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A new method and numerical procedure for determining the plastic limit load in an ellipsoid-cylinder 
intersection using the elastic-plastic finite element analysis are presented. The proposed method is based on the 
maximum criterion of the rate of change of the relative plastic work. For the elastic-plastic analysis of the nozzle 
connections the 2D finite element method and plasticity theory with strain hardening are used. The results of the 
comparison of the plastic limit pressure obtained on the basis of different known criteria and the proposed criterion 
are presented. A parametric study of ellipsoidal heads with a nozzle under internal pressure loading was performed. 
The effects of nondimensional geometric parameters of shell intersection on the plastic limit pressure are discussed. 
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1. Introduction 
 
 A shell structure in the form of ellipsoidal head with a cylindrical nozzle belongs to one of the 
typical configurations in many industries, such as petrochemical and chemical machine-building, power 
engineering, etc. Such configurations are considered usually as intersecting shells. The local stress 
concentration in the intersection region caused by a geometric discontinuity can be very meaningful. An 
analysis of the intersecting shells forms an important class of applied problems in mechanics of shells and 
the methods of analysis of intersecting shells are important in scientific and engineering studies.  
 In the engineering practice, in some cases, a linear analysis is sufficient. However, a nonlinear 
analysis is a more accurate and appropriate research solution for the definition of the specified allowable 
loads in pressure vessels and has been adapted by the well-known Pressure Vessel Design Codes (ASME 
2004; PD 5500 2006; EN 13445 2002). 
 The elastic analysis of ellipsoidal heads with nozzles and a parametric study have been considered by 
Skopinsky et al. (1994; 2000; 2003; 2006) and in the book of Skopinsky (2008). Hsieh et al. (2000; 2002) 
described the elastic and inelastic analyses and definition of plastic load in torispherical heads with large 
nozzles. Experimental data and results of 3D FEA for individual loads and combined loading were presented 
there as well.  
 The objective of this paper is to describe the method for determining the plastic limit load in 
ellipsoidal heads with cylindrical nozzles and to study the influence of various geometric parameters on the 
plastic limit load. 
 
2. Determining plastic limit load 
 
 Determining the plastic limit load producing gross plastic deformation is of great importance for 
nozzle connections. A review of several methods (criteria) for determining plastic loads is given by Gerdeen 
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(1979). In practice, two methods are most commonly used in the analysis of pressure vessels with nozzles: 
the Twice Elastic Slope (TES) method and the Tangent Intersection (TI) method. Both methods are based on 
a characteristic load-deformation curve and are empirical procedures.  
 Muscat et al. (2003) proposed a work criterion for evaluating plastic limit loads (Plastic Work or PW 
criterion). This method is based on the plastic work dissipated in a structure from a ductile material as 
loading progresses. A characteristic curve is drawn as load (or a load parameter for combined loads) versus 
plastic work dissipation in the structure. The plastic limit load by the tangent intersection method is defined 
as the intersection between a straight-line tangent from the curve and the load vertical axis. 
 Gerdeen (1979) noted that the TES and TI methods have practical difficulties in selecting the 
appropriate load parameter for combined loading. The TI and PW criteria have one common drawback: it is 
not always clear precisely, where the tangent to the characteristic curve should be drawn, especially if the 
curve does not display a plateau. Therefore, the subjective choice of the point on the curve for the tangent 
can affect the defined plastic limit load. 
 Li and Mackenzie (2005; 2006) proposed a new criterion based on the plastic work concept as well. 
The plastic limit load is defined by relating the curvature of the load-plastic work curve to specific stages in 
the evolution of the gross plastic deformation mechanism (Plastic Work Curvature or PWC criterion). The 
results of the example presented for the branch intersection assuming a strain hardening material have shown 
that the PWC criterion gives a higher value of plastic load than other criteria considered (TES, TI and PW 
criteria). The reason may be an ambiguous condition of this criterion. 
 Camilleri et al. (2006) developed the RPWC (Ratio Plastic Work curvature) criterion. The 
development of the gross plastic deformation mechanism is characterized by plotting the ratio of plastic work 
to total work against the applied load. Plastic load is identified at the load equivalent to the maximum 
curvature. However, the application of RPWC criterion to the analysis of a head with a nozzle was not 
considered. 
 Some comments on the deformation parameters which are used for the characteristic curve can be 
made. Conventionally, deformation parameters can be divided into local and global. These parameters should 
adequately represent the development of ductile material yielding in an elementary volume or a global 
process of the elastic-plastic deformation in a structure as a whole. 
 A local deformation parameter is selected for a point (elementary volume of the body); for example, 
it can be a strain component, a strain intensity, the largest principal strain or a displacement component at a 
point in the plastic region. The advantage of using a local deformation parameter is the tracking of its 
changes, usually in the area of the most significant plastic deformation. The disadvantage is that this change 
may be alternating, which leads to a non-monotonic variation of the load-deformation curve or a strongly 
nonlinear load-deformation dependence which complicates the correct definition of limit load. In this regard, 
in our opinion, in an inelastic analysis it is preferable to use the strain intensity, the plastic strain intensity or 
the specific plastic work as the local deformation parameter, as they are always positive and increasing 
quantities. Also, as noted by Gerdeen (1979), the estimating load is dependent upon the location of the strain 
or deflection measurement. 
 The global deformation parameter may be the plastic work of the shell intersection or displacement 
at any characteristic point of a vessel or a nozzle located outside the region of plastic deformation. The 
advantage of the global deformation parameter is that it is always growing and the characteristic curve is 
monotonically increasing as a consequence. 
 
3. Ellipsoid-cylinder intersection. Finite element modeling 
 
 For the elastic-plastic analysis of the nozzle connection in an ellipsoidal pressure vessel head, the 2D 
finite element method, a small deformation shell theory, a plasticity theory with strain hardening and the Von 
Mises yield criterion are used.  
 A nozzle connection is considered as an intersection of two shells: an ellipsoidal shell of revolution 
(a basic shell) and a cylindrical shell (a nozzle). A common case of the nozzle position in the ellipsoidal shell 
is shown in Fig.1: the geometry presented corresponds to intersection of middle shell surfaces.  
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Fig.1. Geometry of ellipsoid-cylinder intersection. 
 
 For the ellipsoid-cylinder intersection, the main plane which passes through the axis of the basic 
shell and the normal n0 to the ellipsoid surface at the point of the intersection of this surface by the nozzle axis is 
introduced. The parameter  defines the angular deflection of the nozzle axis from the radial position (from 
the normal n0), the parameter x0 defines the offset nozzle displacement from central position. 
 With the purpose of a parametric study, the typical nozzle connections in an ellipsoidal head are 
considered following Skopinsky (2008): radial ( = 0), non-radial ( > 0); central (x0 = 0) and non-central 
(x0 ≠ 0).  
 The finite element modelling of the shell intersection includes the following specific features: the 
application of curvilinear coordinate systems for individual shells, the use of a modified mixed variational 
formulation and 2D shell-curved element with a special scheme for displacement and strain approximations, 
and the use of a rational calculation algorithm with minimum of coordinate transformations. The shell 
element model used is an arbitrary doubly curved quadrilateral element with 20 degrees of freedom, five at 
each node (three displacements and two rotations in principal coordinate planes). In the numerical analysis, 
taking into account the nonlinear stress distribution in the elastic-plastic range, a layered element model is 
used. The shell element is divided into 10 layers over the thickness and the variation of material properties 
from layer to layer is accounted for. The element characteristics are determined by numerical integration 
over the element volume. 
 The elastic-plastic finite element analysis of the shell intersections is carried out using the initial 
stress technique proposed by Nayak and Zienkiewicz (1973) which allows one to perform calculations for 
any stress-strain dependence including an elastic-perfectly plastic material model or a stress-strain curve with 
a «yield plateau». For the elastic-plastic analysis of the intersecting shells in such a formulation, a developed 
specialized computer program SAIS is applied. 
 
4. Maximum criterion of rate of change of relative plastic work 
 
 The numerical elastic-plastic analysis of the intersecting shells showed that for determining the 
plastic limit load, in our view, it is preferable to use a global deformation parameter  plastic work. The 
following reasons favorably distinguish this parameter from the others: (a) the parameter is an objective and 
revealing indicator of the mechanism of plastic deformation in the structure and the gradual change of the 
structure behavior in the process of loading, (b) as a result of the aforesaid, the characteristic curve is a 
smooth and monotonically increasing curve, and (c) the parameter can be used for structures subject to a 
single load or combined loading. However, the known criteria based on the plastic work do not always 
contain clear enough conditions to determine the plastic limit load. 
 Here, a new criterion based on the plastic work concept is proposed to substantiate a procedure for 
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the definition of the plastic limit load. For this, consider some general magnitudes characterizing the elastic-
plastic deformation of a structure. 
 In the SAIS program using the FEA for the shell intersection configuration and following Iliushin 
(1948), the specific (per unit volume) plastic work pW  and the specific total work of deformation W , the 

total plastic work pW  and the total deformation work W  are defined as follows: 
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where i is the stress intensity (or equivalent stress), p
i  is the plastic strain intensity (or equivalent plastic 

strain), i  is the strain intensity, K is the volumetric elastic modulus,  is the volumetric strain, Npe is the 
number of elements in which the yielding takes place, and Ne is the total number of elements. 
 For the analysis of the elastic-plastic deformation of the shell intersection the following parameters 
were introduced: 
   relative plastic work 
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   the rate of change of relative plastic work with increasing load (or load parameter) q 
 
  .p pC dC dq                                                      (4.5) 

 
 The parameter Ср (0  Ср < 1) is the global indicator of the plastic deformation of intersecting shells, 
where the function Ср(q) is always monotonously increasing. 
 The results obtained using elastic-plastic analyses for different shell intersections show that the 
function  pC q  does not change monotonically and has a local maximum at a certain load. The presence of 

this maximum can be explained as follows. The features of the local stress distributions in intersecting shells 
has been discussed in Skopinsky (2008). As a consequence of this features, the first plastic strain appears in a 
relatively small area where the largest stresses exit. Then, as the load increases, the plastic strain spreads 
through the thickness of shells (nozzle and vessel or branch and main run), along the intersection region and 

away from it. Initially, the value of the plastic work increases intensively  pC 0   due to the active stress 

redistribution in the region of plastic deformation. Then, the plastic work gradually becomes the dominant 
part of the total deformation energy of the structure. The maximum value pC  characterizes the establishment 

of such a plastic deformation mechanism for a shell intersection when, as calculations have shown, with 
further increasing load, the rate of increase of the total work W is defined by the rate of increase in the plastic 
work Wp. Thereafter, the rate of change of the relative plastic work is reduced. 
 As a result, the maximum criterion of the rate of change of the relative plastic work is proposed to 
determine the plastic limit load (qpl). 
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 In the SAIS program, the definition of the plastic limit load qpl is as follows. For a «load program» 
(given load values qj, j = 1, ..., n), the values of parameter Cp,j from the numerical results of the FEA are 
calculated for each load step according to Eqs.(4.1)  (4.4). These results are written into a data file as a 
series of qCp points. A cubic spline approximation of the function Cp(q) through qCp data points is 
generated to find the derivative ,p jC  at each point using a standard procedure. Then, for the obtained 

function  pC q , the plastic limit load qpl is defined for the point of this function where the derivative 

reaches its maximum (graphically or using numerical iterative procedure). 
 The application of this method for the definition of the plastic limit pressure in the intersecting 
cylindrical shells was presented by Skopinsky and Berkov (in press). In addition, in this paper the criterion of 
specific plastic work of a characteristic curve ,maxpq W  was proposed for the definition of the plastic limit 

load. In our opinion, the specific plastic work is a reasonable local deformation parameter, and the 
application of two criteria on the basis of global and local deformation parameters gives upper and lower 
estimations of plastic limit load. 
 
5. Example analysis  
 
 In the pressure vessel industry, the internal pressure is the primary load. Usually, the standard 
ellipsoidal heads 2:1 are used in practical design. For example, the application of the proposed criterion for 
determining the plastic limit pressure is demonstrated for the ellipsoidal head with radial central nozzle ( = 
0, x0 = 0) under internal pressure p. The nozzle connection has the following dimensions (see Fig.1): mean 
diameter of the ellipsoidal head D = 600 mm, head height b = 150 mm, mean diameter of the nozzle d = 60 
mm, nozzle length l = 180 mm. The head and nozzle are of equal thickness H = h = 6 mm. 
 It is assumed that the material for the shells is steel 20пс (low carbon steel), for which the 
mechanical properties and engineering stress-strain curve were obtained during testing standard specimens at 
the MSIU Laboratory of Material Strength: Young’s modulus E = 210 GPa, yield strength y = 309 MPa and 
ultimate tensile strength u = 465 MPa. A multilinear elastic-plastic material model was employed using 
eleven points from the true stress-strain relationships of the material which are given in Tab.1. 
 
Table 1. Multilinear material model. 
 

Point 1 2 3 4 5 6 7 8 9 10 11 

Stress (MPa) 309 313 318 324 397 437 467 506 531 544 553 

Strain (%) 0.148 1.76 1.86 2.06 3.94 5.75 7.51 10.82 13.92 15.45 16.76

 
 Figure 2a shows a plot of the relative plastic work (Ср) versus load p using a data file obtained for a 
load series. The corresponding curve indicating the variation of the rate of the change of the relative plastic 

work  pC  for an increasing load and the definition of the plastic limit pressure (ppl) is shown in Fig.2b. As it 

can be seen, the pC p   curve has a pronounced maximum, according to which the plastic limit load can be 

designated. 
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                  a) 

 

 

                      b) 

 
 
 

 
Fig.2. Maximum criterion of rate of change of relative plastic work: (a) plot of relative plastic work;  

(b) plot of rate of relative plastic work. 
 
 
 For comparison, the plastic limit pressure was obtained also on the basis of different criteria (TES, 

TI, PW) and the local deformation parameter ,maxpW . The characteristic curves (pun), (p ,maxi ), (pWp) 

and (p ,maxpW ) and the application of different methods for the definition of the plastic limit pressure are 
shown in Fig.3.  
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Fig.3.  Characteristic curves for ellipsoidal head with central radial nozzle: (a) pressure – nozzle end axial 

displacement; (b) pressure – maximum strain intensity; (c) pressure – plastic work; (d) pressure – 
maximum specific plastic work. 

 
 Here un represents the nozzle end axial displacement and ,maxi  the maximum strain intensity in 

shell intersection. In all cases, the tangent to the plastic part of the characteristic curve was drawn through a 
point corresponding to the maximum plastic strain intensity equal to 3 .  
 A comparison of the results for the plastic limit pressure obtained on the basis of different criteria is 
given in Tab.2.  
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Table 2. Comparison of plastic limit pressures using different criteria. 
 

Curve pun p max,i  pWp p max,pW  pC p   

Method TES TI TES TI TI TI max pC  

ppl, MPa 5.90 5.80 5.34 5.77 5.85 5.76 5.81 

 

 As it might be expected, the use of the local deformation parameter max,i  gives the lowest values of 

the plastic pressure for TES criterion because the characteristic curve reflects the effects of the plastic 
deformation in elementary volume of the material, which increase most intensively. At the same time, the 
application of the TI method for all curves gives very close values. The plastic pressure obtained on the basis 
of the proposed criterion is in good agreement with other results. 
 Thus, the results presented demonstrate that the proposed method on based on the maximum criterion 
of the rate of change of the relative plastic work is a convenient tool for the determination of the plastic limit 
pressure. It can also be noted that the results demonstrate some useful application of the two proposed 
criteria based on the global and local deformation parameters to estimate the plastic limit pressure. In this 
case, we can obtain both upper and lower estimations for the plastic limit load. 
 
6. Parametric study 
 
 For the ellipsoid-cylinder intersections, important nondimensional geometric parameters having 
influence on the stress state in shells and the plastic limit load are the following 
 

  ,  ,  ,  ,  ,  .0
0

xd D h b
b x

D H H a a
                                          (6.1) 

 
 Parameters d/D and h/H are characteristics of the intersection in general. The diameter ratio d/D 
defines the extent of the weakening of the head by the intersection hole. The thickness ratio h/H defines the 
relative stiffness of the intersecting shells and significantly affects the stress concentration in the shells. The 
parameter D/H (as well as d/h for the nozzle) is characteristic of an individual shell.  
 In the elastic-plastic analysis, except for the parameters (6), mechanical properties of the material 
including its integral characteristic such as the stress-strain curve influence the plastic limit load. 
 Using the SAIS program, the parametric elastic-plastic study for model nozzle connections in an 
ellipsoidal head under pressure loading was performed. The influence of the geometric parameters (6) on the 
plastic limit pressure was studied. 
 Due to symmetry, only half of the shell intersection was used for analysis. Symmetric boundary 
conditions were imposed on the symmetry plane; the boundary conditions at the edge section of the nozzle 
corresponded to the flange fixing (axial forces from the internal pressure were applied to the nozzle), and 
edge section of the ellipsoidal head corresponded to a simply supported shell (meridional and circumferential 
displacements, and two rotations are zero). As an example, Fig.4 illustrates the finite element model of 
ellipsoidal head with a non-central vertical nozzle. 
 



Plastic limit load of ellipsoidal pressure vessel head …  1271 

 
 

Fig.4. FE model of ellipsoidal head with a non-central vertical nozzle. 
 
 From the stress analysis conducted, some comments concerning the stress state in the intersecting 
shells under consideration subjected to internal pressure can be made. An ellipsoidal shell is a shell of double 
curvature and principal radii of the curvature change in the meridional direction. As a result, even membrane 
stresses change considerably in the meridional direction: thus, the circumferential stress from the pole to the 
edge of an ellipsoidal shell changes from tensile to compressive. The shell junction is a region of a high 
stress concentration caused by geometric discontinuity. Therefore, stresses in the vicinity of the intersection 
region change very intensively. In addition, the nozzle displacement from the central position and the angular 
parameter  has an influence on the stress distribution in shells.  
 In this work, the results of the parametric study are presented for the shell intersections with the 
following non-dimensional geometric parameters 
 

  b  = 0.5,         D / H = 100,          l / d = 3.                                              (6.2) 
 
 It is assumed that the material for the shells is steel 20пс, for which the mechanical properties are 
mentioned above. In the finite element modelling, a weld between a head and a nozzle was ignored. 
 The plastic limit pressure was calculated by applying the proposed maximum criterion of the rate of 
change of the relative plastic work. For the purpose of the parametric study, the normalized plastic limit 
pressure is defined as follows 
 

  ,   
/

pl y
ypl

y

p
p p

p D 2H


  .                                          (6.3) 

 
 Here py represents the pressure at which the maximum stress intensity in the head (a ellipsoidal shell 

without a hole and b  = 0.5) is equal to the yield strength  i y   . 

 The influence of the parameter d/D is shown in Fig.5 for the ellipsoidal head with the radial central 
nozzle ( = 0, x0 = 0).  
 The shell intersections with different thickness ratio are considered (h/H = 1.0 and h/H = 0.6). 
Results presented demonstrate an evident trend to reduce the value of the limit pressure by increasing the 
hole of the basic shell. For connections with h/H < 1.0, in comparison with intersecting shells of equal 
thickness, there are an intensification of the bending effect in the shell of smaller thickness (nozzle) and an 
increase of the maximum stress for the shell intersection in general. As a result, the plastic limit pressure is 
reduced. 
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Fig.5. Effect of diameter ratio on plastic limit pressure. 
 
 The elastic-plastic analysis of the ellipsoidal heads with a non-radial nozzle indicated that the 
influence of the angular parameter  on the plastic limit pressure is not significant. 
 The investigation of the influence of the parameter of the offset nozzle displacement from the central 
position was performed for heads with vertical nozzle which are widely used in pressure vessels. The value 
of the angle v defining the vertical position of the nozzle axis is given by the following expression 
 

  arctg 0
v 2

0

x b

1 x

   
 

 
.                                            (6.4) 

 
 Figure 6 shows the effect of the parameter 0x  on the plastic limit pressure for the shell intersections 
with d/D = 0.1.  
 

 
 

Fig.6. Effect of nozzle displacement from central position on plastic limit pressure. 
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 The results presented indicate a relatively small increase of the limit pressure when the nozzle is 
displaced from a central position. This effect can be explained by increasing the irregularity of the stress 
distribution in the intersection region and nearby, by the changing nature of stress components: the bending 
stresses become prevalent components which have less influence on the development of the plastic 
deformation in shells than membrane stress components. In addition, it can be noted that as the parameter x0 
increases, the intersection region is displaced in a stiffer part of the ellipsoidal shell. 
 
7. Conclusions 
 
 The present paper describes the application of a new criterion for the definition of the plastic limit 
load using the two-dimensional elastic-plastic finite element analysis. The method proposed in contrast to 
other methods is not an empirical procedure and it can be realized both graphically, and in a computer 
program. 
 In this paper, results of the elastic-plastic stress analysis and determination of the plastic limit 
pressure for ellipsoidal heads with cylindrical nozzles are presented. Some results obtained in the parametric 
study indicate the influence of various geometric parameters on the plastic limit pressure and can be useful in 
pressure vessel design. In future, it is proposed to extend the research scope of the nonlinear analysis of 
intersecting shells. 
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Nomenclature 
 
 a  – major half-axis of ellipsoidal head 
 b  – minor half-axis of ellipsoidal head (depth of ellipsoidal head) 
 D = 2a  – mean diameter of vessel 
 d  – mean diameter of nozzle 
 H  – thickness of ellipsoidal head 
 h  – thickness of nozzle 
 plp   – plastic limit pressure 

 x0  – distance between nozzle and ellipsoid axes 
   – angular parameter for nozzle axis 
 
References 
 
ASME (2004): Boiler and Pressure Vessel Code. Sections II and VIII. – New York. 

BSI. PD 5500 (2006): Specification for Unfired Fusion Welded Pressure Vessels. –London: British Standards 
Institution. 

Camilleri D., Mackenzie D. and Hamilton R. (2006): Evaluating plastic loads in torispherical heads using a new criterion 
of collapse.  ASME PVP Conference, Vancouver, Canada, vol.3, pp.701708. 

EN 13445 (2002): Unfired Pressure Vessels. Part 3: Design. European Committee for Standardisation (CEN), Brussels. 

Gerdeen J.C. (1979): A critical evaluation of plastic behavior data and a unified definition of plastic loads for pressure 
components.  Welding Research Council Bulletin, No.254, pp.1–64. 

Hsieh M.F., Moffat D.G. and Mistry J. (2000): Nozzles in the knuckle region of a torispherical head: limit load 
interaction under combined pressure and piping loads.  Int. J. Pressure Vessels and Piping, vol.77, No.13, 
pp.807815. 



1274  V.N.Skopinsky, N.A.Berkov and A.B.Smetankin 

Hsieh M.F., Moreton D.N., Mistry J. and Moffat D.G. (2002): Limit loads for knuckle-encroaching nozzles in 
torispherical heads: experimental verification of finite element predictions.  J. Strain Analysis, vol.37, No.4, 
pp.313326. 

Iliushin A.A. (1948): Plastisity.  Мoscow: GITTL. 

Li H. and Mackenzie D. (2005): Characterising gross plastic deformation in design by analysis.  Int. J. Pressure 
Vessels and Piping, vol.82, No.10, pp.777–786. 

Mackenzie D. and Li H. (2006): A plastic load criterion for inelastic design by analysis.  Trans. ASME, J. Pressure 
Vessel Technology, vol.128, No.1, pp.39–45. 

Muscat M., Mackenzie D. and Hamilton R. (2003): A work criterion for plastic collapse.  Int. J. Pressure Vessels and 
Piping, vol.80, No.1, pp.49–58. 

Nayak G.G. and Zienkiewicz O.С. (1973): Elasto-plastic stress analysis. A generalization for various constitutive 
relations including strain softening.  Int. J. Numer. Meth. Engn., vol.5, No.1, pp.113135. 

Skopinsky V.N. (2000): Stresses in ellipsoidal pressure vessel heads with noncentral nozzle.  Nuclear Engineering and 
Design, vol.198, pp.317323. 

Skopinsky V.N. (2008): Stresses in Intersecting Shells. – Moscow: Fizmatlit. 

Skopinsky V.N. and Berkov N.A. (1994): Stress analysis of ellipsoidal shell with nozzle under internal pressure 
loading.  Trans. ASME, J. Pressure Vessel Technology, vol.116, No.3, pp.431436. 

Skopinsky V.N. and Berkov N.A. New criterion for the definition of plastic limit load in nozzle connections of pressure 
vessels.  Trans. ASME, J. Pressure Vessel Technology (in press). 

Skopinsky V.N. and Smetankin A.B. (2003): Parametric study of reinforcement of pressure vessel head with offset 
nozzle.  Int. J. Pressure Vessels and Piping, vol.80, No.5, pp.333343. 

Skopinsky V.N. and Smetankin A.B. (2006): Modelling and stress analysis of nozzle connections in ellipsoidal heads of 
pressure vessels under external loading.  Int. J. Applied Mechanics and Engineering, vol.4, No.11, pp.965979. 

 

 

Received: May 22, 2013 

Revised:   July 18, 2013 

 
 
 


