VERSITA

Int. J. of Applied Mechanics and Engineering, 2013, vol.18, No.4, pp.1249-1261
DOI: 10.2478/ijame-2013-0076

RESPONSE DUE TO MECHANICAL SOURCE IN SECOND
AXISYMMETRIC PROBLEM OF MICROPOLAR ELASTIC MEDIUM

R. SINGH
Department of Mathematics S.G.A.D. Govt. College
Tarn Taran, Punjab, INDIA-143401
E-mail: kalsi_ranjit@yahoo.com

The second axisymmetric problem in a micropolar elastic medium has been investigated by employing an
eigen value approach after applying the Laplace and the Hankel transforms. An example of infinite space with
concentrated force at the origin has been presented to illustrate the application of the approach. The integral
transforms have been inversed by using a numerical technique to obtain the components of microrotation,
displacement, force stress and couple stress in the physical domain. The results for these quantities are given and
illustratred graphically.
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microrotation, Rhomberg’s integration.

1. Introduction

Eringen and Suhubi (1964) introduced the theory of microelastic solids in which the
microdeformation and microrotation of the material particles contained in a microvolume element with
respect to its centroid are taken into account in an average sense. Materials affected by micromotions and
microdeformations are known as micromorphic materials. Later Eringen (1964) developed a theory for a
subclass of micromorphic materials which are called micropolar solids and these materials show
microrotation effect and microrotational inertia. Here, the material’s particle in a volume element can
undergo only rigid rational motions about its centre of mass. Micropolar solids may represent the materials
that are made up of dipole atoms or dumbbell type molecules and are subjected to surface and body couples.
Solid propellent grains, rocks, polymeric materials, wood and fibre glass are few examples of such materials.
The deformation in these materials is characterized not only by classical translational degree of freedom

represented by the displacement vector field u(x,¢), but also by the rotation vector ¢(x,?).

Das et al. (1983) discussed a one-dimensional problem in coupledt hermoelasticity using an eigen
value approach. Mahalanabis and Manna (1989) discussed the eigen value approach to linear micropolar
elasticity by arranging basic equations of linear micropolar elasticity form of matrix differential equation in
the Hankel transform domain. Saxena and Dhaliwal (1990) discussed a two-dimensional problem in
axisymmetric and plane strain cases in the context of coupled thermoelasticity employing the eigen value
approach. The two-dimensional axisymmetric and plane strain problems in homogeneous and isotropic
media are investigated by Sharma and Chand (1992) using the eigen value approach. Sharma and Kumar
(1996) discussed the axisymmetric problem of generalized an isotropic thermoelasticity by using the eigen
value approach after employing the integral transform technique. By using the eigen value approach Das et
al. (1997) investigated a one-dimensional problem with heat sources distributed over a plane area in an
infinite isotropic elastic solids and a two-dimensional problem with the instantaneous heat sources in an
infinite transversely isotropic elastic medium. Recently Mahalanabis and Manna (1997) discussed the
problem of linear micropolarthermoelasticity by using eigen value approach.
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In the paper we consider a two-dimensional second axisymmetric problem in a homogeneous
isotropic micropolar elastic medium. The solutions are obtained using the eigen value approach after
employing the integral transform technique. The integral transforms are inverted using a numerical approach.

2. Basic equations

Following Eringen (1966) the constitutive relations and the field equations in a micropolar elastic
solid without body forces and body couples can be written as

g =ty 8y + 1t + 0y )+ (14 = €400, ) 2.1
My = a0, .Sy + Py + v, (2.2)
o’u
(l+2u+kﬁ%u—(u+HVxqu+kVX¢=pg—g (2.3)
t
0’9
(a+B+yﬁ%¢—yVXvX¢+kvXu—2K¢=g57- (2.4)
t

where, A, 1, o, B, y,K are material constants, p is the density, j — the micro inertia, u - the displacement

vector, ¢ - the rotation vector, f;; - the force stress tensor and m; - the couple stress tensor.

3. Formulation and solution

We consider a homogeneous, isotropic micropolar elastic solid. We take a cylindrical polar
coordinates system (7,0,z) and the z-axis is pointing into the medium. Due to the symmetry about the z-

axis, all quantities are independent of 0. Since we are discussing the second axisymmetric problem, we have

u=(0,uqy,0), 0=(4,,0,9.). 3.1

Using Eq.(3.1) and introducing dimensionless quantities as

*2 2 *2
, r , z , ho , o
r=-—, zZ ==, ue:p—a ¢r:p ¢ra
h h H H
, Ko’ , , 1
o, =12, r=—tt, tlo ==L, (32)
n phe K
. 1 o K
m, = 2z zr = zr > o0 =—,
Kh Kh pj

the set of Eqgs (2.3)-(2.4) reduce to (on suppressing the dashes)



Response due to mechanical source in second ... 1251

9. 109, I N0%0,  ,8%, dug %0
S AN 1-d +d 2y, —n,—2 = r 33
{arf ror 2 } ( )araz oz’ iy iy = or (3-3)

o’ o’p. 10 o’ L10 0 o’
¢Z+(1—d2){i+—&}+d2{ 0 L2 }+n1;§(rue) 2n;0. =n, 8;I;Z,(3.4)

0z° ozor r Oz o’ r or
621/{6 1 5146 621/{6 Ug {a(l) 6(1) } 821/{6
— e ——+——— —L - —Zi=n,— 3.5
{arz o e 2T T G2
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where nlzK—h, ny =—; *2]“ , ny = K ,
a+P+y ph’o (o +B+7) n+K
(3.6)
2
phew “ (n+K) a+B+y
Applying the Laplace transform with respect to time ‘#’ defined by
{6, (r2.0).8. (r2.)stig (r,2.p)} = [{0, (r,2.0), 0. (r,2.8) g (20} e el 3.7)
0
and then the Hankel transform with respect to ‘»* defined by
6 (&.2,p)= [ 8. (r.2.p)rdy (&) dr,
0
(3.8)
(6,(82.0),110 (82.0)} = [{8, (r.2. p). iy (.2, p)} 1 (&) dr
0
to Egs (3.3)-(3.5), we obtain
2
T 1 T 1-d §~r ~1
¢r:d_2(&2+n2p2+2n])¢r+( dZ ) ¢z+:;_12u9’ (39)
& =(p7ny +E7d” + 2m; )b, —(1-d” &8, —niEiy, (3.10)
iy = = 1380, — ;0. +(n4p2 +§2)fte. (3.11)

The system of Eqgs (3.9)-(3.11) can be written as
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d
EW(i,z,p)=A(é,p)W(é,z,p) (3.12)
U 0 1 o
where w=|_ 1 A= , U=|¢, |, (3.13)
U 4, 4, "
Uy
_ , _
, (1-a%)e n
d? d?
4y =|~(1-d%) 0 0 |,
—n3 0 0
—%(§2+n2p2+2n]) 0 0
d
4, = 0 p2n2 +e%d? +2n,; -n;
0 —n3§ ”41’2"'@2

0 is the null matrix and I the unit matrix of order 3x3. To solve Eq.(3.12), we take

W(&zp)=X(&p)e”, (3.14)

so that

A(E.wp)W(aaz’p):IW(E.”Z:p)a 3.15)

which leads to the eigen value problem. The characteristic equation corresponding to the matrix 4 is given
by

det(A—-11)=0, (3.16)
which on expansion provides
19 =01 20,07 =h;=0 (3.17)

where the coefficient A;,A,,A; can be easily evaluated in terms of p,& and contants Eq.(3.6).
The eigen values of the matrix 4 are characteristics roots of Eq.(3.17). We assume that real parts of
[; are positive. The vector X (@, p) corresponding to the eigen value /; can be determined by solving the

homogeneous equation

[4-0]X (& p)=0. (3.18)
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The set of eigenvectors X; (&, p), (i=1,2,3,4,5,6) may be obtained as

Xi]({::p):|
X;(&p)= (3.19)
( ) {Xiz(é,l?)
where
a;l; ailiz
X, (&p)=| b |, X, (&p)=| bi; |, 1=1, i=1,2,3, (3.20)
-£ —€l;
—a,l; al-ll-2
X (&p)=| b |, Xp(&p)=|-bi | j=i+3, I=-1, i=123 (321)
-£ &l;
a, =§[(d2 ~1)(nep? + € —1,?)—n1n3J/Ai, (3.22)
b; =[(n4p2 +§2)(n2p2 +E_,2 +2n1)—l,~2 (n2p2 +§2 +2n, —n1n3)+
(3.23)
s 17 = (nyp? + 8 )}J/A,-,
A, =n3[ll.2 ~(mop? + €7 +2n1):|; i=1,2,3. (3.24)
The solution of Eq.(3.12) is given by Sharma and Chand (1992)
W(&zp)=>. [BX:(&p)exp(hz)+BisXius (5 p)exp(-1z)] (3.25)

where B; (i =1,2,3,4,5,6 ) are arbitrary constants.

Equation (3.25) represents the solution of the general problem in the axisymmetric case of
homogeneous isotropic, micropolar elasticity by employing the eigen value approach and therefore can be
applied to a broad class of problem in the domains of the Laplace and Hankel transforms.

4. Application

We consider an infinite micropolar elastic space in which a concentrated force of magnitude
—F,6(r)o(t
()50
2nr
shown in Fig.1.

acting in the direction of the z-axis at the origin of a cylindrical coordinate system as
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Fig.1. Geometry of the problem.

Micropolar Elastic Mediun -- I

The problem is axisymmetric with respect to the z-axis. The boundary conditions on the plane z=0

are given by

o, (.0.1) =0, (r.07.t)=0, 0. (.0%1)=0.(r.07.t)=0

0,

Ug (r,0+,t)—ue (r,O_,t)

~F,5(r)5(¢)

tze(r,oﬂt)—tze(r,O’,t): o

10" ()0 e r 7)) 0.
Applying the Laplace and Hankel transform to Eqs (4.1)-(4.4), we get

6, (€.0".p)-0,(8.07.p)=0, b (8.0".p)-6.(207.p)=0
i (8.0".p) - (£,07.p) =0,

Lo(&0".p) -0 (807 p) =_2—I;0,

i, (807, p) -, (£07,p)=0,
The transformed microrotations, displacement and stresses are given for z>0 by

m,, (§,0+,p) —m,, (E,,,O_,p) =0.

(4.1)

4.2)

(4.3)

4.4

(4.5)

(4.6)

(4.7)

4.8)

4.9
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¢, (€2, p)={b;B, exp(~L,;z) + b, Bs exp(~Iyz) + b3 By exp(—1;2)} , (4.10)
g (E,,Z,p) = —&{34 exp(—ljz) + Bs exp(—l2z) + By exp(—l3z)} , (4.11)
ity (&2, p) = &{1,B, exp(~1,z) +1,Bs exp(~Iyz) + 1;B; exp(~1;z)} (4.12)
L.(8.2,p)=1;(&ns —ang ) Byexp(=1jz) + 1, (&ns — azng ) Bs exp(~lrz) + @.13)
+13(&ns —azng ) B exp(—I3z),
., (&2,p)= (allfng — by, )34 exp(~4,z)+ (a21§n8 —Ebyn, )35 exp(—1yz) + i
+(asling — &by, ) By exp(-1yz), '
i, (&2.p)==| 1) (Eayng +bynyy) By exp(—1iz) + 1, (Eayng +bynyy ) Bs exp(—1,z) + wis)
+1; (Eazng +bsnyy ) By exp(—1z) |-

For z<0 the above expressions get suitably modified

b, (8,2,p)=a;l;B;exp(1;z) +ayl,B, exp(l,z) + asl;B; exp(l;2) (4.16)

where s :(thﬁf’ b, b
ng =K£jm2, ny :ﬁ, - =(°‘K+£—:032)“, 4.17)
By =B, =F(ash, —a)h;)/4n,A", (4.18)
By =By = Fy(a;b; —azh; )/ 4nl,A", (4.19)
B; = By = Fy(asb; —ajby )/ 4nl;A" (4.20)

where A" =ns[(ash; —azhy )+ (ash; —a;bs ) +(a;b, —asby) |. (4.21)

Thus the functions §,.,d.,g.7,q,7
these enable us to find the micro rotations, displacement, force stress and couple stress.

zr?o

and 7, have been determined in the transformed domain and
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5. Inversion of the transforms

The solution is obtained by inverting the transforms in Eqs (4.9)-(4.16). These expressions can be
formally expressed as functions of z, the parameters of the Laplace and Hankel transforms p and§

respectively, and hence are of the forms j_f(&,z, p) . To get the function f (r,z,t) in the physical domain,
first we invert the Hankel transform using

T(rz.p)=[& (&.2.p)J, (&) de. (5.1)
0

Thus, expression Eq.(5.1) gives us the Laplace transform f (r,z, p) of the function f (r, z,t).
Now for the fixed values of &, r and z, the function j_f(r,z, p) in the expression Eq.(5.1) can be considered
as the Laplace transform g(p) of some function g(7). Following Honig and Hirdes (1992), the Laplace

transform of the function g(p) can be inverted as given below:
The function g(¢) can be obtained by using

] C+io

g(t)zﬁ o eptg(p)dp (5.2)

where C is an arbitrary real number greater than all the real parts of the singularities of g(p). Taking
p=C+iy,we get

eCt

g(1)=>- " eMg(Criv)dy. (5.3)

Now taking e g(t) as h(t) and expanding it as a Fourier series in [0, 2L], we obtain approximately

the formula

g)=g,(t)+Ep (5.4)

where g0 (t):%+2:1Ck, 0<t<2L, (5.5)

Ct ikt .

e — ik
C,=—Relel g| C+—|}.
(=S { gloe j}

Ep is the discretization error and can be made arbitrarily small by choosing C large enough.
Since the infinite series in Eq.(5.5) can be summed up only to a finite number of N terms, so the
approximate value of g(¢) becomes

gN(t)=%+Z:’ICk, 0<t<2. (5.6)

Now, we introduce an error E, that must be added to the discretization error to produce the total
approximation error in evaluating g(¢) using the formula. The discretization error is reduced by using the
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‘Korrecktur method” and then'e - algorithm’ is used to reduce the truncation error and hence to accelerate
the convergene. The Korrecktur method formula to evaluate the function g(¢) is

g(t)=g,(t)-e?* Vg, (2L+1)+E},
where |Ep| <|Ep|.
Thus, the approximate value of g(f) becomes
g, (1) =gy (1) - P gy (2L+1) (5.7)

where N’ is an integer such that N’<n.
We shall now describe the ¢ - algorithm which is used to accelerate the convergence of the series in
Eq.(5.6). Let N be an odd natural number and S,, = z::l Cx be the sequence of partial sums of Egs (5.6).

We define the - sequence by

Com = 0, €rm = Sm’
1
8n+1,m :8n—1,m+1 L — }’l,m=],2,3,...
nm—1 "~ 8n,m
The sequence €;;, €3;, ... ,&y; converges to g()y++E,—C,/2 faster than the sequence

S,m=1,2,3,.... The actual procedure to invert the Laplace transform consists of Eq.(5.7) together with the
€ - algorithm. The values of C and L are chosen according to the criteria outlined by Honig and Hirdes
(1992).

The last step in the inversion process is to evaluate the integral in Eq.(5.1). This was done using
Romberg’s integration with an adaptive step size. This method uses the results from successive refinements
of the extended trapezoidal rule followed by extrapolation of the results to the limits when the step size tends
to zero. The details can be found in Press ef al. (1986).

6. Numerical results and discussion

Following Gauthier (1982) we take the following values of relevant parameters for the case of
aluminium epoxy composite as

p=2.19x10°kg/m’, A=7.59x10°N/m?, n=1.89x10°N/m?,

K=0.0149x10°N/m?,  o=B=y=0.0268x10°N,  j=19.6x10"m".

. . K . . : .
Gauthier (1982) considered € =— as the coupling coefficient. The computations were carried out

for three values of time, namely: ¢ =0.025, 0.075, 0.125 for fixed € =0.0078 and for three values of coupling
coefficients, namely: € =0.0078, 0.01, 0.0125 for the fixed time r=0.075 at z=1.0 in the range 0 <r <6 .
Figure 2 shows the variation of normal microrotations which decreases in the range 0 <r </ and
increases in the range /.5 <r <6 as time increases from 0.025 to 0.0125 for the fixed value of € =0.0078.
Figure 3 shows the variation of normal microrotations which decreases in the range 0 <r </ and
increases in the range /.5 <r <6 as ¢ increases from 0.0078 to 0.0125 for the fixed value of time 0.075.
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Fig.2. Variation of normal microrotation ¢ , (r,1).
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Fig.3. Variation of normal microrotation ¢, (r,1).

The variation of the tangential force stress is shown in Fig.4 which increases in the range 0<r </,
decreases in the range /.5<r<2,5.5<r<6 and oscillates in the range 2.5<r <5 as time increases from
0.025 to 0.125 for the fixed value of £€=0.0078.

0,05 -
0 — —— ; F * i | | | | | | | |
-0,05 2 3  4—5r 6 — =025
o1+ t=.075
——=1{=.125

-0,15
_0,2 B
-0,25 -
0,3
-0,35
04 -

ceeee> T (1, 1)X 107

Fig.4. Variation of tangential force stress 7 (r,] ) .

Figure 5 shows the variation of the tangential force stress which decreases in the range 0 <r </, and
increases in the range /.5 <r <6 as € increases from 0.0078 to 0.0125 for the fixed value of time 0.075.
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Figure 6 shows the variation of normal couple stress which increases in the range 0 <r < 1.5, oscillates in
modulus value in the range 2 <r <6 as time increases from 0.025 to 0.125 for the fixed value of €=0.0078.
Figure 7 shows the variation of normal couple stress which decreases in the range 0<r<2.5 and

increases in the range 3 <r <6 as ¢ increases from 0.0078 to 0.0125 for the fixed value of time 0.0735.

0,05

0

ceeme> T (R, 1)X 107

0,005 -

-0,005
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-0,015
-0,02
-0,025
-0,03
-0,035

> M(1, 1)x 103

-0,04 -

0,002 -

Fig.6. Variation of normal couple stress M __ (r,]) .
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Fig.7. Variation of normal couple stress M __ (r,1).
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Conclusion

We observed that all the six quantities showed more variation in their magnitude at all small times
and small coupling coefficients and decreased with increase of time and €.

Nomenclature

j — micro-inertia
my; — couple stress tensor
t; — force stress tensor
u — displacement vector
o, B,y, K —micropolar material constants
A — gradient operator

3 — Kronecker delta

g;- — alternating tensor
A, 0 — Lame’s constants
p —density
¢ — microrotation vector
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