4(1—x) + ‘P5(4x—47y—]j + W2 (2: D H (1- ).

Along the strip % <y<I

=‘P8(4(]—x)+‘1’94(x—%)+‘P102(47y—SDH(1—16) (%s xslj,
where = 4x, = 2x, r3=4?x,

and H represents the Heaviside function.
The expressions for 0 are:

In the horizontal strip 0< yig

e{e,(1-4x)+ 924(x—%j+ e{%yﬂ H(I- 1)) (os xﬁéj,
Gz{ez(2(1—2x)+93(4x—47y—])+66(%DH([—U)+

+62(1—47yj ( +——4xj+ 05 (4x— IJ (1-13) [

|~
IA
=
IA
w | N
~—

(——4x+3jH(1— 3)+

2
lr-poscnafZp- |

Along the strip gf yi%

0=0;(3-4x)+20, (Zx———

| N
IA
=
IA
~
Ne—
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e:[e7( (1-2x)+04(4x— 3)+98(h 1DH(1—13)+

+(96(2( Zhy) eg(h 1j+68(1+47—4xDH(1—r4)+

+[96 (4(1—x)+95(4x—47y—] j+992(47y—]jo(l—r5) (ésmg.

Along the strip % <y<I

0 = [984(1—x) + 994( hj 6,0(4; 3)}1{ (1-14) @s x< 1].

The expressions for C are

C= [C1(1—4x)+ 024(x—%j+ c{%yn H(I-1,) (03x£§),
4y 4y
C = |C(2(1-2x)+ Cs 4x—7—1 + G| = H(I1-1,)+
4 4y 1 2
+C2£ hy)+ C7(1+7—4xj+ Cy (4x— 1)]H(1—r3) (gs xS;j,
2y 4y
C = C;(3-4x) +2C, ===l |+ Gy Sm—dx+3 H(I-13)+
+ (03[ 4y}+ Cs(4x—3)+ C6(4yD H(I-1,) (33 xS]j.
h h 3
Along the strip ?< y<%

C:(C7(2(1 2x)+ Cy(4x-3)+ C8(4hy IDH(I—r3)+

+(C6[2( —27)/)+ Cg(%—lj+ C8(1+47y—4xj
+[c6 (4(1-x)+ C5(4x—47y—1j+ cgz(%y— D H(I-15) [és xS%).

Along the strip %S y<I,

C:(C84(1—x) + Cyd (x—% J+ cm(%y—sn H(I-14) @s x< 1).

The dimensionless Nusselt numbers (Nu) and Sherwood Numbers (Sh) on the non-insulated
boundary walls of the rectangular duct are calculated using the formula
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Nu = (@) and Sh= (a—cj .
Ox x=1 Ox x=1

The Nusselt numbers on the side wall x=/ in different regions are
Nu,=2 — 46; (0<y<hl/3),
Nu,=2 — 405 (h/3£y£2h/3),
Nuy=2 — 46, (2h/3<y<h).

The Sherwood numbers on the side wall x=/ in different regions are
Sh,=2 - 4C; (0<y<hl/3),
Sh,=2 — 4C;s (h/3<y<2h/3),
Sh;=2 - 4C; (2h/3<y<h).

5. Discussion of the numerical results

We analyze the effect of radiation, dissipation and chemical reaction on the convective heat and mass
transfer flow of a viscous fluid through a porous medium in a rectangular cavity. Using the Galerkin finite
element analysis the governing equations are solved with linear triangular elements. The temperature,
concentration, rate of heat and mass transfer are analysed for different variations of the governing parameters.

The non-dimensional temperature (0) is shown in Figs 1-32 for different values of Ra, a, Ec, Sc, Sy,

N and v at different horizontal levels y =§ and y= % and vertical levels x =§ and x =§ . The variation

of 0 with the Rayleigh number Ra is shown in Figs 1, 9, 17 and 26 at different levels. With the convention
that the non-dimensional temperature is positive or negative (the actual temperature (7) is greater or lesser

. . . . . 1 h
than T¢), it is found that the actual temperature increases with an increase in Ra at xz; and y :E and

y :2?11 levels. At xzé level the actual temperature (7) decreases with Ra<2x/0” and increases with a

higher Ra>3x1 g (Fig.9). Figures 2, 10, 18 and 26 represent 0 with the radiation parameter ;. It is found that
the higher the radiative heat flux, the larger the actual temperature and for further higher radiative heat flux,
the smaller the temperature at xzé, x=§ and yzg levels. At a higher horizontal level y =2?h, the
actual temperature decreases with an increase in N;<0.03 and increases with N,20.07 (Fig.18). Figures 3, 11,
19, and 21 represent 0 with the heat source parameter o at different levels. It is found that at x :é, the
actual temperature increases in the horizontal strip (0, 0.134) and decreases in the region (0.201, 0.333). At

X =§ the actual temperature increases with an increase in a<4 and for higher a>6, the actual temperature
increases in the horizontal strip (0, 0.333) and decreases in the region (0.391, 0.666). At y =§ level, the

. . . . . . 2h
actual temperature decreases with o in the entire flow region. At a higher horizontal level y = K3 the actual

temperature increases with a<4 and decreases with higher a>6 (Fig.19). The effect of dissipation on 0 is
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shown in Figs 4, 12, 20 and 28. It is found that the actual temperature at x =§ and y= Z?h increases with

. 1 h . . .
Ec, while at x =§ and y =§ levels the actual temperature increases with Ec < (.03 and decreases with

higher Ec > 0.05 (Figs 4 and 28). With respect to Sc, we find that the lesser the molecular diffusivity, the
larger the actual temperature and for further lower molecular diffusivity, the smaller 0 and for still lower

molecular diffusivity, the larger the actual temperature at y :g and y :% levels (Figs 21 and 29). At

1 . . . . .
x= 3 level, the actual temperature grows with an increase in Sc<0.3 and it decreases with Sy, = 1.3, whereas

at Sc = 2.01, the actual temperature increases in the region (0, 0.201), then the actual temperature decreases
in the region (0.268. 333) (Fig.5). From Fig.13, we notice that the actual temperature increases with lower
and higher values of Sc, but at Sc =/.3, it decreases in the horizontal strip (0, 462) and increases in the region

(0.528, 666). With reference to the Soret parameter Sy, we find that an increase in S¢>0 decreases at y :g

and increases at y :%, while with an increase |So| (<0) increases at y :g level and reduces at y :%

level, (Figs 22 and 30). At the vertical levels x :é and x zé levels the actual temperature increases in the

region (0<y<0.201) and it decreases in the region (0.268, 0.33) with S¢>0, while it increases at both the levels
(Figs 6 and 14). When the molecular buoyancy force dominates over the thermal buoyancy force the actual
temperature increases when the buoyancy forces are in opposite directions at all horizontal and vertical

. L . h
levels, but for the forces acting in the same direction the actual temperature increases at y =§ level and

decreases at y =% level. At the vertical levels: x =§ and x =§ the actual temperature reduces in the

horizontal strip (0, 0.134) and increases in the strip (0.201, 0.333) (Figs 7 and 15). The variation of 6 with

the chemical reaction parameter y is shown in Figs 8, 16, 24, and 32. At yzg and xzé the actual
: . . 2h 2
temperatures decrease in the case of a chemical reaction. At y=— and x== the actual temperature
3 3
decreases with y<(.5 and increases with y>2.0, while at y =2—h, it reduces with |y| < 0.5, grows with |y| > 2
3
and at x =§ , it reduces with |y|<0.5 and reduces with |y[>2 at x =§, an increase in y < 0.5, enhances the

actual temperature in the horizontal strip (0, 0.201) and reduces it in the region (0.268, 0.333). At y =%

level, an increase in y<(.5, enhances the actual temperature in the region (0.333, 0.663) and reduces in the
region (0.729, I) and for higher y>2, a reversed effect is noticed in the behavior of the actual temperature
(Fig.32).

The non-dimensional concentration (C) is shown in Figs 33-64 for different parametric values at
different horizontal and vertical levels. Figures 33, 41, 49 and 58 represent the concentration (C) with the

Rayleigh number Ra. The concentration enhances at x :é level and depreciates at y = % level. At y :g

level it reduces with Ra<2x/0” and enhances with higher Ra>3x10°. At x :é with an increase in Ra<2x10’
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the concentration (C) decreases in the region (0, 0.264) and grows in the region (0.33<y< 0.666) while for
higher Ra>3x/(’, the concentration increases in the region (0, 0.264) and decreases in the region (0.33,

0.666) (Fig.41). The effect of radiation on C is shown in Figs 34, 42, 50 and 58. At y :% and x zé levels

. . . . . . 2h
the actual concentration increases with an increase in the radiation parameter N, (Figs 42 and 58). At y = 5

level, it decreases with N;<0.03 and grows with N;>0.05 (Fig.50). At x :é level the concentration increases

with N;<0.03 and for higher N;>0.05, it decreases in the horizontal strip (0, 0.201) and grows in the strip
(0.268, 0.333) (Fig.34). With respect to the heat source parameter o we find that the actual concentration

grows with an increase in a<4 and reduces with higher a>6 at y =% and y= 2h levels. At x =§ level the
concentration grows with a<4 and for a6, it reduces in the horizontal strip (0, 0.268) except in a narrow
region adjacent to y =0.333 (Fig.35). At x =§ level, the concentration increases in the horizontal region (0,
0.264) and reduces in the region (0.33, 0.666) for a<4 and reduces in the entire flow region for a>6 (Fig.43).

The effect of dissipation on C is shown in Figs 36, 44, 52 and 60. It is found that at horizontal levels y =§

and y= % and vertical level x = é , the actual concentration decreases with Ec<0.03 and grows with higher

Ec>0.05 (Figs 36, 52 and 60). At x=§ level the actual concentration grows with Ec<0.03 except in the

region (0.396, 0.462) and for higher Ec>0.05, the concentration grows in the region (0, 0.396) and reduces in
the region (0.462, 0.666) (Fig.44). The effect of the Schmidt number Sc on C is shown in Figs 37, 45, 53, 61.

The lesser molecular diffusivity, the larger is the actual concentration at y = 2—: level. At y =§ level, the

actual concentration grows with Sc</.3 and decreases with Sc>2.01 (Fig.61). At xzé level the actual

concentration decreases with Sc = (0.6 and grows with Sc at y = 0 and in the remaining region it grows at Sc
= (.6, then decreases with Sc = 2.0/ (Fig.37). At x :é level, for lower (Sc=0.6) and higher values of Sc

=2.01 the actual concentration decreases in the region (0, 0.333) and grows in the region (0.396, 0.666),
while at Sc =/.3, it depreciates in the strip (0.396, 0.666) (Fig.45). With respect to the Soret parameter Sy, we

find that the actual concentration grows with |Sy| at all horizontal levels and vertical level at x =§ (Figs 38,

54, 62). At the vertical level x =§ , the concentration grows in the region (0, 0.333) and depreciates in the

region (0.462, 0.666) (Fig.46). When the molecular buoyancy force dominates over the thermal buoyancy

. 1 h 2h . . o
force, the actual concentration at x :E , y=—and y= E3 levels decreases irrespective of the directions of

3
the buoyancy forces (Figs 39, 55 and 63). At x :é level the actual concentration reduces in the horizontal

strip (0.462, 0.666) with an increase in N>0 and depreciates with |V| (<0) (Fig.47). The variation of C with
the chemical reaction parameter y is shown in Figs 40, 48, 56 and 64. It is found that the actual concentration

decreases at x :é, X zé and y :% levels and grows at y :% in the case of a chemical reaction. In the
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. . . h 2h
case of no chemical reaction the actual concentration grows at y :E level and decreases at y :? level

with y<0.5, but a reversed effect is noticed at y = 2 (Figs 56 and 64). At the vertical level x :é , the actual

concentration grows in the strip (0, 0.264) and reduces in the strip (0.33, 0.666) for y<0.5 and for higher y>2,
we notice depreciation in the entire flow region (0<y<0.666) (Fig.48).
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The rate of heat transfer (Nu) at x = / is shown in Tabs 1-3 for different levels. Table 1 shows the
variation of Nu with the Rayleigh number Ra and heat source parameter o. It is found that the rate of heat
transfer increases with an increase in Ra<2x/(0’ and depreciates with higher Ra>3x/0° in all the three
quadrants. With respect to o, we find that the Nusselt number decreases in the lower and middle quadrants
and increases in the upper quadrant with an increase in o. When the molecular buoyancy force dominates
over the thermal buoyancy force the Nusselt number grows in the lower and middle quadrants and
depreciates in the upper quadrant when the buoyancy forces act in the same directions and for the forces
acting in opposite directions, [Nu| decreases at all the three quadrants with respect to the Schmidt number Sc.
We find that the lesser the molecular diffusivity, the larger [Nu| and for still lower molecular diffusivity, the
larger [Nu| at all the quadrants. The variation of Nu with the Soret parameter Sy shows that the rate of heat
transfer decreases with |Sy| in the first quadrant and increases with [Sy| in the middle and upper quadrants
(Tab.2). With respect to the radiation parameter N; we find that the Nusselt number decreases with N;<0.03
and increases with higher N;>0.07 in all the quadrants. The higher the dissipative heat, the smaller [Nu| and
for further higher dissipative heat (Ec>0.005), the larger [Nu| in all the three quadrants. The variation of Nu
with the chemical reaction parameter Y shows that the Nusselt number in all the three quadrants increases
with y</.5 and decreases with higher y>2.5. In the generating chemical reaction case the Nusselt number in
the lower and middle quadrants grows with |y| while in the upper quadrant, it depreciates with |y|</.5 and
grows with |y[>2.5 (Tab.3).

Table 1. Nusselt number (Nu) at different levels.

i 11 111 Y% \

Nul | 5.89625 | 6.19412 | 5.46543 | 5.54957 | 5.4746

Nu2 | 4.35776 | 4.54913 | 4.03072 | 4.23018 | 4.374

Nu3 | 2.81926 | 2.88152 | 2.596 | 3.15086 | 3.2734
Ra 10° 2x]0° | 3x10° 10° 10°
o 2 2 2 4 6

Table 2. Nusselt number (Nu) at different levels.

I 11 111 1Y% \Y VI VII VIII IX X
Nul | 5.89625 | 8.09168 | 2.01284 | 1.969 | 3.8048 | 3.48837 | 2.09389 | 5.6592 | 2.08116 2.0535
Nu2 | 435776 | 4.72671 | 1.89901 | 1.86854 | 4.254 | 3.35474 | 1.96231 | 4.3808 | 2.00948 | 2.124146
Nu3 | 2.81926 | 1.35575 | 1.78519 | 1.76807 | 4.7032 | 3.22112 | 1.83072 | 3.1024 | 1.95224 2.2684

N )i 2 -0.5 -0.8 1 1 1 1 1 1
Sc 1.3 1.3 1.3 1.3 0.24 0.6 2.01 1.3 1.3 1.3
S0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1 -0.5 -1

Table 3. Nusselt number (Nu) at different levels.

I 11 111 1\ \Y VI VII VIII IX X X1

Nul | 2.12654 | 1.93846 | 2.40676 | 2.18783 | 2.103 | 1.55902 | 5.89625 | 2.18555 | -1.0392 | 1.83438 |2.075676

Nu2 | 1.99172 | 1.86078 | 2.12364 | 2.0305 | 1.9609 | 1.90722 | 4.35776 | 2.07458 | 0.82518 | 1.829688|1.951196

Nu3 | 1.85689 | 1.78312 | 1.8405 | 1.87318 | 1.8187 | 2.25541 | 2.81926 | 1.96362 | 2.68957 | 1.824992| 1.82672

Rad 0.01 0.03 0.07 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Ec 0.001 0.001 0.001 0.003 | 0.005 | 0.001 0.001 0.001 0.001 0.001 0.001

I 0.2 0.2 0.2 0.2 0.2 0.2 0.5 2 -0.2 -0.5 -2

The rate of mass transfer (Sh) in all the three quadrants is shown in Tabs 4-6 for different parametric
values. It is found that the rate of mass transfer in the lower and upper quadrants decreases with an increase
in Ra and that in the middle quadrant it grows with Ra. With respect to the heat source parameter a we find
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that the Sherwood number in the middle and upper quadrants grows with an increase in o, while in the lower
quadrant it decreases with a (Tab.4). When the molecular buoyancy force dominates over the thermal
buoyancy force the rate of mass transfer in the lower and upper quadrants increases, while in the middle
quadrant it decreases when the buoyancy forces act in the same direction and for the forces acting in opposite
directions the Sherwood number increases in the lower and middle quadrants and decreases in the upper
quadrant. With respect to the Schmidt number Sc, we find that the Sherwood number in the lower and upper
quadrants increases with Sc</.3 and decreases with higher Sc>2.0/, while in the middle quadrant, it
decreases with Sc</.3 and increases with Sc>2.0/. With reference to Sy, we find that an increase in S¢>0
reduces Sh in all the three quadrants, while an increase in |Sy| (<0) diminishes Sh in the lower and middle
quadrants and increases in the upper quadrant (Tab.5). Table 6 shows that variation of Sh with the radiation
parameter N;, Eckert number Ec and chemical reaction parameter vy. It is found that an increase in N; reduces
Sh in all the three quadrants. Thus the higher the dissipative heat, the larger the rate of mass transfer in all the
three quadrants and for further higher Ec>0.05, the smaller Sh in all the three quadrants. The rate of mass
transfer experiences an enhancement in the case of no chemical reaction case, while in the case of a chemical
reaction, it is found to grow in the lower and middle quadrants and decreases in the upper quadrant (Tab.6).

Table 4. Sherwood number (Sh) at different levels.

i 11 111 v N
shl | -37.949 | 28.5738 | 7.7496 | -27.99 | -19.689
sh2 | 0.43571 | 5.77304 | 9.1027 | 0.83571 | -13.419
sh3 | 38.8204 | -17.028 | 7.61476 | 48.8204 | 166.73
Ra 10° 2x10° | 3x10° 10° 10°
o 2 2 2 4 6

Table 5. Sherwood number (Sh) at different levels.

1 11 111 1V \Y% VI VII VIII IX X

shl | -37.949 | -28.176 | 3.09948 | 4.68824 | -2.0915 | 31.1623 | 12.0954 | -40.04 | 8.1621 | 3.3357
sh2 | 0.43257 | 2.52872 | 2.5096 | 2.51196 | 19.856 | 9.78076 | 3.68836 | 0.444 | 3.6005 | 3.0479
sh3 [ 38.8204 | 33.2336 | 1.91969 | 0.33572 | 10.803 | -11.601 | -4.71868 | 41.36 | -0.961 | 2.7602

N 1 2 -0.5 -0.8 )i )i 1 1 )i 1
Sc 1.3 1.3 1.3 1.3 0.24 0.6 2.01 1.3 1.3 1.3
S0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1 -0.5 -1

Table 6. Sherwood number (Sh) at different levels.

1 I 11 v \Y VI Vil VIII IX X XI

shl [12.7969 | 10.6176 | 8.73688 | 28.8124 | 12.988 | -1.4026 | -2.94896 | -3.2822 | 10.1396 | 10.55628 | 10.9834

sh2 |3.99816 | 3.01012 | 2.45208 | 10.3831 | 4.0639 | 0.34006 | 0.43571 | -2.986 | 2.57584 | 2.9558 | 3.51308

sh3 |-4.8006 | -4.5973 | -3.8327 | -8.0463 | -4.8599 | 2.08272 | 2.2036 | -2.6897 | -4.988 | -4.64464 | -3.95724

Rad | 0.0!] 0.03 0.05 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Ec | 0.001 0.001 0.001 0.003 0.005 0.001 0.001 0.001 0.001 0.001 0.001
Y 02 0.2 02 02 0.2 02 0.5 2 -0.2 -0.5 -2
Nomenclature

C - concentration
C, — specific heat at constant pressure
Ec — Eckert number
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fp(p=123.....) —global nodal values
g’ —acceleration due to gravity
H —Heaviside function
K — concentration coefficient
K; —thermal conductivity
k — permeability of the porous medium
k;; — cross diffusivity
Le — Lewis number
N —buoyancy ratio
N; —radiation parameter
N (k=1,2,3....) — linear combination of shape function

Nu — Nusselt number
p’ —pressure
O - strength of the heat source
g, —radiative heat flux
Ra — Rayleigh number
Sc — Schmidt number
Sh — Sherwood number
So — Soret number
T —temperature
T. and C. - temperature and concentration on the cold side walls
T, and C, — temperature and concentration on the warm side walls
u"and v' — Darcy velocities along x and y directions
o — heat source parameter
B — thermal expansion of the fluid
B* — volume coefficient
07, 0,... 0,y — global values of 0
p — coefficients of viscosity of the fluid
v —kinematics viscosity of the fluid
p' — density of the fluid
y — stream function
VY1, Ws...W — global values of y
V', 0, C' — approxiamate values of y,  and C
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