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This investigation deals with the effect of variable thermal conductivity in a micropolar thermoelastic medium
without energy dissipation with cubic symmetry. The normal mode technique is employed for obtaining
components of physical quantities such as displacement, stress, temperature distribution and microrotation.
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1. Introduction

The classical theory of thermoelasticity has been utilized in the analysis of various elastic materials
for the last few decades but this theory has been inadequate to explain the behavior of polycrystalline materials,
fibrous-structured materials, etc. Therefore, the micropolar theory of elasticity has been developed, which
considers not only macro-deformations but micro-rotations of particles as well. This theory was formulated by
Eringen and Suhubi [1], Eringen [2]. Under this theory, couple stresses can exist in addition to force stresses.
Nowacki [3,4,5] included thermal effects in the micropolar theory of elasticity. The dispersion relations for
transverse plane waves were studied by Eringen [6] in linear nonlocal micropolar elastic solids. Kumar and
Ailawalia [7] discussed the response of a micropolar thermoelastic medium to the application of moving load.
Othman et al. [8] demonstrated the effect of rotation and initial stress in the micropolar thermoelastic isotropic
medium in the context of the three-phase-lag theory. Said et al. [9] proposed a general model for rotating-
micropolar thermoelastic medium on the application of the magnetic field. Othman and Mondal [10] applied
phase-lag models for investigating the effect of thermal loading due to laser pulse in a generalized micropolar
thermoelasticity. Kalkal et al. [11] studied the reflection of plane waves in a nonlocal micropolar rotating
thermoelastic medium. Abo Dahab et al. [12] applied electromagnetic field to different models of
thermoelasticity for investigating fiber-reinforced micropolar thermoelastic medium. Alharbi et al. [13]
examined a micropolar voided medium under the three-phase-lag model of thermoelasticity by applying an
internal heat source. Alharbi [14] also analyzed the behavior of a micropolar thermoelastic medium on
diffusion in the context of the three-phase-lag model of thermoelasticity.

In the case of cubic symmetry, four independent elastic constants are required for explaining the
mechanical behavior of a cubic crystal such as iron, aluminium, nickel, silicon, magnesium, etc. Minagawa et

* To whom correspondence should be addressed



2 Variable thermal conductivity in micropolar thermoelastic ...

al. [15] estimated material constants for the diamond in a cubic micropolar medium. Kumar and Ailawalia
[16-17] discussed the behavior of a micropolar thermoelastic medium with cubic symmetry under the influence
of time-harmonic sources with one and two relaxation times. The study of micropolar thermoelastic medium
with cubic symmetry under the influence of a magnetic field and an inclined load was done by Othman et al.
[18] by taking into account three different theories of thermoelasticity namely L-S, G-L and C-D theory.
Kumar and Partap [19] worked on wave propagation in homogeneous isotropic micropolar thermoelastic plate
with cubic symmetry under the L-S and G-L theory. Othman et al. [20] put forward a two-dimensional problem
for a micropolar thermoelastic medium with cubic symmetry under the effect of rotation and inclined load.
They [21] also studied the micropolar thermoelastic medium with cubic symmetry on the application of an
inclined load and magnetic field in the context of GN theory.

Further, it was noted that there is a linear variation of thermal conductivity with respect to temperature
when a thermoelastic material is exposed to high temperature. So, the concept of variable thermal conductivity
became of paramount importance. A lot of research has been done by various researchers. Aouadi [22]
investigated the influence of variable electrical and thermal conductivity in a thermoelastic half-space. Mondal
et al. [23] proposed a new theory of dual-phase-lag two-temperature thermoelasticity in considerations of
variable thermal conductivity. Li et al. [24] observed the effect of variable thermal conductivity and diffusivity
on nonlinear transient responses of generalized diffusion-thermoelasticity using the finite element method.
Abbas et al. [25] demonstrated the photo-thermo-elastic interaction in the context of variable thermal
conductivity in a semi-conductor material with cylindrical cavities. Hobiny and Abbas [26] explored a
semiconducting medium using the finite element method for variable thermal conductivity.

The aim of this paper is to study a micropolar thermoelastic medium with no energy dissipation having
cubic symmetry under the influence of variable thermal conductivity. The physical quantities associated with
the problem are obtained by using normal mode analysis.

2. Formulation of problem

A micropolar thermoelastic medium without energy dissipation with cubic symmetry is considered. A
rectangular Cartesian coordinate system (x,y,z) with the y -axis pointing vertically downward is taken. If we

consider the xy — plane, then the displacement vector in the micropolar thermoelastic medium may be taken
as U =(u,v,0) where u=u(x,y,t), v=v(x,y,t) and the microrotation vector can be taken as ¢=(0,0,¢s).
The field equations and constitutive relations in the absence of body forces are given [15, 27] as:

K*V2T =pC ‘;T 0;—22(2—;’( %} (21)
az (A + /M)iw,i (A=A T2 v = piﬁ, 22)
62 (A + A4)52 Al——(As A - %ng_zzv, 23)

BV 205 + (A — &)(@—%j 2 Ao =pi” 202, 24)

tW:AZZ—i+A1%—vT, (2.5)
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ov 0
tyy =A4[&—¢3J+As[a—;+¢3]. (2.6)
m,, = 83%. @7)

It was observed experimentally that under high temperature, the thermal conductivity K" varies
linearly with temperature of the medium as given by the following relation [28, 29]:

K*(T) =Ko (1+K,T). (2.8)

Here, Kl* is a physical parameter and KO* is an arbitrary constant. On applying the Kirchhoff transformation,
we can get a linear form of the heat conduction equation by the following relation [30]:

T=—2[K"(g)de (2.9)

Differentiating (2.9) with respect to time x; using Leibnitz’s rule of differentiation under integral sign, we get
the following expression:

KoTi =K (T)T;.
Again differentiating above equation with respect to time x;, we get:

KoTii :(K*(T)Ti) :

N
Ignoring non-linear terms in the above equation, we get:
KoTi =K' (T)T. (2.10)

Further, differentiating (2.9) twice with respect to time t using Leibnitz’s rule of differentiation under integral
sign, we get the following expression:

KoTe =K (T)Ty.

Using Eqg.(2.8) in the above expression and applying the binomial theorem we can write the following equation
after neglecting nonlinear terms as:

L
To=—=Tx- (2.11)
3 K (T) y

Using Egs (2.10) and (2.11) in Egs (2.1) to (2.7), we get:
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Further, we assume the following dimensionless variables for simplifying our calculations:

X’:L*X, y’= 1*y1 u‘:i*uy Vl:i*va (I)’ pCT ¢3’
Ct Ct Ct Ct Ay
t t; 1 A vT

t’ =% tlj’ :l; yz = * myzv
t Ay Crt'A, (Ao +2Ay)

where,

(A2+2A4) «_ Ky

CTZ = y = *
p pC CT2

On applying the above dimensionless variables (2.19) in Egs (2.12)-(2.15), we get:

2+ 2
E1V2f+52ﬂ+E36— ML,
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(2.12)
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(2.18)

(2.19)

(2.20)

(2.21)
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v _ 0% _ 8% _ 0y OT v
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"o oy Coxoy L ox oy at? (2.22)
N au %
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gV 03 9[8)( ayj 1003 o (2.23)

where values of E, (r =1 to 10) are given in the appendix.
3. Normal mode analysis
Applying the normal mode technique we can get solution of the above considered physical variables as:

[u, v, T, ¢3] =[u*, v, T, ¢3*](y)exp{mt +iax} . (3.1)

We observed four coupled equations in terms of u”, v, T, <1>3* on using Eq.(3.1) in Egs (2.20)-(2.23). After
solving these coupled equations, an eighth degree equation is obtained

[ XuD® 4+ X,D° + X3D* + X,D? + X |(u"v",T",057) =0 (3.2)

where values of X, X,, X3, X4, X are given in the appendix. Using radiation conditions u”,v",T",¢5 —0
as y — o, we can write the solution of Eq.(3.2):

u” =§M jop{-k;y}, (3.3)
v =§N ey, (3.4)
T =éLjexp{—k i) (35)
b3 = éojexp{—k i) (36)

where ka (i= 1,2,3,4) are roots of Eq.(3.2). Also the coupling constants M;N;,L;,0; can be expressed in

terms of LJ- as:

IR E
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where the values of P;,Q;,R; are given in the appendix. Also, stress components can be expressed using
above the solution as:

4 4 4

ty =iaA > M jexp{—kj y}—A12kj Njexp{—kjy} —VZLjexp{—kjy}, (3.8)
=1 j=1 =1

X 4 4 4

ty = iaAle:Njexp{—kj y} A M J-exp{—kj y} +(Ag— A4)Zojexp{—kj y}, (3.9)

=1 =1 i1
4

my," =-B3 > k;0;exp{-k;y}. (3.10)

i1

4. Boundary conditions

For getting values of the constants L; (j = 1,2,3,4), we can use the following boundary conditions:
1) At the free surface (y =0) a mechanical force Fexp{ot+iax} is applied along the normal direction:

ty, =—Fexp{ot +iax}. 4.2)

2) Also we can consider the traction free surface (y =0) and use the condition written below:
tyy =0. (4.2)

3) The thermal boundary condition can be expressed as:

T o, (43)
oy
4) For the tangential couple stress we use the boundary condition:

m,, =0. (4.4)

We get the following non-homogenous system of four equations after applying the above boundary conditions.

YL + YL, + Y5, +Y,L, =F, (4.5)
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where values of Y Z; (j :1,2,3,4) are given in the appendix. Cramer’s rule is employed for solving the

above non-homogenous system. The relation between temperature T and the operator T can be expressed as
follows:

T= Kl* [1/1+ 2K, T —1} = %[\/u 2K, T exp{ot +iax} —1}. (4.9)

1 1

The above relation can be utilized for expressing the components of displacement, stress and temperature in
the form of operator T .

5. Particular cases:

Case I:

The problem reduces to a micropolar isotropic medium when
A =A+2u+K A =0MA=pn+ KA =1

Case I1:
If we take Kl* =0, the problem reduces to the classical case of constant thermal conductivity.

6. Appendix

ElzKO, EZ:—M, Es:_ﬂ E, = A E5=i E6:A2+A4

* 1

vC v pC pCr?’ pCr?’

g o AA o By (ACANGTE 20 ANT
p’Cr’ pj Cr? A i’

F=E’ —Ea’, F=—(Ea*+0’), Fy=—(Esa’+0’), F=Ep-Ega’—o’,
Fio = F;Eg + F4Ey, Fyy =FsF, —a%EEy, G, =EE,, G,=FE,+EFs +0°F;,

_ 2.2 a2 2 2
G3—F1F6 —a E3, G4 =lam E3E4—(D E3F5, G5 =lam (E3F6 —E3F2),

Hs = 0’E;(iaFy - F ), Hg =0’Ej(iaFy, —F3), H; =iao’E;Fyy,
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Hg =—E;G; +ia0’E;G;, Hg =—FG, — E,Gs +ia0’EyG,, Hyg =iaw’EyG; — FGs,
Hyp = —0?E3EqGy, Hyp =—0E3EqG, —iaHgEy, Hig = —0?E3EqG, —iaHgE,,

H,, =—iaH;0Eg, X; =Gy Hs —H,G,, X, =G Hg +GyHs —H,G,,

X3 =GiH; +G,Hg +GyHg — H3G,, X4 =GyHy +GgHg — HyGs — H,G,,

Gikj* +Gok;* + G, Hgk* + Hgk;® + Hyg
4kj* +Gs 0 B3 (Gyk;® +Gsk) )

Hygk® + Hyok* + Hygk® + Hyy _
Rjz 2 3 2 y YJZA\]_kJQJ +V—|aA2P',
Q)] E3(G4kj +GSkj)(E8kj +F4)
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Nomenclature

a —wave number in the x-direction
AL = =t Ag A
AL AL A A, By —physical constants which characterize the material
Cc” - specific heat at constant strain

* — micro inertia

—

o _C(ArA)
4
my, —components of tangential couple stress
tyx —components of tangential force stress
t,, —components of normal force stress

Br — coefficient of linear expansion
Vo= =(A+2A)Br
p —density

o —complex time constant
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