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The effects of thermal radiation and mass transfer on an unsteady hydromagnetic boundary layer mixed 
convection flow along a vertical porous stretching surface with heat generation are studied. The fluid is assumed 
to be viscous and incompressible. The governing partial differential equations are transformed into a system of 
ordinary differential equations using similarity variables. Numerical solutions of these equations are obtained by 
using the Runge-Kutta fourth order method along with the shooting technique. Velocity, temperature, 
concentration, the skin-friction coefficient, Nusselt number and Sherwood number for variations in the governing 
thermo physical parameters are computed, analyzed and discussed. 
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1. Introduction 
 
 The study of convective heat and mass transfer fluid flow over a stretching surface in the presence of 
thermal radiation, heat generation and chemical reaction is gaining a lot of attention. This study has many 
applications in industries and many engineering disciplines. These flows occur in many manufacturing 
processes in modern industry, such as hot rolling, hot extrusion, wire drawing and continuous casting. For 
example, in many metallurgical processes such as drawing of continuous filaments through quiescent fluids 
and annealing and tinning of copper wires, the properties of the end product depend greatly on the rate of 
cooling involved in these processes. Sakiadis (1961) was the first one to analyze the boundary layer flow on 
continuous surfaces. After that, Crane (1970) studied the boundary layer flow past a stretching plate. A few 
researchers considered the unsteady flows over a stretching surface. Wang (1990) studied an unsteady 
boundary layer flow of a finite liquid film by restricting the motion to a specified family of time dependence. 
Andersson et al. (1996) investigated the unsteady stretching flow in the case of power-law fluid film whereas 
Andersson et al. (2000) extended Wang’s unsteady thin film stretching problem to the case of heat transfer. 
Recently, Ishak et al. (2009) presented the heat transfer characteristics caused by an unsteady stretching 
permeable surface with prescribed wall temperature. Sharidan et al. (2006) focused on a similarity analysis 
to investigate the unsteady boundary layer over a stretching sheet. Wang (2009) studied a viscous flow due to 
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a stretching sheet with surface slip and suction. The thermal radiation and heat generation effects on an MHD 
convective flow is a new dimension added to the study of a stretching surface since it has important 
applications in physics and engineering, particularly, in space technology and high temperature processes. It 
plays an important role in controlling the heat transfer process in polymer processing industry. The effect of 
radiation on heat transfer problems was studied by Hossain and Takhar (1996), Takhar et al. (1996). Seddeek 
(2002) analyzed the effects of radiation and variable viscosity on a MHD free convection flow past a semi-
infinite flat plate with an aligned magnetic field. In many chemical engineering processes, chemical reactions 
take place between a foreign mass and the working fluid which moves due to the stretch of a surface. 
Kandasamy et al. (2006) analyzed effects of chemical reaction, heat and mass transfer on a boundary layer 
flow over a porous wedge with heat radiation in the presence of suction or injection. Muhaimin et al. (2009) 
studied the effect of chemical reaction, heat and mass transfer on a nonlinear MHD boundary layer flow past 
a porous shrinking sheet with suction. Rajesh (2011) investigates chemical reaction and radiation effects on 
the transient MHD free convection flow of a dissipative fluid past an infinite vertical porous plate with 
ramped wall temperature. 
 In this paper, an attempt is made to investigate the effects of thermal radiation and magnetic field on 
an unsteady mixed convection flow and mass transfer over a vertical stretching surface in the presence of a 
heat source. The governing boundary layer equations are solved using the Runge–Kutta fourth order method 
along with the shooting technique. Velocity, temperature, concentration, skin-friction, the Nusselt number 
and Sherwood number for different values of thermo-physical parameters have been computed and the 
results are presented graphically and discussed qualitatively. 
 
2. Mathematical analysis 
 
 We consider an unsteady two-dimensional mixed convection boundary layer flow of an 
incompressible viscous electrically conducting and radiating fluid over a vertical porous stretching surface 

moving with velocity  ,w
cx

U x t
1 t


 

, where c and   are constants and with temperature distribution 

 
0

w 2

T cx
T T

2 1 t
 

 
 (Kandasamy et al., 2006), where 0T  is a reference temperature such that .0 w0 T T 

Here the stretching surface is subject to such amount of tension which does not alter the structure of the 
porous material. The x-axis is taken along the stretching surface in the direction of motion and the y-axis is 
perpendicular to it. A uniform magnetic field of strength 0B  is applied normal to the stretching surface. The 
magnetic Reynolds number is assumed to be small so that the induced magnetic field is negligible in 
comparison with the applied magnetic field. The fluid is assumed to be a gray, emitting and absorbing radiation, 
but non-scattering medium. The Rosseland approximation is used to describe the radiative heat flux in the 
energy equation. The radiative heat flux in the x - direction is considered negligible in comparison to the y- 
direction. It is assumed that the concentration of the diffusing species in the binary mixture is much smaller in 
comparison to the other chemical species, which are present, and hence the Soret and Dufour effects are 
negligible. It is also assumed that there is no chemical reaction between the diffusing species and the fluid. 
 Then under the above assumptions, in the absence of an input electric field, the governing boundary 
layer equations are 
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 The boundary conditions for the velocity, temperature and concentration fields are 
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where u  and v  are the velocity components along the ݔ and ݕ –directions respectively, t - the time, 

w
c

V
1 t


 

 
- the velocity of the suction parameter   ,wV 0   - the kinematics viscosity,  - the 

volumetric coefficient of thermal expansion, g- acceleration due to gravity, B0 - the uniform magnetic field, 
 - the electrical conductivity, pc - the specific heat at constant pressure, - the density, T - the temperature, 

T - the temperature far away from the stretching surface, ݇ - the coefficient of thermal conductivity of the 

fluid, Q0 – the heat generation constant and rq - the radiation heat flux.  
 By using the Rosseland approximation, the radiative heat flux is given by 
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  (2.6) 

 

where s  - the Stefan-Boltzman constant and *k  - the absorption coefficient.  
 It should be noted that, by using the Rosseland approximation, the present analysis is limited to 
optically thick fluids. If the temperature differences within the flow field or sufficiently small, then Eq.(2.6) can 

be linearized by expanding 4T  into the Taylor’s series about T , and neglecting higher order terms, we get 
 

  .4 3 4T 4T T 3T       (2.7) 
 
 Invoking Eqs (2.3), (2.6) and (2.7), it can be written as  
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 The equation of continuity is satisfied if we choose a stream function  ,x y  such that 
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 We now introduce the similarity variable   and the dimensionless variables f and   as follows 
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 In view of the above relations, the governing equations finally reduce to 
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 The corresponding boundary conditions are  
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where Pr  is the Prandtl number, 1 and 2  - the mixed convection parameters, M - the magnetic parameter, 

Sc- the Schmidt number, R – the thermal radiation parameter, Q – the heat source parameter,  - the thermal 

diffusivity and ,0 w 0
1 t

f V f 0
c


  


corresponding to the suction parameter. 

 For this type of boundary layer flow, the skin-friction coefficient (Cf ), the local Nusselt number (Nu) 
and Sherwood number (Sh) are important physical quantities.  
 Knowing the velocity field, the skin-friction at the stretching surface can be obtained, which in a 
non-dimensional form is given by 
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where Re wu



 is the local Reynold’s number. 

 Knowing the temperature field, the rate of heat transfer coefficient at the stretching surface can be 
obtained, which in a non-dimensional form, in terms of the Nusselt number, is given by 
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 Knowing the concentration field, the rate of mass transfer coefficient at the stretching surface can be 
obtained, which in a non-dimensional form, in terms of the Sherwood number, is given by 
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3. Solution of the problem 
 
 The governing boundary layer Eqs (2.11) - (2.13) subject to boundary conditions (2.14) are solved 
numerically by using the Runge-Kutta fourth order method along with the shooting technique. First of all, 
higher order non-linear differential Eqs (2.11) - (2.13) are converted into simultaneous linear differential 
equations of first order and they are further transformed into the initial value problem by applying the 
shooting technique (Jain et al. [23]). The resultant initial value problem is solved by employing the Runge-
Kutta fourth order technique. The step size .0 05   is used o obtain the numerical solution with five 
decimal place accuracy as the criterion of convergence. From the process of numerical computation, the 
skin-friction coefficient, the Nusselt number and Sherwood number which are respectively proportional to

 f 0 ,  0  and  0  are also sorted out and their numerical values are presented in a tabular form. 

 
4. Results and discussion 
 
 In order to get a physical insight into the problem, a representative set of numerical results is shown 
graphically in Figs 1-12, to illustrate the influence of physical parameters, viz., the suction parameter fw, 
magnetic parameter ,M  mixed convection parameters λ1 and λ2 radiation parameter R , unsteadiness 

parameter A, heat generation Q, Prandtl number Pr , and Schmidt number Sc on the velocity  f   , 

temperature     and concentration    .  

 Figure 1 shows the dimensionless velocity profiles for different values of the magnetic parameter M. 
It can be seen that as M increases, the velocity decreases. This result qualitatively agrees with the 
expectations, since the magnetic field exerts a retarding force on the flow. The effect of the unsteadiness 
parameter A on the velocity field is shown in Fig.2. It is noticed that the velocity profiles decrease with the 
increase of the unsteadiness parameter A. It is interesting to note that the thickness of the boundary layer 
decreases with increasing values of A. The velocity profiles for different values of the suction parameter fw 
are illustrated in Fig.3. It is clear that increasing the values of fw results in a decreasing velocity.  
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Fig.1. Velocity profiles for different values of M. 
 

 
 

Fig.2. Velocity profiles for different values of A. 
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Fig.3. Velocity profiles for different values of fw.. 
 

 Figure 4 depicts the velocity profiles for different values of the mixed convection parameter .1  It is 

noticed that as the mixed convection parameter 2  increases, the velocity increases. A similar effect is 

observed for the case of the mixed convection parameter 2  which is not shown for brevity. The effect of the 
radiation parameter R on the velocity profiles is shown in Fig.5. It is obvious that an increase in R results in 
increasing the velocity within the boundary layer. The effect of heat source on the velocity field is shown 
Fig.6. It is noticed that under the constant magnetic field when the heat source parameter is increased the 
velocity of the fluid medium decreases. The effect of the magnetic parameter M on the temperature profile is 
illustrated in Fig.7. It is clear that the temperature gradient at the surface decreases as the magnetic parameter 
increases. Figure 8 depicts the temperature profiles for different values of the suction parameter fw.. It is 
noticed that as the suction parameter increases, the temperature decreases. The effect of the thermal radiation 
parameter R on the temperature field is illustrated in Fig.9. It is observed that the temperature increases as the 
thermal radiation parameter R increases. The effect of heat source parameter Q  on the temperature field is 

illustrated in Fig.10. It is observed that as Q  increases the temperature increases. The effect of the Prandtl 
number Pr  on the temperature field is shown in Fig.11. It is observed that an increase in the Prandtl number 
contributes to a decrease in the temperature. The effect of the Schmidt number Sc  on the concentration field 
is shown in Fig.12. It is observed that an increase in the Schmidt number contributes to a decrease in the 
temperature. 
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Fig.4. Velocity profiles for different values of λ1. 

 

 
 

Fig.5. Velocity profiles for different values of R. 
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Fig.6. Velocity profiles for different values of Q. 
 

 
 

Fig.7. Temperature profiles for different values of M. 
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Fig.8. Temperature profiles for different values of fw. 

 

 
 

Fig.9. Temperature profiles for different values of R. 
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Fig.10. Temperature profiles for different values of Q. 
 

 
 

Fig.11. Temperature profiles for different values of Pr. 
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Fig.12. Concentration profiles for different values of Sc. 

 
 The effects of various governing parameters on the skin-friction coefficient fC , Nusselt number 

(Nu) and Sherwood number (Sh) are shown in Tab.1. It is observed that the skin-friction increases with an 
increase in the unsteadiness parameter A or magnetic parameter M or suction parameter fw, whereas it 
decreases with an increase in the mixed convection parameter 1  or radiation parameter R or Prandtl number 
Pr. It is noticed that the Nusselt number increases with an increase in the unsteadiness parameter A or mixed 
convection parameter 1  or radiation parameter R or suction parameter fw, whereas it decreases with an 
increase in the magnetic parameter M or Prandtl number Pr or Schmidt number Sc. It is found that the 
Sherwood number increases with an increase in the unsteadiness parameter A or mixed convection parameter

1  or suction parameter fw or Schmidt number Sc, whereas it decreases with an increase in the magnetic 
parameter M. 
 
Table 1. Numerical values of skin-friction, Nusselt number and Sherwood number (A = 0.1, λ2 = 0.2, M = 

0.1, R = 1.0, Pr = 0.72, Sc = 0.60, fw = 0.5) 
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 Sc =  0 .22
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A 1 M R Pr Sc fw Cf Nu Sh 
0 0.2 0.1 1.0 0.72 0.60 0.5 1.8041 0.3269 -0.2142 
0.2 0.2 0.1 1.0 0.72 0.60 0.5 1.8784 0.3769 -0.1204 
0.2 0.3 0.1 1.0 0.72 0.60 0.5 1.8523 0.3852 -0.1132 
0.2 0.2 0.2 1.0 0.72 0.60 0.5 1.9093 0.3784 -0.1204 
0.2 0.2 0.1 1.5 0.72 0.60 0.5 1.8984 0.4052 -0.1204 
0.2 0.2 0.1 1.0 1.00 0.60 0.5 1.8784 03969 -0.1204 
0.2 0.2 0.1 1.0 0.72 0.78 0.5 1.8784 0.3769 0.1020 
0.2 0.2 0.1 1.0 0.72 0.60 1.0 1.9652 0.3856 0.1132 
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Nomenclature 
 
 B0 – uniform magnetic field 

 pc  – specific heat at constant pressure 

 
0f

 
– corresponding to suction parameter 

 g – acceleration due to gravity 
 ݇	 – coefficient of thermal conductivity of the fluid 
 M – magnetic parameter 
 Pr – Prandtl number 
 Q – heat source parameter 
 Q0 – heat generation constant  

 rq  – radiation heat flux 

 R – thermal radiation parameter 
 Sc – Schmidt number 
 T – temperature 

 
T  – temperature for away from the stretching surface 

 t – time 

 ,u v  – velocity components along ݔ and ݕ –directions respectively 

  
wV

 
– velocity of suction parameter  

 
v

 
– kinematics viscosity 

  – thermal diffusivity 
	  	 – volumetric coefficient of thermal expansion 

 1  and 2  – mixed convection parameters

    – density 
	  	 – electrical conductivity 
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