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Based on the inverse approach and the finite element method, the quality of a reconstructed signal is discussed in 

this work. The responses caused by a distributed impact on a portion of a composite structure can be recovered using 

dynamic analysis. The structure is thought to be complex and made up of two different-sized plates made of two 

different materials. The robustness of the inversion method was studied, as well as the sensitivity of the numerical 

method compared to modal truncation and sampling of the frequency response function (FRF). Once the FRF had 

been identified, regularized deconvolution as per generalized singular value decomposition was used to reconstruct 

the impact signal characteristics. It was revealed that only one mode is required to reconstruct the impact signal. 
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1. Introduction 

 
Many dynamic structural applications necessitate understanding of the force acting on a mechanical 

system. However, measuring it with sensors can be difficult in many cases, particularly if the measurement is 

burdensome or the force is scattered. In contrast, vibrational responses are easily measured. This is why indirect 

methods, such as rebuilding forces based on the inverse of a mechanical system's model, are recurrently 

preferred. Various models based on force reconstruction approaches have been proposed in latest years, 

particularly in the context of specific applications [1-2]. 

Zhao and Ye [3] extracted the characteristics of the inversion system matrix using the Singular Value 

Decomposition (SVD) using the matrix size change technique. They proved that the extraction effect of a 

single frequency is better than the transformation into wavelets. Lim and Pilkey [4] used the modal method for 

resolving the inverse problem, assuming that the position of the force is known. For computational efficiency, 

the pseudoinverse solution is then replaced with a dynamic programming solution [5]. Chinkaa et al. [6] used 

the modal analysis to assess and detect damage to a cantilever beam structure, identifying crack damage using 

Frequency Based Damage Detection Techniques (FBDDT). El-Bakari et al. [7] investigated the identification 

of a cantilever beam structure's impact force. They presented the deconvolution system problem and used 

modal analysis and General Singular Value Decomposition to reconstruct the force characteristics (GSVD). 

Liu et al. [8] investigated the identification of impact forces on plate structures, and the identification of impact 

forces was discovered using the nonconvex overlapping group sparsity (NOGS) regularization. 

The impact force reconstruction can be used to better diagnose the safety of the structure, ensuring that 

the extent of the damage is well treated. When determining the impact force, a quadratic error minimization 

technique reduces the experimental effort required [9-10]. Varghese and Shankar [11] investigated the 
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identification of structural parameters in the time domain using the Multi-objective Optimization of combined 

conventional acceleration matching and power flow balance. In general, the recognition of impact characteristics 

for elastic linear structures can be constructed using various structural models. The structural models found in 

the literature can be found analytically, using the finite element method, or experimentally [12-14]. 

An impulse response function connects the pulse of the impact signal and the measurement points of the 

responses when the impact position is presumed to be known and the impact has the form of a point force. In this case, 

the signal can be reconstructed by inverting the transfer matrix and performing a regularized deconvolution [15-17]. 

When the impact position is assumed to be unknown, a quadratic error minimization technique between the calculated 

and measured responses identifies the impact signal, which includes historical force evolution and location. 

Liu et al. [18] propose a hybrid support vector regression with multi-domain features to improve localization 

accuracy. The suggested research involves three stages: impact localization, multi-domain feature extraction, and 

signal pre-processing. It could improve the accuracy of predicting low-velocity impact locations. The impact force 

model serves as a guide in the design of the structure's impact resistance. It can also be used by other programs to 

identify both shock load and position. This method can be used to monitor the structural health of shock forces [19]. 

In this work, an error minimization formulation was considered to solve the localization problem, and 

then the resolution of the deconvolution problem allows the identification of the pressure generated by a non-

punctual impact. The considered structure is a composite with a rectangular section made up of two isotropic 

and homogeneous plates. A pressure pulse applied to a given rectangular domain will excite it. The 

displacement along the plate's transverse direction at one point will be calculated in two ways, using a modal 

model and a transient dynamic model, respectively. This displacement will be used to simulate the measured 

response and will pose the inverse problem associated with impact pressure reconstruction. The response 

function in the time domain is found using the inverse Fourier transform (IFT). The frequency response 

functions between the arbitrary excitation points and the DOF that provide displacement measurement by some 

sensors are calculated using the modal analysis-based finite element method. The generalized Toeplitz matrix 

is then used to ensure the link between the pressure applied and the movements on a rectangular part of the 

composite structure. Regularization is applied to the reconstruction of the repetitive impact signal, which is 

described by a half-sinus function, using the SVD and the filtering truncation technique. For the calculation of 

the frequency response function, the reactivity of this technique used in this work is treated in terms of mesh 

size, sampling frequencies, and modal truncation order. Finally, we will discuss about the quality of the 

reconstructed signal based on the location of the sensors. 

 

2. Direct problem formulation 

 
Consider a structure made up of two assembled plates, each made of an isotropic and homogeneous 

linear elastic material. The thickness of both plates is the same. Figure 1 depicts the geometric area of the 

  

 
 

Fig.1. Geometry of the plate considered, it is a composite consisting of two isotropic and homogeneous linear 

elastic layers, the pressure is applied to the impact area. 

 

 

 

 
 

Zone d’impact 

Material 2 

Material 1 

0
u  

0
v  

1b  

1l  

2l  

/ 2l  / 2l  

2b  
/ 2l  

z 

y 
x 



A.El-Bakari, A.Khamlichi and I.Hanafi  25 

composite plate, which includes two rectangles of differing dimensions, each of which represents a plate among the 

two assembled plates that form the structure. The plate is recessed along the x=0 edge and free along all other edges. 

Given the fact a time interval of duration cd  that is sampled by / ( )cd d N 1    data of N time 

moments that are regularly spaced, the discrete response ( )y k  for any time ,...,k 1 N  is expressed as a 

function of the discrete input pressure ( )p k  in the form of the discrete convolution product defined by 

Eq.(2.1). The function ( )t k  in this equation is the linear system's discrete impulse response function. 

 

  ( ) ( ) ( ) , ,...,
k

j 1

y k t j p k j k 1 2 N



   . (2.1) 

 

To solve the discrete problem given by Eq.(2.1) results in the following set of algebraic equation [7, 20] 

 

  Y TP  (2.2) 

 

where T is the Toeplitz matrix generated by the discrete impulse response function vector. This matrix 

organizes information about the modelled structure, but it also depends on the time discretization step used. 

 The matrix of the composite structure, which takes the form of two joined plates, is determined by 

solving Eq.(2.2). A FE model is used to handle these. The FRF is calculated from the finite element modes. 

Let us indicate the measurement of the DOF displacement, as well as any DOF that are normal to the pressure 

area applied 

 

  ( ) ( )

impactN

ip ij

j 1

F w F w



  , (2.3) 

with 

  
modes

( )
-

N
ik jk

ij 2 2
k k kj 1

F w
w w 2i w w

 


 
  (2.4) 

 

where impactN  is the total number of degrees of normal freedom of movement belonging to the impact area, 

modesN  is the number of modes selected after modal truncation, w  is the pulsation for which the response is 

considered, ik is the i-th component of the kth mode normalized with respect to mass, kw  is the kth mode 

angular frequency and k  is the damping coefficient for the kth mode. 

 The temporal FRT which we noted t  in Eq.(2.1) is obtained from the FRF which is defined by Eqs 

(2.3) and (2.4) by means of the inverse Fourier transform. This transform will be calculated by the ifft command 

in Matlab. Hence  

 

  ( )ip ipt ifft F . (2.5) 

 

The matrix T  is generated from the discrete vector t . The Matlab command to calculate it is written in the form 

 

   ( )ip ipT tril toeplitz t . (2.6) 

 

 The matrix T  is determined by the FE model used, the FRT sampling step f and the order of modal 

truncation used. All of these parameters will influence the dimension of the Toeplitz matrix as well as the 

values of its terms. 
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 In general, the sampling pitch of the frequency interval must allow enough resolution to obtain a 

sufficiently accurate discrete FRT, especially when passing through the resonant frequencies defined by the 

system's own frequencies. However, due to Matlab limitations, the total number of sampling points cannot 

exceed 4096. When the frequency interval is small, the matrix construction T  is simplified because the 

sampling step can be taken in small increments. When the excitation spectrum is relatively high in frequency, 

a conflict arises between the resolution requirement and the maximum frequency to cover. In any case, the 

minimum frequency step must allow the solution to be calculated over a sufficient time interval by referring 

to the Shannon condition. 

 As a result, if cd  is the time span over which we want the signal to be covered, the step f  must 

satisfy condition 
c

1f
2d

  . In general, this condition is not worse than the one associated with the discrete 

FRF resolution problem. 

 

3. Regularization of the inverse problem 
 

 After obtaining the Toeplitz system, the inversion of Eq.(2.2) can be used to tackle the inverse problem 

of reconstructing the pressure signal. Because the matrix T  is generally unconstrained, its inversion must be 

regularized. We employ a regularization technique based on generalized decomposition in singular values, 

followed by a truncation filter. The transformation associated with the problem defined in Eq.(2.2) that 

employs GSVD regularization is as follows 

 

  *1 tP U W T W      (3.1) 

 

where ,U ,   are the singular elements of T matrix, * 1 tT U   is the regularized pseudo-inverse of 

T  and   is the filter parameter.  

 Without filter factors, a low problem amplitude value defined by Eq.(3.1) makes the problem ill-

conditioned. Filtering factors must be used to reduce the effect of low amplitude. The most commonly used 

regularization techniques are described in [16-17]. The regularization technique based on GSVD truncation 

will be used in the remainder of this work. Truncation is the process of eliminating the first terms of low 

indexes up to row k. This indicator is known as the modification variables. To eliminate oscillating singular 

vectors and small generalised singular values, the k-index must be chosen. The filter defined in Eq.(3.1) has 

the following form: 

 

  , ,...,ij i ij i j 1 n     (3.2) 

 

where i 0   if i k  and i 1   otherwise. 

 To construct the  filter for the truncation technique, rank k must be identified. A range of criteria can 

be used for this purpose. Here, working with semi sinusoidal pressure signals, the digital experiment showed 

that  ,k N 10 N   with N 1024 . 

 

4. Case study  

 
4.1. Problem analysis  

 

 The structure we model in the next section accepts the configuration presented in Fig.1. It is supposed 

to have the following dimensions: a thickness e 2h  with .h 0 01m and a length .l 0 25m , the thickness is 

common to the two homogeneous plates of the structure. The two plates will be designated by index 1 for the 

plate on the left, relative to the given orientation of the x-axis, and index 2 for the plate on the right. The left 
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plate has a length .1l l 0 25m   and a width .1b 2l 0 5m  . The right plate has a square geometry for which 

the two dimensions shown in Fig.1 are equal: .2 2l b l 0 25m   .  

 The structure composed by assembly of the two plates is assumed to be embedded at its left edge 

x 0m and free on all other edges. The material of plate 1 is aluminium while steel is taken for plate 2. The 

Young modules of the materials are 1E 70 GPa  and 2E 210 GPa . The Poisson coefficients are 

respectively .1 0 33   and .2 0 3  , and the densities are 3
1 2700 kg m    and 3

1 7800 kg m   .  

 A FE model of the structure was created using Abaqus software. The S4R shell element, which allows 

four nodes and five DOF per node and for which the reduced integration option is used, was used to mesh the 

structure. It is very important to use as option finite membrane deformations in order to avoid the appearance 

of parasitic modes like Hourglass blocking modes that represent modes of numerical insatiability associated 

with formulation with small membrane deformations. 

 In order to examine modal convergence, three different meshes were studied. These mesh sizes 

correspond to the following steps: 0.02 m for coarse mesh; 0.01 m for intermediate mesh size and 0.005 m for 

refined mesh size. We use the Lanczos procedure by specifying that the own modes must be dimensioned in 

relation to the mass distribution. Figure 2 shows the first 100 frequencies calculated. Table 1 shows the 

convergence of the first five frequencies. 

 

 
 

Fig.2. Convergence of the first 20 modes according to the pitch of the mesh used. 

 

Table 1. The impact of mesh size on the structure's five specific frequencies. 

 

Mesh size (m) Mode 1 (Hz) Mode 2 (Hz) Mode 3 (Hz) Mode 4 (Hz) Mode 5 (Hz) 

0.02 55.219 245.282 376.348 687.685 817.825 

0.01 55.161 244.877 374.972 683.963 813.839 

0.005 55.1374 244.708 374.506 682.591 812.339 

 

 Figure 2 and Tab.1 show that the modal convergence of the FE model is achieved for the first 65 modes 

using the intermediate mesh associated with the 0.01m value step. Indeed, there is no significant difference 

between the intermediate and the fine meshes for all these frequencies. On the other hand, for the last 35 modes 
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between the 66th and 100th a small difference appears. Note also that for the first 20 modes the coarse mesh 

already allows prediction of the clean frequencies with a good precision. We can therefore estimate that the 

convergence for the first 100 modes takes place for the fine mesh for which the mesh pitch is set at 0.005 m. 

The finite element model in this case accepts the following characteristics: 

 • number of total nodes: 5928, 

 • number of total elements: 3750, 

 • element types: C3D8R. 

 

4.2. Frequency response function 

 

 Using Eqs (2.3)and (2.4) we can obtain the FRF between any measurement point chosen on the 

structure and the impact zone. It is important to note that the terms that represent modal participations in the 

truncated series of the second member of the Eq.(2.4) are expressed as a function of modal depreciation. Its 

renders if possible allows in particular to avoid the singularity that manifests at the passage of resonant 

frequencies kw w . The coefficient k  which depends on the mode considered has a considerable influence 

on the speed of the FRF and on the response of the structure. In practice, it must be measured for each mode. 

However, this operation is tricky and can be fraught with errors. Techniques for identifying modal damping 

exist in this field.  

 In the framework of this study, we will assume that the modal depreciation k is constant for all modes 

selected in the development before truncation.  

 We consider an impact occurring on a rectangular area of the structure for which the characteristics of 

the impact area correspond to a coordinate center: .0s 0 15625 m   and .0r 0 09375 m   and an extent that is 

given by .0u 0 0625 m  and .0v 0 0625 m .  

 The displacement sensors are assumed to be located on the structure at the points indicated in Fig.3. 

Their coordinates for the marker shown in this figure are given in Tab.2. 

 

 
 

Fig.3. Fine mesh used for the structure showing the excitation area (red colour) and the positions of the 

transverse displacement sensors (depending on the z direction). 

 

 Figure 3 shows the fine mesh constructed using the CAE interface of the Abaqus software and used to 

develop the modal model. The impact area is represented in this figure by the red rectangle. In the construction 

of the FRF between the excitation zone and the response points, the numbers of the mesh nodes associated with 

the impact zone and the positions of the six sensors are used. For the sensors the numbers are given in Tab.2. 

Those of the impact area are obtained by defining a set in the form of a geometric surface containing them.  
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Table 2. Sensor positions relative to the mark shown in Fig.3. 

 

Node number on Fig.3 Mesh node number x y z 

1 3412 0.17 0.005 0.02 

2 3422 0.07 0.005 0.02 

3 2603 -0.0416667 0.210864 0.02 

4 1851 -0.173077 0.121711 0.02 

5 1793 -0.182692 -0.0855263 0.02 

6 154 -0.0520833 -0.15625 0.02 

 

 
(a) Sensor 1 

 

 
(b) Sensor 2 

 

 
(c) Sensor 3 

 
(d) Sensor 4 

 

Fig.4. FRF module between impact area under uniform pressure and 6 sensors located according to Fig.3. 
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(e) Sensor 5 (f) Sensor 6 

 

cont.Fig.4. FRF module between impact area under uniform pressure and 6 sensors located according to Fig.3. 

 

 By selecting the first 10 modes of the structure for which the maximum frequency is 

max . ,f 1627 2 Hz  we have shown in Fig.4 the FRF module for all the sensors shown in Fig.3. The damping 

coefficient used is . 4
k 8 10  . 

 

4.3. Calculation of the response by the modal model 

 

 We plan to calculate the response over a time interval .cd 0 12 s . The time signal of the excitation 

pressure is taken as a double half-sinus over the time period .d 0 01s  and zero over the rest of the interval

 , .0 0 12 s . This signal is shown in Fig.5. 

 

 
 

Fig.5. Time profile of the impact pressure signal. 
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Fig.6. Impact pressure signal power spectral density. 

 

 The frequency spectrum associated with the excitation pressure determines which modes are likely to 

be dynamically excited. This makes it possible to distinguish them from those associated with high frequencies 

which will only intervene statically in the response of the structure. The spectrum can be obtained by using 

Matlab’s fft command to calculate the fast Fourier transform. 

 Figure 6 shows the spectral power density of the pressure signal shown in Fig.5. We used the time step 

. 4d 1 171875 10 s   for the calculation of this spectrum, which corresponds to using a sample size 1024 on 

[0, 0.12] s. Figure 6 shows that the maximum frequency is around 220 Hz. Here we choose max .f 1627 2 Hz

which corresponds to the first 5 modes. We can check that max/ ( )d 1 2 f   which reflects the fact that 

Shannon’s sampling condition is met. 

 With the FRF in Section 4.2, it is possible to construct a modal model using Eqs (2.5) and (2.6). We 

have chosen a modal model comprising the first 5 modes of the structure and we consider the impact problem 

outlined in Fig.3. 

 To find the FRF between the impact area and the mounting point of a sensor, we multiply the pressure 

applied by the surface of an element i.e.  . 5 2
eS 2 5 10 m  , and we add together the contributions of all the 

nodes in the impact zone which are 196 in Eq.(2.5). 

 We then calculate the Toeplitz matrix using Eq.(2.6) with the choice of 4d 5 10 s    and 

/ ( ) .f 1 Nf t 0 48828125Hz     where the number of points to operate the inverse Fourier transform is set 

to Nf 4096 . 

 We classified the sensors into three families according to the level of transverse displacement 

amplitude obtained: 

 - Sensors 1 and 2 which give strong amplitudes; 

 - Sensors 3 and 6 which give average amplitudes; 

 - Sensors 4 and 5 which give low amplitudes because they are placed near the underrun. 

Figures 7, 8 and 9 give the z transverse displacement as calculated by the dynamic implicit model for these 

three sensor families.  
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Fig.7. Z-axis displacement associated with sensors 1 and 2 as calculated by the transitional dynamic model. 

 

 
 

Fig.8. Z-axis displacement associated with sensors 3 and 6 as calculated by the transitional dynamic model. 

 

 
 

Fig.9. Z-axis displacement associated with sensors 4 and 5 as calculated by the transitional dynamic model.  
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4.5. Impact pressure reconstruction 

 

 With the data specified in Sections 4.1, 4.2 ,4.3 and 4.4 used to define the direct problem, we consider 

the reconstruction of the discrete impact pressure P in the case where it is supposed that the impact zone will 

be obviously identified in this problem. Figure 10 illustrate that if the regularization technique is not used the 

reconstruction of the impact force is very bad. Figure 11 shows in the case of sensor 1 the superposition of the 

rebuilt force with the actual force using 5 modes and the inversion method regularized by the GSVD.  

 

 
 

Fig.10. Evaluation of the input force without regularization with the reconstructed force profile. 

 

 
 

Fig.11. Comparison of the reconstructed force profile with the input force. 

 

 In addition, in order to describe the effectiveness of the TGSVD-based identification method, the 

relative error is calculated to determine the effect of the position of the measurement sensors. Figure 12 shows 
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that the reconstruction depends on the position of the sensors. This result shows that the sensor that gives 

important displacement values gives a better reconstruction. 

 The results obtained in this section show the possibility of reconstructing the signal of an impact force in 

the case of any complex structure using a modal model based on the first modes of the structure. The position of 

the sensors vis-à-vis the excitation point is very important because the quality of the reconstruction depends 

crucially on it. But theoretically the limitation is due to the quality of the modal model which is affected by the 

following two weaknesses: the modal depreciation that must be identified in practice and the calculation of the 

inverse Fourier transform which does not tolerate a large number of discretization points in the frequency domain. 

 

 
 

Fig.11. Comparison of the relative error between two sensors (sensor 1 blue colour and sensor 3 red colour). 

 

5. Conclusions 
 

 The problem of reconstruction under impact pressure was addressed in this paper. The presented 

reconstruction method is based on the discretization of the convolution product, which describes the problem's 

transient dynamics, and for which the generalized decomposition in singular values of the obtained Toeplitz 

matrix may be required. The implementation of a generalist numerical approach based on the finite element 

method has shown how to reconstruct an impact force occurring on any structure. In practice, the impact 

spectrum is of low frequency, which simplifies the development of the modal model because only a few modes 

are required. So, once the mesh allowing the finite element method's convergence for the first modes is 

determined, these can be used to build the system's FRF, whose inversion then allows the FRT to be generated. 

The Toeplitz matrix convolution product can then be obtained in discrete form. The time signal of the impact 

force was reconstructed using inversion and TGSVD-based regulation. 
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Nomenclature 
 
 FEM – Finite Element Method 

 FRF – Frequency Response Function  
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 FRT – Time Response Function 

 GSVD – General Singular Value Decomposition  

 IFT – Inverse Fourier Transform  

 DOF – Degrees of Freedom 

 ( )y k  – discrete dynamic response 

 ( )P k  – discrete input pressure 

 ( )t k  – temporal FRT 

 T  – Toeplitz matrix 
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