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Here, we consider magnetohydrodynamic flow of an incompressible, time independent fluid past an elongated 

cylinder surrounded in a non-Darcian porous regime with magnetic flux supplied at an acute angle. The 

Soret/Dufour effects and the higher order chemical reactions are also included in the present study. The subsequent 

governing equations are resolved using the MATLAB-bvp4c method. The flow velocity appears to decrease with 

the growth of the Reynolds number, inertia parameter, magnetic field and angle of inclination of the magnetic flux, 

but improves with the Darcy number. The inertia parameter enhances the fluid temperature and skin friction. Further 

order of chemical reaction, Soret/ Dufour number plays a significant role in the system. 

 

Key words: inertia parameter, magnetohydrodynamic, Soret number, Dufour number, porous medium, elongating 
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1. Introduction 

 
 Fluids flowing in porous media (taking into account the non-Darcian effect) have wide applications in 

engineering processes and manufacturing technologies [1]. Pop and Rees [2] investigated the combined effect 

of a surface wave and the existence of inertia of fluid on a free convective flow brought by an upright hot 

surface in a fluid medium using a non-Darcy porous model. Cheng [3] studied the phenomena of natural 

convection and mass transfer near a vertically undulating surface both for Darcian and non-Darcian flow. 

Sheikhi et al. [4] studied the consequence of the non-Darcian parameter on water evaporation using a 

simulation method. Misra et al. [5] considered the non-Darcian model for a power-law fluid around a stretching 

sheet. Vedavathi et al. [6] studied the non-Darcian model and Nield's convective constraints. 

Chemical reactions between foreign bodies and liquids occur in many important technological processes such 

as fuel combustion, iron production, glass and ceramic production, etc. Many industrial processes involve the 

transfer of flow and mass through the surface. Dispersed species can be produced or engrossed due to certain 

chemical species reacting with the surrounding fluid which can significantly affect the flow rate and therefore 

the characteristics and standard of the ultimate outcome. Cortell [7] examined the influence of chemical 

reaction on a time independent second- grade fluid flow past a semi-infinite impervious elongated sheet. Hayat 

et al. [8], Das [9] investigated the significance of chemical reaction for non-Newtonian liquids. M. Ramzan et 

al. [10] discussed the MHD fluid flow with the inclusion of a melting heat transfer with nonlinear chemical 

reaction across a slim needle in a porous system. Sarojamma et al. [11], Ly et al. [12], Shafique et al. [13] 

studied the impact of linear chemical reactions and authors like Sharma and Borgohain [14], Mythili and 

Sivaraj [15], Hosseinzadeh [16], Muthtamilselvan [17], Ramzan et al. [18] considered the impact of nonlinear 

chemical reaction on different flow problems. 

 The Soret effect occurs due to mass flux induced by heat differences while the Dufour effect occurs 

due to concentration gradient. The Soret effects associated with heat transfer and mass transfer with the 

consideration of radiation and magnetic field of a convective flow passing through a permeable stretched sheet 
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were analysed by El-Aziz [19]. Cheng [20] conducted a study on the Soret/Dufour effects in a free convection 

flow along a porous medium. EL-Kabeir [21] investigated the Soret/Dufour impacts on a stretched sheet using 

chemically reactive species. A numerical approach to chemically reacting laminar stream by considering Soret, 

Dufour effects and using convective borderline conditions was carried out by Makinde et al. [22]. 

Mathematical investigation of a magnetohydrodynamic fluid flow through upright permeable plates with the 

Soret and Dufour effect was carried out by Hasan and Hossain [23]. Recently, Das and Dorjee [24], Kumara 

et al. [25], Das [26], Balla et al. [27], and Kodi and Mopuri [28] contributed to this study.  

 In this study our aim is to investigate the influence of the non-Darcian and non-linear chemical reaction 

on an incompressible magnetohydrodynamic flow over an elongated cylinder surrounded in a porous regime. 

This paper is an extension of the work of Sharma and Borgohain [14] which incorporates the influences of an 

inclined magnetic field and non-Darcian porous medium. 

 

2. Mathematical formulation 
 

 Consider a magnetohydrodynamic flow of a time independent, incompressible viscous fluid in an 

elongated cylinder surrounded by a non-Darcian porous regime. The magnetic flux is supplied at an acute 

angle   with a strength 0B  and a n -th order chemical reaction takes place in the presence of the heat 

source/sink parameter. The *z -axis is taken along the cylinder axis and the *r -axis is chosen in a radial 

direction and the cylinder radius is taken as b  in the radial direction (Fig.1). Here, Forchheimer’s extension is 

employed to designate the fluid flow in the permeable medium. The ambient temperature away from the 

cylinder surface is *T  and the cylinder surface is kept at a constant temperature *
WT  with *

WT > *T . 

 

 
 

Fig.1. Physical diagram. 

 

The governing equations, under the above assumptions (following [14]) become: 
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Boundary conditions are: 
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   (2.6) 

  *w 0 ,      * *T T ,      * *C C      as     *r  .  

 

Here, * *
WW 2cz , c  represents a positive constant.  

Now, introducing (Sharma and Borgohain [14]) dimensionless variables as: 
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using (2.7), equations (2.2), (2.4), (2.5) reduces to, 
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and (2.6) becomes: 
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the Dufour number; 0H B b
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3. Results and discussion 

 
 Equations (2.8)-(2.10) with conditions (2.11) are solved by using MATLAB-bvp4c method. The 

following parameter values are used for the calculation: 

 

  R ,e 1  . ,FD 0 15  .rS 0 4 , . ,0 02   P ,r 7  ,n 2  . ,F 0 2  

 

  ,H 2  ,2  ,
3


   . ,S 0 4  ,aD 1 . .cS 0 6  

 

Here it should be mentioned that the present problem reduces to the work of Sharma and Borgohain [14] when

,F 0 H 0  and S 0 . The results compared for  1  are presented in Tab.1 and are in good agreement. 

 

  
 

Fig.2. Effect of  on f  . 

 

Fig.3. Effect of H on f  . 

 

  
 

Fig.4. Effect of F  on f  . 

 

Fig.5. Effect of Re  on f  . 
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 Figures 2-6 are plotted for fluid velocity against   to exhibit the influence of inclination of the 

magnetic flux   , the Hartmann number  H , inertia parameter  F , Reynolds number  R e  Darcy number 

 aD , respectively. The figures show that the velocity declines exponentially from its highest on the 

cylindrical surface to its smallest estimate at the boundary layer edge. Figure 2 depicts that the velocity declines 

for the growing estimates of   from 0   to 
2


   through 

4


   and thus  f    decays. The sketch of the 

H  effect in Fig.3 shows that H  slows the velocity to an appreciable level, because of the resistive magnetic 

attraction exerted by the Lorentz force. The inertia parameter F  which is resistive in nature reduces the flow 

velocity as shown in Fig.4. Figure 5 depicts that the augmentation in Re  reduces the flow velocity. This may 

be due to the increase in the Reynolds number; the viscous forces become less important and hence the flow 

velocity will get reduced.  

 Figure 6 shows that the higher the Darcy number aD , the higher the flow velocity. As we increase the 

Darcy number, the capacity of the porous space increases, which subsequently increases the velocity profile. 

 

  
 

Fig.6. Effect of aD on f  . 

 

Fig.7. Effect of  on  . 

 

  
 

Fig.8. Effect of aD on  . 

 

Fig.9. Effect of F on  . 

 

 Figures 7-13 show the variation of temperature for the inclination of the magnetic flux   , inertia 

parameter  F , Darcy number  aD , heat source parameter  S , Schmidt number  cS , Dufour number 

 FD  and Prandtl number  Pr  respectively. The Figures show that the temperature drops exponentially from 

its peak on the surface of the cylinder to its lowest value at the boundary layer edge. 
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Figure 7 shows that an increasing value of   enhances the temperature inside the boundary layer. Figure 8 

explains that the temperature decays with growing aD  values, although a different trend is prominent for 

increasing F  values as illustrated in Fig.9.  

Figure 10 shows that the temperature increases as the heat source  S  improves. Physically, the external heat 

source improves thermal conductivity, which leads to an amplification in temperature. 

Figure 11 shows that an increase in cS  from .cS 0 75  to .cS 1 78  through .cS 1 16  increases the 

temperature profile, while an increase in FD  (Fig.12) makes the temperature drop. 

 

  
 

Fig.10. Effect of S on  . 

 

Fig.11. Effect of cS on  . 

 

  
 

Fig.12. Effect of FD on  . 

 

Fig.13. Effect of Pr on  . 

 

 Figure 13 shows that the thickness of the boundary layer reduces for the rising values of Pr  from 

Pr 4  to P .r 13 4  through Pr 7 . This reduction in temperature is due to the dominance of kinematic 

viscosity over thermal diffusivity.  

 Figures 14-17 illustrate the variation in concentration profiles against   under the influence of  , ,cS  

rS and FD  respectively. The concentration values are lower near the surface of the cylinder than those of the 

boundary layer edge, but increase sharply and reach a maximum around 2 . Then they slowly decrease, 

reaching a constant value away from the surface. Figure14 shows that the chemical reaction parameter    

reduces the concentration profile. An enhancing effect of cS  on the concentration profile is seen in Fig.15. 

Physically, growth of cS  causes a decrease in molecular diffusivity which leads to an augmentation in 

concentration. The impact of the Soret number (Fig.16) and Dufour number (Fig. 17) causes a growth in the 

concentration profile.  
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The skin friction coefficient is proportional to  f 1 . Figures 18-19 represent the graph of  f 1  against H  

for Re  and F . It is observed that the skin friction decreases significantly with the amplification of the 

magnetic parameter and Re  (Fig. 18) and F  (Fig. 19).  

 

  
 

Fig.14. Effect of  on  . 

 

Fig.15. Effect of cS on  . 

 

  
 

Fig.16. Effect of rS on  . 

 

Fig.17. Effect of FD on  . 

 

  
 

Fig.18. Skin friction vs. H . 

 

Fig.19. Skin friction vs. H . 

 

 The Nusselt number is proportional to  1 . Figures 20 and 21 represent the graph of  1  against 

S  for Re  and Pr  respectively. We observe that the Nusselt number decreases significantly with increasing 

S  but an opposite impact is observed for Re  and Pr . 
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Fig.20. Local Nusselt number vs. S . 

 

Fig.21. local Nusselt number vs. S . 

 

Table 1. Comparison table for  1 . 

 

rS  aD  n  cS  Re    Pr  FD  
 1 (Sharma and 

Borgohain [14]) 

 1 present result with 

, ,F 0 H 0 S 0    

.0 01  1  4  .1 6  1  .0 02  7  .0 15  .0 0315  .0 0390  

.0 01  1  4  .1 6  2  .0 02  7  .0 15  .0 0446  .0 0517  

.0 01  1  4  .1 6  3  .0 02  7  .0 15  .0 0546  .0 0615  

.0 01  1  4  .1 6  1  .0 02  7  .0 15  .0 0315  .0 0390  

.0 01  5  4  .1 6  1  .0 02  7  .0 15  .0 0328  .0 0398  

.0 01  10  4  .1 6  1  .0 02  7  .0 15  .0 0330  .0 0400  

.0 04  1  1  .1 6  1  .0 02  7  .0 15  .0 1301  .0 1600  

.0 04  1  1  .1 6  1  .0 02  7  .0 4  .0 1404  .0 1701  

.0 04  1  1  .1 6  1  .0 02  7  .0 6  .0 1503  .0 1799  

.0 01  1  2  .1 6  1  .0 02  7  .0 2  .0 0316  .0 0391  

.0 4  1  1  .1 6  1  .0 01  7  .0 15  .2 3683  .2 6588  

.0 4  1  1  .1 6  1  1  7  .0 15  .2 4393  .2 6614  

.0 4  1  1  .1 6  1  .2 5  7  .0 15  .2 5307  .2 6640  

.0 01  4  2  .1 6  4  .0 02  .0 7  .0 15  .0 0168  .0 0262  

.0 01  4  2  .1 6  4  .0 02  4  .0 15  .0 0467  .0 0537  

.0 01  4  2  .1 6  4  .0 02  7  .0 15  .0 0637  .0 0702  

.0 01  1  1  .1 6  1  .0 02  7  .0 15  .0 0315  .0 0390  

.0 01  1  2  .1 6  1  .0 02  7  .0 15  .0 0315  .0 0390  

.0 01  1  4  .1 6  1  .0 02  7  .0 15  .0 0315  .0 0390  

 

The Sherwood number is proportional to  1 . Figure 22 represents the graph of  1  against n  for 

different values of the Soret numbers. We see that the Sherwood number decreases for 0 n < .1 2  after which 

it remains almost stagnant. Also, the Sherwood number decreases due to the growth in the Soret number. 
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Fig.22. Sherwood number vs. n . 

 

4. Conclusion 
 

Main observations are: 

1. The flow velocity declines with the growth of inertia, the magnetic field, angle of inclination of the 

magnetic flux, Reynolds number but rises with the Darcy number. 

2. The temperature profile can be improved by increasing the inclination of the magnetic flux, inertia 

parameter, Schmidt number, and heat source, while the Dufour, Darcy and Prandtl numbers show the 

opposite trend. 

3. The concentration profile can be amplified by escalating the Schmidt number, Soret number, Dufour 

number, whereas the chemical reaction parameters show the opposite trend. 

4. A considerable decline in the skin friction is observed with the augmentation of the magnetic parameters 

and Re . 

5. The Nusselt number shows a significant decrease as S  increases, but an opposite impact is observed for 

Re and Pr . 

6. The Sherwood number has a significant impact on the chemical reaction’s order and on the Soret number. 
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Nomenclature 
 

 * *u ,w  – fluid velocity along the *z  and *r -directions 

 K  – permeability parameter 

 TK  – thermal diffusion ratio  /2m s  

 D  – mass diffusivity 

 *T  – temperature  K  

 *T  – ambient temperature  K  

 *
WT  – constant temperature 

 mT  – mean fluid temperature 
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 *C  – concentration  / 3mol m  

 *C  – ambient concentration  / 3mol m  

 pC  – specific heat capacity  . .1 1J kg K   

 sC  – concentration susceptibility 

 1K  – chemical reaction parameter 

 n  – chemical reaction order 

 *p  – pressure  Pa  

 Re  – Reynolds number 

 Pr  – Prandtl number 

 cS  – Schmidt number 

 rS  – Soret number 

 aD  – Darcy number 

 FD  – Dufour number 

 H  – Hartmann’s number 

 S  – heat source parameter 

   – kinematic viscosity  /2m s  

   – non-dimensional chemical reaction parameter 

   – thermal diffusivity  /2m s  

   – density  / 3kg m  
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