
 
 

Int. J. of Applied Mechanics and Engineering, 2013, vol.18, No.4, pp.1165-1199 
DOI: 10.2478/ijame-2013-0072 

 
 

ANTI – PLANE CRACK EMANATING FROM THE INTERFACE IN A 
BOUNDED SMART PEMO- ELASTIC STRUCTURE 

 
B. ROGOWSKI 

Department of Mechanics of Materials 
Technical University of Lodz 

Al. Politechniki 6, 93-590 Łodz, POLAND 
E-mail: bogdan.rogowski@p.lodz.pl 

 
 

The magnetoelectroelastic analysis of two bonded dissimilar piezo-electro-magneto-elastic ceramics with a 
crack perpendicular to and terminating at the interface is made. By using the Fourier integral transform (in 
perpendicular directions in each materials), the mixed boundary conditions and continuity conditions are 
transformed to a singular integral equation with generalized Cauchy kernel, the solution of which has been well 
studied, and classical methods are directly applicable here to obtain the closed form solution. The results are 
presented for a permeable crack under anti-plane shear loading and in-plane electric and magnetic loadings, as 
prescribed electric displacement and magnetic inductions or electric and magnetic fields. The results indicate that 
the magnetoelectroelastic field near the crack tip in the homogeneous PEMO- elastic ceramic is dominated by a 
traditional inverse square-root singularity, while the coupled field near the crack tip at the interface exhibits the 

singularity of the power law r , r being the distance from the interface crack tip and   depending on the 
material constants of a bimaterial. In particular, electric and magnetic fields have no singularity at the crack tip in 
a homogeneous solid, whereas they are singular around the interface crack tip. Numerical results are given 
graphically to show the effects of the material properties on the singularity order, field intensity factors and 
energy release rates. The results presented in this paper should have potential applications to the design of 
multilayered magnetoelectroelastic structures. 
 
Key words: interface, anti-plane shear crack, singularity of power law, field intensity factors, 

magnetoelectroelastic behaviour, Fourier transform, Cauchy singular integral equation, exact 
solution. 

 
1. Introduction 
 
 The newly emerging materials named magnetoelectroelasticity, which exhibit piezoelectric, 
piezomagnetic and electromagnetic properties, have found increasingly wide engineering applications, 
particularly in aerospace and automotive industries. Magnetoelectroelastic solids have been widely used as 
transducer, sensors and actuators in smart structures. Because of the brittleness of PEMO – elastic materials, 
a high possibility of material debonding and cracking or sliding of the interface exists. Consequently, this 
problem has been the subject of research and discussion in the literature on elasticity theory of coupled 
fields. Li and Kardomateas (2006) investigated the mode III interface crack problem for dissimilar 
piezoelectromagnetoelastic bimaterial media. The extended Stroh’s theory and analytic principle of complex 
analysis have been used to obtain the solution for interfacial cracks between two dissimilar 
magnetoelectroelastic half – planes by Li and Kardomateas (2007). The problem for an anti – plane interface 
crack between two dissimilar PEMO – elastic layers was analyzed by Wang and Mai (2006). Gao et al. 
(2003) derived the exact solution for a permeable interface crack between two dissimilar 
magnetoelectroelastic solids under general applied loads. Gao et al. (2004) derived also the static solution 
related to anti – plane crack problem. The anti – plane shear cracks are a class of simple problems. But, for 
the case of a crack perpendicular to the interface the problem becomes more complicated. This problem has 
been the subject of research in the classical literature of elasticity theory. Cook and Erdogan (1972) and 
Erdogan and Cook (1974) were apparently the first to publish the solution of this problem for two bonded 
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dissimilar isotropic half – planes. For piezoelectric bi – ceramics an arbitrarily oriented plane crack 
terminating at the interface was extended by Qin and Yu (1997). The anti – plane shear crack normal to and 
terminating at the interface of two piezoelectric ceramics was extended later by Li and Wang (2007). 
Although the above studies deal strictly with piezoelectric, it is reasonable to assume that the extension of the 
findings to electromagnetoelastic material is valid. 
 To the best of the author’s knowledge, the behaviour of interfacial cracks normal to and terminating 
at the interface of two bonded piezoelectromagnetoelastic materials has not been addressed yet. Motivated by 
these considerations, the author investigates the anti – plane deformations and in – plane electric and 
magnetic fields of a PEMO – elastic bimaterial with Mode – III interface crack normal to and terminating at 
the interface. 
 The crack is assumed to be electrically and magnetically permeable. Under an applied electric, 
magnetic and mechanical loading, electric, magnetic and elastic behaviours near both crack tips are obtained. 
Two kinds of loading conditions are adopted. By using the Fourier integral transform, in perpendicular 
directions in each materials, the associated boundary value problem is transformed to a singular integral 
equation with generalized Cauchy kernel. Similar types of equations have been studied, and classical 
methods of their solutions are directly applicable here to obtain the solution in a closed form. The results 
indicate that the magnetoelectroelastic field near the crack tip in a homogeneous PEMO – elastic ceramic 
exhibits an inverse square – root singularity, while the singular field near the interface crack tip is dominated 
by a singularity of the power law. The singularity order is dependent on relevant 2 6  material constants of 
two ceramics. The effects of magneto – electro – mechanical parameters on the field intensity factors are 
evaluated by numerical analysis, which could be of particular interest to the analysis and design of smart 
sensors / actuators constructed from magnetoelectroelastic composite laminates. 
 
2. Formulation of the problem 
 
2.1. Basic equations  
 
 For a linearly magnetoelectroelastic medium under anti – plane shear coupled with in-plane electric 
and magnetic fields there is only the nontrivial anti – plane displacement w  
 
  xu 0 ,                 yu 0 ,                        ,zu = w x,y  (2.1) 

 
strain components xzγ  and yzγ  

 

  xz
w
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


,                       ,yz
w

γ =
y


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 (2.2) 

 

stress components xz  and yz , in-plane electrical and magnetic potentials   and  , which define electric 

and magnetic field components xE , yE , xH  and yH  
 

  xE
x


 


,             yE

y


 


,                xH

x


 


,              ,yH

y


 


 (2.3) 

 

and electrical displacement components xD , yD , and magnetic induction components xB , yB  with all 

field quantities being the functions of coordinates x  and y . 
 The relations Eqs (2.2) and (2.3) have the form 
 

  ,z w   ,                   ,E   ,                 ,H    (2.4) 
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where = x,y  and , /w w    . 

 For a linearly magnetoelectroelastic medium the coupled constitutive relations can be written in the 
matrix form as follows 
 

     , , , ,
T T

z zD B C E H           (2.5) 

 
where the superscript T  denotes the transpose of a matrix and 
 

  
44 15 15

15 11 11

15 11 11

c e q

C e d

q d

 
    
   

 (2.6) 

 
where 44c  is the shear modulus along the z  – direction, which is the direction of poling and is perpendicular to 

the isotropic plane  ,x y , 11  and 11  are dielectric permittivity and magnetic permeability coefficients, 

respectively, 15e , 15q  and 11d  are piezoelectric, piezomagnetic and magneto-electric coefficients, respectively. 
 The mechanical equilibrium equation (called the Euler equation), the charge and current 
conservation equations (called Maxwell equations), in the absence of the body force electric and magnetic 
charge densities, can be written as 
 
  ,z 0   ,             ,D 0   ,               ,B 0   ,                   , .x y   (2.7) 

 
 Subsequently, the Euler and Maxwell equations take the following form 
 

   , , , ,
T T2 2 2C w 0 0 0         (2.8) 

 

where 2 2 2 2 2x y        is the two-dimensional Laplace operator. 

 Since C 0 , one can decouple Eq.(2.8) as follows 
 

  2w 0  ,               2 0   ,                  .2 0    (2.9) 
 
 If we introduce, for convenience of mathematics in some boundary value problems, two unknown 
functions 
 

     , ,
T T

15 15 0e w q w C       (2.10) 

where 

  ,11 11
0

11 11

d
C

d

  
   

 (2.11) 

then 

     , ,
TT 1

0 15 15C e w q w       (2.12) 

where 

  .1 211 111
0 2

2 311 1111 11 11

e ed1
C

e edd
    
          

 (2.13) 

 
 The governing field variables are 
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  2w 0  ,                  2 0   ,                    2 0    (2.15) 
where 
  ,44 44 15 15c c e q     
 

    ,11 15 11 15
1 15 2 152

11 11 11

e d q
e e e q

d

 
    

  
 (2.16) 

 

   .11 15 11 15
3 15 2 152

11 11 11

q d e
e q e e

d

 
    

  
  

 

 Note that 44c  is the piezo – electro – magnetically stiffened elastic constant. 

Note also that the inverse of a matrix C  is defined by parameters  ,  , 44c  and 1e , 2e , 3e  as follows 
 

  .1 2
44 1 44 2

44 2
44 2 44 3

1
1

C c e c e
c

c e c e



  
 

      
      

 


 

 (2.17) 

 
 These material parameters will appear in our solutions.  
 
2.2. Boundary conditions 
 
 Consider a crack terminating at the interface of two bonded dissimilar PEMO – elastic ceramics 
polarized in the z – direction. For convenience, we denote the PEMO – elastic ceramics occupying the right 
and left half – planes x 0  and x 0  as piezoceramics I and II, respectively, shown in Fig.1. 
 Let a crack be perpendicular to the interface and be situated at [0, a] (a > 0) in the positive x – 
direction in ceramic I. For an anti – plane shear crack having no thickness (so-called “mathematical crack”), 
the crack surfaces contact each other, in reality; so the crack is electrically and magnetically contacted. 
Consequently, the electric and magnetic boundary conditions at the crack surfaces can be described 
according to so – called double permeable conditions, namely 
 

  

       

       

, , , , , ,

, , , , , .

y y y yD x 0 D x 0 B x 0 B x 0

x 0 x 0 x 0 x 0

   

   

 

     

 (2.18) 
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Fig.1.  Two bonded dissimilar PEMO – elastic ceramics with a crack perpendicular to and terminating at the 
interface 

 
 Note that besides the crack surfaces, the above conditions, in fact, certainly hold at the crack-absent 
parts of the crack plane. Using the relations Eq.(2.14) it can be shown that the condition Eq.(2.18) may be 
replaced by conditions as follows 
 

         , , , ,, , , , , ,y y y yx 0 x 0 x 0 x 0          (2.19a) 

 
  , for , .15 15e w q w x y 0       (2.19b) 
 
 Let the constant mechanical loads and uniform electric displacement and magnetic induction or electric 
field and magnetic field be applied at infinity (two cases of electric and magnetic loads), and the following 
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II II II II II II II II
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II II
y 0

x y D x y D B x y B E x y E

H x y H x 0 y
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     
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   

 (2.20) 

where           , and or and ,I II I II I II I II I II
0 0 0 0 0 0 0 0 0 0D D B B E E H H   
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are prescribed constants, a quantity with superscribes I or II that specifies the one in the PEMO – ceramic I 
or II, respectively. To solve the crack problem in linear elastic solids, the superposition technique is usually 
used. Thus we first solve the magnetoelectroelastic field problem without the cracks in the medium under 
electric, magnetic and mechanical loads. This elementary solution is the following 
 

  

,

, case I,

, case II

, case I,

, case II,

J J
yz 0

J
0

JJ J 2y 15 15 15 15
0 11 0 11 0

44 44 44

J
0

JJ J 2y 15 15 15 15
0 11 0 11 0

44 44 44

D

D D e e e q
E d H

c c c

B

B B q e q q
d E H

c c c

  


       

               


      

                

 (2.21) 

 
with  , .J I II  
 
 In addition the crack surfaces are traction – free, that is, 
 

   , ; , ,I
yz x y 0 y 0 0 x a       (2.22) 

 
and owing to the symmetry one can directly write the following conditions 
 

     , , , , , .I IIw x 0 0 x a w x 0 0 x 0     (2.23) 

 
 We further consider the situation when the interface under consideration is perfectly bonded, across 
which the displacement, stress, electric and magnetic potentials, electric displacement and magnetic 
induction are continuous 
 

         , , , , , ; ,I II I II
xz xzw 0 y w 0 y 0 y 0 y y         (2.24) 

 

         , , , , , ; ,I II I II
x x0 y 0 y D 0 y D 0 y y         (2.25) 

 

         , , , , , ; .I II I II
x x0 y 0 y B 0 y B 0 y y         (2.26) 

 
3. Method of solution 
 
 From the symmetry of the problem, it is sufficient to consider the upper half-plane of the bi-ceramic. 
Consequently, for y ≥ 0 it is easily found that an appropriate solution of the problem, which satisfies the 
boundary conditions Eqs (2.19a) and (2.20), takes the following form 
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for x ≥ 0 and 
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   (3.2) 

 
for x ≤ 0 where Aj, Bj, Cj and Dj (j = 1, 2) are unknowns to be determined from given boundary conditions 
and where 
 

  ; , .
J J J J J

J 0
J
44

D B
= J I II

c

   
 


 (3.3) 

 
 Furthermore, with the aid of Eqs (2.14) one can give the components of stress, electric displacement, 
magnetic induction and electric and magnetic potentials 
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      
 

     
  
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
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 (3.4) 
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for x ≥ 0 and 
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  






 (3.8) 

 

for x ≥ 0 and 
 

  

 
 
 

   

     
 
 

 

,

, sin

,

sin ,

II II
xz 44

II II y
x 15 2

II II 0
x 15

II II II
44 2 2 2

x
2

0
2

x y c

D x y e A e x d

B x y q

c B C D

C e y d

D


 




   
   

         
   
      

      
 

     
  






 (3.9) 

 
for x ≤ 0. 
 Now, the application of the continuity conditions Eqs (2.24), (2.25) and (2.26) at the interface x = 0 
to Eqs (3.1) to (3.9) yields 
 

  ,
I I I I I II II II II II
0 0

I II
44 44

D B D B

c c

       


 
 (3.10) 

 

  , ,

I II
J0 0 2 I I

44 1 44 21 I 1 II 1
I II J J I 2 I

44 44 2 44 3I II

c e c e1
C D C D C

c c e c e
B B

  

    
         

      
          
      

 
  

 (3.11) 

and 

              ,I I I II II II
44 1 1 1 44 2 2 2c B C D c B C D                    

 

         , ,1 2 1 2C C D D         (3.12) 
 

  

 
 
 

 
 
 

.
2 1II II II I I I

1 2 1 2
2 1II II II I I I

2 3 2 3
2 1

B B
e e e e

C C
e e e eD D

                                  

 (3.13) 
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 The first two equations, that is, Eqs (3.10) and (3.11), give three constraints for applied remote 
electro-magneto-mechanical loadings, from which we may determine the loadings of ceramics II, namely 

II
0 , DII and BII by means of loadings of ceramics I, namely I

0 , DI and BI. In other words, in order to 
guarantee the continuity of all physical quantities at the perfectly bonded interface, applied electro-magneto-
mechanical loadings must obey the relations Eqs (3.10) and (3.11). The five Eqs (3.12) and (3.13) give the 
constraints with respect to unknown functions, that is, the disturbed field, due to the presence of a crack, 
should to satisfy those equations. 
 From the condition Eq.(2.23)2 along with Eq.(3.2) one gets 
 

    .2A 0   (3.14) 
 

 Continuity of w(x,y) at the interface x = 0 requires 
 

         sin ,y
2 1 1

0 0

B B y d A e d
 

             (3.15) 

so that 

        ,2 1 1 2 2
0

2
B B A d




     
     (3.16) 

since 

   sin .y
2 2

0

e y dy


 
 

    (3.17) 

 
 The result Eq.(3.16) in connection with Eqs (3.12) and (3.13) yields 
 

  

 
       

       
  

       
,

II II I II II I II I II II I
44 3 3 1 1

1 2 2I II II I II I II I II I
44 44 3 3 1 1

II I I II I II II II
2 2

2 2I II II I II I II I II I
44 44 3 3 1 1

c e e e e2
B I

c c e e e e

e e 22
I

c c e e e e

          
   

          

       

          



 

 

 

   (3.18) 

  

 
       

       
  

       

   
   

,

I II I I II I II I I II I
44 3 3 1 1

2 2 2I II II I II I II I II I
44 44 3 3 1 1

II I I II I II II II
2 2

2 2I II II I II I II I II I
44 44 3 3 1 1

I II I I II I
2 2 3 3

1 1

c e e e e2
B I

c c e e e e

e e 22
I

c c e e e e

e e e e
C B

          
  

          

       

          

   
   





 

 

 
   

   
   

 
   

,

II II I II II I
2 2 3 3

2

I II I I II I II II I II II I
1 1 2 2 1 1 2 2

1 1 2

e e e e
B

e e e e e e e e
D B B

    




       
     

 
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where 

       ,
2II I II I II I

1 1 3 3 2 2e e e e e e       (3.19) 

 

    .1 2 2
0

I A d



  

    (3.20) 

 
 In the special cases we obtain that: 
for both piezoelectric materials 
 

  

 
   

    

 
   

    

 
   

,

,

II I II II I II
44 11 11 15 15 15

1 2I II I II I II
44 44 11 11 15 15

I I II I I II
44 11 11 15 15 15

2 2I II I II I II
44 44 11 11 15 15

2 2I II II II II I I I
15 44 11 15 15 44 11 15

1

c e e e2
B I

c c e e

c e e e2
B I

c c e e

e c e e c e
2

C I

    
  

      

    
 

      

         
    

     

 

,

,

2I II I II I II
44 44 11 11 15 15

1

c c e e

D 0




     

 

 (3.21) 

 
for both piezomagnetic materials 
 

   
   

    
,

II I II II I II
44 11 11 15 15 15

1 2I II I II I II
44 44 11 11 15 15

c q q q2
B I

c c q q

    
  

      
 

 

   
   

    
,

I I II I I II
44 11 11 15 15 15

2 2I II I II I II
44 44 11 11 15 15

c q q q2
B I

c c q q

    
 

      
 

   (3.22) 
    ,1C 0   
 

   
   

    
.

2 2I II II II II I I I
15 44 11 15 15 44 11 15

1 2I II I II I II
44 44 11 11 15 15

q c q q c q
2

D I
c c q q

          
     

      
  

 
 The formulae Eq.(3.21) are equivalent to these derived by Li and Wang (2007) who solved the 
problem of two bonded dissimilar piezoelectric media with an anti-plane shear crack perpendicular to and 
terminated at the interface. Next, we denote that 
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   
 ,

.

Iw x 0
g x

x





 (3.23) 

 
 From the boundary conditions Eq.(2.23), g(x) should satisfy the single-value displacement constraint 
condition, that is 
 

    .
a

0

g x dx 0  (3.24) 

 

 Utilizing Eq.(3.1)1 in Eq.(2.23) leads to 
 

       , cos , ,I
1

0

w x 0 A x d 0 x a


       (3.25) 

 
from which together with Eq.(3.23), by use of the inverse Fourier transform, can be deduced 
 

       sin .
a

1

0

2
A g t t dt   

   (3.26) 

 
 Now, we calculate the following 
 

       
 
sin

.
a

12 2 2 2
0 0 0

t2
A d g t dt d

  
     

          (3.27) 

 
 Using the result 
 

  
 

 
 sin

,

t

22 2
0

1 et
d

2

  
 

     (3.28) 

 
we find with the use of Eq.(3.24) that 
 

      .
a t

12 2
0 0

e
A d g t dt

 
  

     (3.29) 

 

 Substitution of Eq.(3.29) into Eq.(3.18) yields the expressions for B1   , B2   , C1    and D1    

in terms of g(x). 
 From the fraction free condition Eq.(2.22) from Eq.(3.4)1 one can derive 
 

            cos .I I I I x I
44 1 44 1 1 1 0

0

c A x c B C D e d


                 (3.30) 

 
 Substituting Eqs (3.26) and (3.18) with the use of Eq.(3.29), into Eq.(3.30) we have with the help of 
known integrals 
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   

 

sin cos ,

; ,

0

t x

0

2 1 1 1
t x d

t x t x

1
e d t x 0

t x




 

          

   






 (3.31) 

 
the following singular integral equation with the generalized Cauchy kernel for g(t) 
 

    ;
a I

0
I
440

1 1
g t dt 0 x a

t x t x c

           (3.32) 

where 

          
       

          

II II I II II I II I II II I II I I II I II II II
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2 2I II II I II I II I II I
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II I I II I II I I II I II I I II I II I II 3 3 1 1 2 244
I I
44 44

c e e e e e e 2
1 2

c c e e e e

e e e e e e 2c

c c

                   
   

         

                  
 






 



      
.

II I I II II I I II II I I II I II
3 3 1 1 2 2

I
44

e e e e e e
2

c


 

 


            




 (3.33) 

 
 For both piezoelectric materials   is obtained as follows 
 

  

      

    
.

II2 2I II I II I II I II I 44
44 44 11 11 15 15 15 15 15 I

44
2I II I II I II

44 44 11 11 15 15

c
c c e e 2e e e

c
=

c c e e

 
         

 
     

 (3.34) 

 
 The value of   for both piezomagnetic materials is obtained from formula Eq.(3.34) if we replace 
11 by  11 and e15 by q15. It is noted that in a usual integral equation with the Cauchy kernel, other kernels 
except the Cauchy kernel are continuous over the entire interval involved. In addition to the singularity of the 
Cauchy kernel terms  1 t x  as t   x in Eq.(3.32) the other term ( )t x   is also unbonded as t, x   0 

simultaneously. Particularly for two elastic dielectric materials, meaning e15 = 0, and dimagnetic, meaning 
q15 = 0, the elastic field and electric field, and elastic field and magnetic field are not coupled as well as when 
d11 = 0 the electromagnetic field does not occur. In this case   reduces to 
 

  .
I II
44 44
I II
44 44

c c

c c


 


 (3.35) 

 
 Then the integral equation is simplified to 
 

    .
a

0

440

1 1
g t dt

t x t x c

         (3.36) 
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 This equation is equivalent to that derived by Cook and Erdogan (1972) and Erdogan and Cook 
(1974), who were apparently the first to publish the solution of an anti – plane shear crack terminating at the 
interface of two joined purely elastic media. 
 
4. Magnetoelectroelastic field 
 
4.1. Solution of the singular integral equation 
 
 Based on the result derived by Bueckner (1966), the desired solution for g(t) of Eq.(3.32) subjected 
to Eq.(3.24) can be obtained as follows 
 

  

 
sin

,

I
0

2 2 2 2I
44

2 2 2 2

x a
g x 1

a a x a x2c
2

x a
1

a a x a x





                    
 

                

 (4.1) 

 
for 0 < x < a with 
 
   cos     (4.2) 

 
where 0 <   < 1. 
 Once g(t) is determined the crack tearing displacement can be obtained by the followings 
integrations 
 

  
   , ,

sin

.

x I
I 0

2 2 2 2I0 44

x x x
w x 0 g x dx

a a x a a x2c
2

0 x a

 


                          
 

 


 (4.3) 

 

 
 

Fig.2. The curve   = –cos(  );   is the bi–material parameter and   is singularity order parameter. 
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4.2. Crack tearing displacement 
 
 Expanding the expression Eq.(4.3) near the crack tips yields the asymptotic crack tearing 
displacement as 
 

       , ; ,
sin

I
I 0

I
44

w x 0 2a a x O r r a x 0
c

2

 
     

 
 
 

 (4.4) 

 

     , ; ,
sin

I
I 10

I
44

a
w x 0 x O r r x 0

2c
2




   
 

 
 

 (4.5) 

 
at the right and left crack tip. 
 Here O(r) denotes the infinitesimal terms compared to r, r being the distance from the crack tip. 
Only for /1 2   the behaviours of the crack tearing displacement for both tips are the same. 
 
4.3. Asymptotic crack – tip field 
 
 Anti-plane shear crack and in-plane electric displacement and magnetic induction may be deduced 
by evaluating the followings integrals 
 

  

   
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





 (4.6) 

 
for x > a and 
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 (4.7) 
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for x < 0, where 1 –   is defined by Eq.(3.33) and 
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
            

 

   (4.8) 
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3 1 1e e             

 

 
 For both piezoelectric or piezomagnetic materials Eq.(4.8) gives 
 

  
   

    
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     
 (4.9) 

 
or 
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      

     
 (4.10) 

 
 The analytical expressions for physical quantities may be obtained by substituting the solution 
Eq.(4.1) into Eqs (4.6) and (4.7). We omit the full solution and pay our attention to the asymptotic crack – tip 
field. This is very interesting from the view point of fracture mechanics. From Eq.(4.1), one can write out the 
singular behaviour of the function g(x) near the point x = 0 and x = a by the following asymptotic 
expressions 
 

     ; ,
sin

I
0
I
44

2a
g x 0 1 x a 0

a x2c
2

 
    

  
 
 

 (4.11) 
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       -
;

sin

I
0
I
44

2 a x1
g x 0 1 x 0 0

x2c
2


   

         
 

 (4.12) 

 
where 0(1) stands for nonsingular terms. 
 Now we define the intensity factor at the right crack tip in the homogeneous solid and the left crack 
tip at the interface of a bi – medium as 
 

     hom , ,q I

x a
K 1 2 x a q x 0


    (4.13) 

 

     int , ,q II

x 0
K 1 2 x q x 0

 


    (4.14) 

 
respectively, where q stands for one of  yz,  yz, Dy, By, Ey and Hy. 
 
4.3.1. Magnetoelectroelastic field near the crack tip in the homogeneous PEMO – elastic ceramics 
 
 Using the integral 
 

  
 
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a

1

0

1 1 2 a
dt x a

x at x a t x a
  
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we obtain from Eq.(4.6)1  
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where 
 

  
 hom ,

sin /
I
oK a

2
 

  


 (4.17) 

 

denotes the stress intensity factor at the right crack tip. Other field intensity factors are related to homK   as 
follows 
 

  

hom hom hom hom homhom
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I I
D B15 15
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 

  
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 (4.18) 

 
 For the crack tip in the homogeneous PEMO – elastic medium the elastic, electric and magnetic 
fields still exhibit an inverse square – root singularity at the crack tip. The application of electric and 
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magnetic fields does not alter the stress intensity factors. The stress intensity factor depends on the material 
properties of two PEMO – elastic ceramics involved, since it is governed by Eq.(4.17) and   by Eq.(4.2). 

The intensity factors homK  , hom
DK  and hom

BK  are related to homK   and also depend on the material 

properties, as shown in Eq.(4.18). 
 
4.3.2. Magnetoelectroelastic field near the crack tip at the interface 
 
 Using the known result (Tricomi, 1985) 
 

  
   
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a

0

1 1 a t 1 x a
dt 1 x < 0
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                  
  (4.19) 

 
putting Eq.(4.12) into Eq.(4.7) and using Eq.(4.19), we obtain the asymptotic expressions for the anti – plane 
shear stress and in – plane electric displacement and magnetic induction, as well as elastic strain, electric and 
magnetic field, ahead on the left crack tip at the interface as follows 
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 (4.20-4.25) 

 
where the identity is used as follows 
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and where 
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   (4.26) 
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for the PEMO – elastic bi-material and 
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 (4.27) 

 
for the piezoelectric bi-material and 
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 (4.28) 

 
for the piezomagnetic bi-material. 
 Note that for the piezoelectric bi – material we have 
 

  
     
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 (4.29) 

 
 The material parameters for the piezoelectric ceramics coincide, in general, with the ones derived by 
Li and Wang (2007). But in  , defined exactly by Eq.(3.34), the fourth term in numerator of Eq.(3.34) is 
omitted in Eq.(3.20) of Li and Wang paper. In consequence, the conclusions in Tab.2 of Li and Wang paper 
that   vanishes also in the case of ceramics poled in an opposite direction are incorrect. The formula 
Eq.(3.34) shows that only for two bonded piezoelectric ceramics with c44 unchanged poled in the same 
direction (not opposite) the field singularity at the interface crack tip maintains the inverse square root 
singularity, since in this case 0   and /1 2  . The parameter  E in this paper has an opposite sign to that 

presented by Wang and Li. This gives that for  II I
c 44 44> 1 c c   meaning that piezoelectric ceramic II is 

stiffer than piezoelectric ceramic I  II I
15 15e e , in this case E 0  , so stands also int

EK 0  and int
EK  

increases with  c. Also it is seen that int
EK  decreases with the ratio  e of II

15e  to I
15e . In the paper of Li and 

Wang (2007) the conclusions, associated with int
EK , are inverse. The presented conclusions are consistent 

with physical considerations. The field intensity factors must satisfy the constitutive equations 
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  , ,II II E D II II E
44 15 15 11K c K e K K e K K        (4.30) 

 
or material parameters must satisfy the equivalent equations 
 

  , .I II II I II II
44 44 15 E 15 D 15 11 Ec c e e e              (4.31) 

 
 It is easily verified that both constitutive relations Eq.(4.31) are satisfied by the coefficients defined 
by Eqs (4.9), (4.27) and (4.29). In general, for the magnetoelectroelastic ceramic the field intensity factors 
must satisfy the constitutive equations 
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 (4.32) 

 

as Eq.(2.14) shows. Of course, we have intint
EK K    and intint

HK K   . 

 
4.4. The energy release rate 
 
 For the magnetoelectrically permeable crack, the energy release rates are very important to evaluate 
the behaviours of crack tips. In accordance with the definition of the energy release rate proposed by Pak 
(1990) (the virtual crack closure integral) the energy release rate can finally be derived as 
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where 
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



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 

 (4.36) 

 
are the energy release rate for homogeneous material (no bi-material) and normalized stress intensity factors 
at the right and left crack tip. One interesting observation from Eq.(4.33) is that though the energy release 
rate, G, is independent of the applied electric-magnetic load, it is affected by electric-magnetic properties of 
two constituents of the bi-material media. 
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4.5. Electric displacement and magnetic induction inside the crack 
 
 Since the medium inside the crack (usually air or vacuum) allows some penetrations of some electric 
and magnetic fields, these fields may not be zero. Suppose the normal components of the electric 
displacement and magnetic induction inside the crack are d0 and b0, respectively. Then from permeable crack 
boundary conditions Eq.(2.18) and solutions Eqs (4.20) – (4.25) it follows that the quantities d0 and b0 are as 
follows 

  

 

 

, case I

, case II

, case I

I I
I 15 0 D
0 I

44

2I0 I I I I15I I I I15 0 15 15D
11 0 11 0I I I

44 44 44

I I
I 15 0 B
0 I

44

2I0 I I 15I15 0 B
11I I

44 44

e 2
D

1c

d
ee e q2

1 E d H
1c c c

q 2
B

1c

b
qq 2

1
1c c

  


 
  

                        

 


 

 
        



, case II.
I I

I I I15 15
0 11 0I

44

e q
H d E

c







        
   

 (4.37) 

 Then using Eqs (2.21), we obtain 
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in both cases of loading conditions. 

 The electric displacement and magnetic induction intensity factors are proportional to I
0 0D d  and 

I
0 0B b , respectively, (Rogowski, 2011) and the following relations hold 
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which are in agreement with the solutions Eqs (4.20)-(4.25). For piezoelectric bi-materials or piezomagnetic 
bi-materials we have, for instance 
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    


    

    


    
.

2

 (4.40) 

 
 In particular, for a fully permeable crack considered here, and two identical magneto– or electro – 
elastic planes polarized in opposite directions we have (from Eq.(4.40)) 
 

  int int .D BK K 0   (4.40a) 
 

 Note that the crack tip electric displacement int
DK  and the electric displacement inside the crack d0 

exist only in the piezoelectric plane. Alternatively, the crack tip magnetic induction intensity factor int
BK  and 

the magnetic induction inside the crack b0 exist only in the piezomagnetic plane. All quantities occur in the 
PEMO – elastic bi – material. 
 
5. Results and discussions 
 
 In studying the fracture behaviour of the PEMO – elastic material the field intensity factors are of 
significance. In this section, examples are given to illustrate the effects of material properties on the field 
intensity factor and the order of singularity. 
 
5.1. Effect of material constants on the singularity order 
 
 We now consider the dependence of the singularity order on 26 constituent independent 
piezoelectromagnetoelastic constants. Although an analytical evaluation of the relative sensitivities is 
possible, on the basis of the results presented above, it is rather cumbersome. Therefore the sensitivity is 
evaluated here in another way. 

 Firstly, we assume that both materials are piezoelectric and II I
44 c 44c c  , II I

15 e 15e e   and II I
11 11   

, and analyze the situations 
 

(a)  c changes and e 1    , that is, no change, 

(b)  e changes and c 1    , 

(c)   changes and c e 1    . 
 

 This states that the right half – plane is fixed and the left one contains a fictitious material with only 
changing  c or  e or  . 
 Then: 

a) The changes of the ratio c  of II
44c  to I

44c : we have 
 

  
    

, , , for ,

I2
c 15

c e
c 44 11

1 1 m e 2
m 1 3 1

1 2m c m 

   
            
     

 (5.1) 

or 
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, for ,

, for , .

c
c

c

c e

1 1 m
m 0

1 1 m

2
1 0 m 1 1 1

m 

  
      

  

         

 (5.2) 

 
 Figure 3 shows the effects of the varying elastic stiffness c  on   and   with unchanging 

piezoelectric and piezomagnetic constants e 1     or e 1    and 1  . Note that 0   and /1 2   

for e 1   , 1   and if     2I II I I I II I
44 44 44 11 44 44 15c c c c c e    , II I

15 15e e   or if c 1   and e 1    . 

Note also that    , ,e e1 1 1 1              for all of .c  

 
a) Case I           b) Case II 

      
 

Fig.3. The effect of  c on   and   with e 1     (Case I) and e 1   , 1   (Case II). 
 
 The singularity order   is larger for the same two ceramics poled in opposite directions together 
since    , ,e e1 1 1 1             . 

 We take six kinds of particular piezoelectric ceramics as representatives, the relevant material 
constants and parameters m, and /1 m   which are listed in Tab.1 (with materials poling axes aligned in the 
positive z – direction). 
 
Table 1. Relevant material properties (Wang and Yu, 2001; Gu et al., 2002) and values of material 

parameters m and / .1 m  
 

 c44

9 210 N m 
   e15 

2C m 
   

 11 
910 C Vm 

   m 1/m 

BaTiO3 43.0 11.60 11.20 0.279 4.348 
PZT-5H 35.3 17.00 15.10 0.542 1.844 
PZT-4 25.6 13.44 6.00 1.175 0.851 

P-7 25.0 13.50 17.10 0.430 2.325 
C-205 87.0 13.59 7.95 0.210 4.761 

PZT-PIC151 20.0 12.00 9.82 0.733 1.364 
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b) The changes of the ratio e  of II
15e  to I

15e : we have 
 

  
 
   

, ,

I2
e 44 11

e 22
15e

1 c1
4 m e1
m

           
     

 

  

max minfor , for ,

for , for , for .

e e

e e e

2 1
0 1 1 m 1

m m

1 m
1 0 m 1

m 4 m

             

                


 (5.3) 

 

 
 

Fig.4.  Effects of  e on   and   with c 1     ( e > 0 or  e < 0 denote piezoelectric ceramics poled 

parallel to or anti – parallel to the z – axis, respectively, i.e.,  e =  1 denotes that I II
15 15 15e e e   ). 

 
 For / e1 m 1     the singularity parameter   increases from –1 to maximum 0   and for e 1   

declines to –1. Then the singularity parameter   varies between (0, 0.5), respectively. If both poling 
directions are opposite i.e., one is in the z – direction and the other is in the (–z) - direction, then to satisfy the 

condition 1   , ( ) ( )II I
15 15e e 1 m    or ( ) ( )II I I I

44 1115 15e e c     must hold. If the selection of II
15e  violates the 

condition 1  , then the electroelastic field near the interface crack tip is dominated by either logarithmic 

singularity or is bonded.  
c) For   varying and other parameter unchanged it is easily found that λ 0  and .0 5   for c 1     

and varying  . But if e 1   , then 
 

  
 

; .

I2
15

44 11

e2m
m

1 c

 
    
    

 (5.4) 

 

 Figure 5 shows the variation of   and   with the ratio   for 
( )

( )
.

II
15
I
15

e
1

e



    
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Fig.5. Effects of   on   and   with c 1   when 
( )

( )

II
15

e I
15

e
1

e



    ; for e 1   we have 0   and . .0 5   

 

 The parameter   assumes negative values, increases from –2m to zero with 0  . The singularity 

parameter   is positive and increases from    / arccos1 2m  to /1 2  with 0  . Note that 2m must be 

less than unity if   tends to zero or m 1  for 1  . Some materials shown in Tab.1 limit the range of  , 

for example PZT-4 has .m 1 175  and   must be larger 1.35 to ensure that 1   . Of course, this situation 
is addressed to two piezoelectrics poled in opposite directions. 
 For piezomagnetic materials the parameter m is 
 

  
 

,

I2
15

44 11

q
m

c

 
 
  

 (5.5) 

 
and for the magnetostrictive material CoFe2O4 assumes the value .m 0 0113 . 
 For CoFe2O4 we have 
 

  . , / , .6 2
44 15 11c 45 3GPa q 550N Am 590 10 N A      (5.6) 

 
 The “relative sensitivity” analysis includes three cases: 

(a) The changes of the ratio c  of II
44c  to I

44c : we have 
 

  
 .

, . ,
.

c
c q

c

1 0113 1
20 7 1

1 0226 
 

       
 

      or, (5.7) 

 

  . , . , , .c
c q

c

1
0 0113 16 7 1 1

1 
 

         
 

 

 

 Approximately 
 

  , .c
c

c

1
16

1


   

 
 (5.8) 
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 For the magnetoelectroelastic composite BaTiO3 – CoFe2O4 (Vf = 0,5)   .
2

15 44 11q c 0 005   and 

  .
2

15 44 11e c 0 135  . 

 Figure 6 shows the effect of c  on   and   for the CoFe2O4 magnetostrictive ceramic 
 

 
 

Fig.6. Effects of  c on   and   for CoFe2O4, 1   and q 1   or q 1   . 

 
For both poling directions the values of   and   are the same. 

(b) The changes of the ratio  q of II
15q  to I

15q :we have 
 

  
 

 
, . ,

.

2
q

q2
q

1
= 8 85

35 4 1


    

  
 

   (5.9) 
  max for , for . .q q0 1 1 8 85           

 
 Figure 7 shows the effect of  q on   and   for the CoFe2O4 ceramic. 
 

 

 

Fig.7. Effects of  q on   and   for CoFe2O4, .c 1     
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(c) The changes of the ratio   of II
15  to I

15 : we have 
 

  
.

for and for , always .q q c
0 0226

1 0 1 1
1 

           
 

 (5.10) 

 

 Figure 8 shows the effect of   on   and   for CoFe2O4. 

 

 

 
Fig.8. Effects of   on   and   for CoFe2O4, q 1   or q 1    and .c 1   

 
5.2. Effect of material constants on the field intensity factors 
 
 The material constants also affect the intensity factors. Figure 9 presents the variation of normalized 

SIFs hom intk k   and intk   defined by Eqs (4.35) and (4.36) which depend on   and   
 

  hom ,
2

k
1

 


 
 (5.11) 

 

  int .
3

1
12k = 2 1
1


  

 
 

 (5.12) 

 

 For 0 1    homk   increases monotonously from 2 2   through 1 to 2  as   tends to zero, 

equals /1 2  and 1, respectively. From Figs 8 and 2 one can observe that the effect of  c on intk   is more 

evident  than that on homk  . Moreover,  c increases the singularity parameter   that decreases (see Fig.3) 

and intk   rises suddenly, while homk   falls down slightly. For c 1   and e 1   or    c 1 m 1 m     and 

e 1    we have /1 2  . This means that if piezoelectric II is more elastically complaisant than 

piezoelectric ceramic I, in this case hom intk k  . On the other hand, for c 1  , which gives /1 2  , 

meaning that piezoelectric II is stiffer than piezoelectric I in this case hom intk k  . From Figs 3, 4 and 5 we 
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see that: the range /0 < 1 2   corresponds to c 1   or    c 1 m 1 m     (in the case e 1   ), 

/e 1 m    and 0  . Then always int homk k  . The range /1 2 1    is for c0 1    or 

   c0 1 m 1 m      (in the case e 1   ). Then int homk k   for all of  . 

 

 

 
Fig.9. Normalized SIFs as a function of .  

 

 Note that the case 1  , 1   gives the limiting values intk 0   and homk 2   which gives 
 

  int hom, .I
0K 0 K a      (5.13) 

 
 This is the solution for the edge crack of length a. 
The normalized intensity factors for strain, electric displacement, magnetic induction, electric field and 
magnetic field at the interface crack tip are defined by Eqs (4.20) to (4.25) and by formula 
 

  
 

int
int

/

qI
q 44

I
o

Kc
k

a 2


 
 (5.14) 

 
where q stands for one of  , D, B, E and H. 
 Then we have 
 

   
 

int int int intint ; ; ; ;

; ; ; ; ,

D B E H

I I
15 D 15 B E H

k k k k k =

2 1 8
e q

1 1







 
 

            

 (5.15) 

 
respectively. 
 Of course, the normalized intensity factors satisfy the constitutive Eqs (2.5), that is, 
 

  int int int int intint; ; ; ; ,D B II E Hk k k C k k k           (5.16) 
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with the matrix Eq.(2.6) or inverse form with the use of matrix   1IIC


, defined by Eq.(2.17). 

 The analysis above implies that for the magnetically (or electrically) permeable interfacial cracks, the 
applied magnetic (or electric) loadings have no influence on the fracture behaviours of the crack tips. 

 Figures 10 and 11 illustrate the variation of intk   and homk  . 
 
a) Case I        b) Case II 

          
 

Fig.10. Normalized SIFs as a function of  c with e 1     (Case I) and e 1   , 1   (Case II). 
 

       
 

Fig.11. Normalized SIFs as a function of  e with .c 1     
 

 We have 
 

  hom
2 2

k  


     for    c
2

3
m

    e 1        or     c
2

1
m

    , .e 1 1      (5.17) 



Anti-plane crack emanating from the interface in a bounded … 1193 

 
 The figures show that the normalized stress intensity factor in a homogeneous solid is only weakly 

dependent on the elastic constants and dielectric permeabilities. In contrast, intk   strongly depends on  c and 

 e. This is consistent with physical considerations: for a large difference of piezocoefficients e 0   or 

e 1   the intk   are larger than homk   (Fig.11). From Fig.10 it can be seen that piezoelectric ceramic II is 

more complaisant than piezoelectric ceramic I ( c 1  ), then hom intk k  . In contrast, if c 1   means that 

piezoelectric ceramic II is stiffer than piezoelectric ceramic I, in this case hom intk k  . 
 Other normalized field intensity factors are presented in Figs 12 and 13. 
 
 

             

 

 

 

Fig.12. Variation of intk  , int
Dk   in 2C m  and int

Ek   in 610 kV m  against  c with .e 1     
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Fig.13. Variation of intk  , int
Dk   in 2C m  and int

Ek   in 610 kV m  against  e with .c 1     

 

 int
Ek  is equal to zero for c 1   (Fig.12) and for e 1   (Fig.13). From Eq.(4.27) one finds that 

int
Ek 0  occurs only when II I II I

44 44 15 15c c e e . In Fig.13 we see that  e has a strong influence on int
Dk  and 

int
Ek  and intk   if e 1  . When e 1  , intk 1  , int

Ek 0  and int
D I

15k e , as expected. 

 Figure 14 presents the variation of normalized ERRs, hom/G G  obtained from Eq.(4.33) with the use 
of Eqs (5.1) and (5.2). 

            There are two states where homG G . The first state, in which /1 2   and 0  , that is, II I
44 44c c , 

corresponds to a crack in the monolithic medium (no bi – material). The second state, in which   and   
tend to unity, corresponds to the edge crack problem (the second material is air). For /1 2   ERRs 
decrease weakly from 1 to 0.69 for /3 4   and later increase to unity for 1 . In this case piezoelectric 
ceramic II is more elastically complaisant. The range /0 1 2    corresponds to the following cases: c 1   

or    c 1 m 1 m     (in the case e 1   ); /e 1 m    and 0   (for any  ). Then always homG G  
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and piezoelectric II is stiffer than piezoelectric I. Similar conclusions may be formulated for the 
magnetostrictive material, changing material parameters e15 and 11  by q15 and  11, respectively. 
 

 

 

Fig.14. Normalized ERRs, 
hom

G

G
 as a function of  : 

hom

,
22

2 1G 2 1 1
1 8 1

G 1 1


               
  cos=  

3

4
  , 

1

2
  , 

hom

G 11 2 10

G 8


 , 

1

4
  , 

1

2
   , 

hom

.
G 67 47 2

G 16


  

 
A crack between a piezoelectric material and a piezeomagnetic material 
 
 Magneto-electro-elastic materials usually comprise an alternating piezoelectric medium and 
piezomagnetic medium. Here, we consider a special case, namely, the right medium I is a piezoelectric and 
the left medium II is a piezomagnetic (Case I) or inversely (Case II). The material constants of the 
piezoelectric medium (No.I) and piezomagnetic medium (No.II) have the following values (Huang and Kuo, 
1997; Annigeri et al., 2007; Song and Sih, 2003): 
BaTiO3 – piezoelectric (barium titanate) 
 

  

, . , ,

. , , . .

I 9 2 I 2 I
44 15 15

I 9 1 1 I I 6 2
11 11 11

c 43 10 Nm e 11 6Cm q 0

11 2 10 CV m d 0 5 0 10 NA

 

    

   

      

 (5.18) 

 
CoFe2O4 – piezomagnetic (cobalt iron oxide): 
 

  

. , , ,

. , , .

II 9 2 II II 1 1
44 15 15

II 9 1 1 II II 6 2
11 11

c 45 3 10 Nm e 0 q 550NA m

0 08 10 CV m 11 0 590 10 NA

  

    

   

      

 (5.19) 

 
 The material parameter Eq.(3.33) assumes the values 
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   

; ,
J J
44 44

2 2I II
15 15I II

44 44I II I II
11 11 11 11

2
1 J I II

c c

e q
c c

   


 
     

 (5.20) 

 

where J
44c  is the shear modulus of the cracked material, for Case I and Case II, respectively. We have 

 

  
. , Case I . , Case I

, .
. , Case II . , Case II

0 1618 0 4483

0 1028 0 4672

 
     

 (5.21) 

 
 The energy release rates are obtained as follows 
 

  
   
   

. , Case I
.

. , Case II.

212 I 2
0

212 I 2
0

a 15 0 10 m N
G

a 12 9 10 m N





        
       

 (5.22) 

 
 For the “homogenous” composite BaTiO3 / CoFe2O4 with the ratio roughly 50 : 50 we have with the 

use of arithmetic mean: . 9 2
44c 44 15 10 Nm   and Ghom assumes the value 

 

   hom . .
212 I 2

0G a 11 4 10 m N           
 (5.23) 

 
 We see that ERRs for bi – materials cannot be determined by the mixture rule since it is a significant 
new feature in the interface crack problem considered in this paper. 

 Obviously for piezoelectric/piezomagnetic composite (I / II) is I II
11 11    and II I

11 11    and 
Eq.(5.20) reduces to the formula 
 

  ; ,44
J
44

c
1 J I II

c


   


 (5.24) 

where 44c  is the harmonic mean of the piezoelectric and piezomagnetic stiffened elastic constants I
44c  and 

II
44c  is defined as follows 

 

  
I II

44 44 44

1 1 1 1

2c c c

 
   

   
 (5.25) 

 
where 
 

  
   

, .

2 2I II
15 15I I II II

44 44 44 44I II
11 11

e q
c c c c   

 
   (5.26) 

 
 Using Eqs (5.24) to (5.26) we obtain 
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   
   

. , Case I . , Case I
,

. , Case II . , Case II

. , Case I

. , Case II.

212 I 2
0

212 I 2
0

0 1626 0 4480

0 1036 0 4670

a 15 0 10 m N
G

a 12 9 10 m N





       

        
       

 (5.27) 

 
6. Conclusions 
 
 A crack perpendicular to and terminating at the interface of two bonded dissimilar 
piezoelectromagnetoelastic media is studied in this paper. Analytical solutions and numerical simulations 
suggest the following conclusions: 
(i) A closed form solution has been obtained for a crack between two dissimilar magneto  electro – elastic 

ceramics. The crack is localized in one materials and its one tip lies on the interface. Expressions for the 
crack – tip field intensity factors, the electromagnetic fields inside the crack are given for electrically 
and magnetically permeable crack assumptions. 

(ii) The energy release rate can be explicitly expressed in terms of the intensity factors. It is affected by 
electric – magnetic properties of the constituents of the bi-material media. The normalized energy 
release rate is unity for the homogeneous medium ( c 1  ) and for the edge crack ( c 0  ) and assumes 

a minimum value 0.69 for .c 3 2 2 0 18    . If  c tends to infinity, also this quantity tends to 
infinity (the interface is clamped). 

(iii) For two identical magneto-electro-elastic planes polarized in opposite directions we have 

int int
D BK 0 K  . 

(iv) At the interface we have int
EK 0  when II I II I

44 44 15 15c c e e , while int
HK 0  if II I II I

44 44 15 15c c q q . 
(v) An application of electric and magnetic fields does not alter the stress intensity factors; they depend on 

the elastic, electric and magnetic constants of bi – material ceramic. 
(vi) The coupling between electromagnetic fields and mechanical field leads to existing electric 

displacement and magnetic induction of intensity factors at the crack tip, which respond to the applied 
stress intensity factor. 

(vii) If magnetic effects are neglected the result of the stress intensity factors is the same as the solution for 

the piezoelectric materials given by Li and Wang (2007), but int
Ek  differs in sign. 

 The results could be of particular interest to the analysis and design of smart sensors and actuators 
constructed from magneto-electro-elastic composite laminates. Nowadays, electro – magneto – elastic 
coupled multiphase composites have a wide range of applications in science and engineering such as space 
planes, supersonic air planes, rockets, missiles nuclear fusion, reactors and submarines. 
 
Nomenclature 

 a – radius of the penny – shaped crack 
 0b  – magnetic induction supported by the crack gap 

 xB , yB  – magnetic induction components 

 c – material property matrix 

 1C  – material compliances matrix 
 44c  – shear modulus 

 44c  – piezoelectromagnetically stiffened elastic constant 
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 0d  – electric displacement supported by the crack gap 

 xD , yD  – electric displacement components 

, , or

, ,
0 0 0

0 0 0

B D

E H




 – magnetic, electrical and mechanical loading 

 xE , yE  – electric field components 

 G – energy release rate 
 xH , yH  – magnetic field components 

 11d  – magnetoelectric constant 

 15e  – piezoelectric constant 

 J – index J I  denotes PEMO – ceramic I, J II  PEMO – ceramic II 

 homK   – mode III stress intensity factor for the crack tip in homogeneous material 

 hom
DK  – electric displacement intensity factor in homogeneous material 

 hom
BK  – magnetic induction intensity factor in homogeneous material 

 intK   – mode III stress intensity factor for the crack tip located at interface 

 int
DK  – electric displacement intensity factor at interface 

 int
BK  – magnetic induction intensity factor at interface 

 homk   – normalized stress intensity factor at “homogeneous” crack tip 

 intk   – normalized stress intensity factor at “interface” crack tip 

 15q  – piezomagnetic constant 

  ,w x y  – anti – plane displacement vector 

  ,x y  – plane coordinate system 

   – singularity order parameter 
   – bimaterial parameter 
 11  – dielectric constant (permittivity) 

 11  – magnetic constant (permeability) 

 c , e ,   – parameters of sensitivity of piezoelectric material 

 c , q ,   – parameters of sensitivity of piezomagnetic material 
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