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Abstract—In the practical application of iterative learning
control (ILC), the ILC process may end early by accident
during the performance improvement, which yields the problems
with nonuniform trial lengths. For such practical systems, input
signals are usually constrained because of some physical limita-
tion. Therefore, this paper proposes an optimal ILC algorithm
for linear time-invariant multiple-input multiple-output (MIMO)
systems with nonuniform trial lengths under input constraints.
By introducing the primal-dual interior point method during
the ILC design, the proposed algorithm actively embeds the
input constraints into the ILC process. Moreover, the monotonic
convergence of the proposed algorithm is derived theoretically
in the sense of mathematical expectation, which further deduces
a corollary under the circumstance that the desired input can
not be obtained. The effectiveness of the proposed algorithm is
verified on a numerical mobile robot simulation model.

Index Terms—Iterative learning control (ILC), nonuniform
trial lengths, input constraints, primal-dual interior point
method.

I. INTRODUCTION

ITERATIVE learning control (ILC) is an effective approach
that uses previous experiment data to handle the repetitive

control processes, including chemical batch processing [1],
[2], industrial robotic systems [3], robotic-assisted biomedical
systems [4], [5] and etc. Different from the traditional control
technologies, ILC improves its control performance for a
specific tracking task by learning from what has been done
before, and thus the task should be repeatable over a fixed
time interval [6]. More information can be referred through
reviews on ILC like [7]–[9].
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In practice industrial process, the strict requirement that
each trial length must be identical cannot be always satisfied
[10]. For instance, when using functional electrical stimulation
(FES) to help stroke patients suffering from foot drop to walk,
for safety reasons, FES should be applied at least until the
initial contact between the foot and the ground was detected
in spite of the nonuniform duration on the foot motion [11].
Another example for nonuniform trial lengths is a crane with
output constraints [12]. Due to that the crane can not run
beyond the neighborhood of a region restricted by some
obstacles around, the duration of the tracking is going to
be nonidentical when using ILC schemes. Actually, when
utilizing ILC methods to perform trajectory tracking tasks in
practice, obstacles may occur around the desired trajectory
more or less, problems with nonuniform trial lengths thus are
indispensable attributed to the output constraints. A further
simulation example will be discussed in section VI.

Due to the generality of problems with nonuniform trial
lengths, some research on how to relax this restriction has
been done in the field of ILC. The main schemes to handle this
problem are to do work on the compensation of the missing
information that is used for update, which includes research
as [13]–[19]. However, different forms of the schemes lead
to different control performance. Methods using traditional
P-type ILC such as [14], [17], [18], are a kind of lazy
pattern, which means lower speed of convergence and poorer
robustness to the randomness of nonuniform trial lengths.
In [13], [15], [16], [19], the iteration average operator was
introduced to improve the utilization of historical information,
while the performance of which may become poorer as the
number of iteration increases, because the average operator
may weaken the effect of the instant learning. Besides, a more
effective method, which uses the most recent trial information
that still exists at each time instant, was proposed in [20].
Its operation seems like a kind of shelter-from-rain learning
and the current time instant only benefits from the most
recent existing trial information correspondingly, however, the
monotonic convergence can not be ensured. All of the methods
mentioned before can not guarantee optimality for a specific
trial and thus, the optimal ILC approaches, such as norm
optimal ILC [21], [22] and successive projection [23], [24],
can be utilized.

Input constraints are also an indispensable part of the
industrial process, and should be fully taken into consideration
[25], especially when adopting optimal ILC approaches. Some
works on optimal ILC design with input constraints have been
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done, where the ILC problems are usually reformulated to
constrained optimization problems for certain trial. A norm
optimal ILC for time-varying linear systems with inequality
constraints, was revisited and generalized under deterministic,
stochastic disturbances and noises in [26]. Also, a succes-
sive projection framework for constrained ILC problems was
proposed in [27], where the convergence of the optimal
ILC algorithms was proved in Hilbert space. Furthermore,
data-driven constrained optimal ILC methods for linear and
nonlinear systems were proposed in [28] and [29] respectively.
However, these constrained optimal ILC methods mentioned
above just discuss the feasibility and do not attempt to improve
the performance under input constraints.

To better handle optimal ILC problems with input con-
straints, the interior point methods in numerical optimization
theory were introduced. In [30], the barrier method was used to
the design of ILC algorithm, where the restriction that global
optimal solution of the unconstrained problem should lie in the
constraint set was removed. In addition, the ILC design with
barrier method was extended to the point-to-point tracking task
in [31]. In contrast to barrier method, primal-dual interior point
method was used in [32] for ILC design, and the computational
complexity of the optimal ILC process was reduced greatly
with the sequentially semi-separable structure. Furthermore,
note that the interior point designs above are all based on
the 2-norm cost function, a modified interior point method
was used in optimal ILC design with non-smooth type cost
functions in [33]. However, the convergence analysis of all
these iterative methods mentioned above is not studied in a
theoretical way.

In this paper, an optimal ILC algorithm for problems with
nonuniform trial lengths is designed by using the primal-
dual interior point method under input constraints. The ILC
design problem is reformulated to an constrained optimization
problem and thus the primal-dual interior point method can be
used to improve each trial’s performance of the ILC process.
Furthermore, the convergence of the algorithm is analyzed
theoretically. The practical implementation of the proposed
algorithm is also presented with a further selection of the step
length and the initial point. In the end, a mobile robot with
two independent driving wheels is chosen to be the numerical
simulation example to verify the effectiveness of the proposed
algorithm.

The main contributions are summarized as follows:

1) An algorithm for problems with nonuniform trial lengths
under input constraints is proposed, which embeds the
input constraints into the design so that the constraints
on input can be regulated actively.

2) With the primal-dual interior point method design, a
lower convergence boundary of the tracking error, than
the norm optimal ILC, can be achieved when facing
problems with nonuniform trial lengths though the de-
sired input can not be obtained.

3) A framework for convergence analysis of the optimal
ILC algorithm with interior point design is presented,
which can be extended to serve other convergence
analysis of optimal ILC design with input constraints.

This paper is organized as follows. First of all, the problem
formulation is addressed in Section II. Section III introduces
an ILC algorithm based on a primal-dual interior point method
for problems with nonuniform trial lengths under input con-
straints. The convergence analysis of the ILC algorithm is
presented in Section IV. The practical implementation of the
algorithm is discussed in Section V. Simulation verification
is shown in Section VI. The conclusions are given in Section
VII.

The main notations in this paper are listed: E {·} and P {·}
denote the mathematical expectation and the probability of an
event, respectively. N denotes the set of natural number and
Rn and Rn×m denote the sets of n-dimensional real vectors
and n×m real matrices, respectively. The superscript (·) and T
respectively denote the components in a vector the transpose.
The inequality notation ≥ and ≤ for vectors means comparison
on each components. ‖·‖2 is denoted as ‖·‖ for simplicity.
Other notations will be introduced as needed in the followings.

II. PROBLEM FORMULATION

In this section, system dynamics is introduced with math-
ematical notations firstly. Then, the modified tracking error
of systems with nonuniform trial lengths is formulated under
the lifted system framework, together with input constraints,
sequentially. Finally, the ILC design problem with nonuniform
trial lengths under input constraints is defined.

A. System Dynamics
Consider the following linear time-invariant systems with

the state space model form{
xk(t+ 1) = Axk(t) +Buk(t),

yk(t) = Cxk(t),
(1)

where the subscript k ∈ N denotes the trial number and t ∈
N stands for the time index. Nd is the desired trial length
with t ∈ [0, Nd]. xk(t) ∈ Rn, uk(t) ∈ Rl and yk(t) ∈ Rm
denote the state, input and output vectors, respectively. A, B
and C are system matrices with appropriate dimensions with
CB 6= 0 for controllability of the system. yd(t) is defined
as the desired output trajectory. The initial condition satisfies
E{xk(0)} = xd(0).

Note that the learning or optimization process of ILC is
carried out along the trial, so reformulating the system model
(1) to a lifted system framework yields

yk = Guk + dk, (2)

where

uk =
[
uTk (0), uTk (1), . . . , uTk (Nd − 1)

]T
, (3)

yk =
[
yTk (1), yTk (2), . . . , yTk (Nd)

]T
, (4)

and G and dk represent the system model and the effect of
the initial conditions respectively, i.e.

G =


CB 0 0 · · · 0
CAB CB 0 · · · 0
CA2B CAB CB · · · 0

...
...

...
...

...
CANd−1B CANd−2B CANd−3B · · · CB

, (5)
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dk =
[

(CA)
T (

CA2
)T · · ·

(
CANd

)T ]T
xk(0). (6)

With E{xk(0)} = xd(0), denote dd as

dd =
[

(CA)
T (

CA2
)T · · ·

(
CANd

)T ]T
xd(0), (7)

as well as the desired output yd denoted as

yd =
[
yTd (1), yTd (2), . . . , yTd (Nd)

]T
. (8)

B. Modified ILC Problem Definition

Classical ILC schemes requires that every trial ends at a
fixed time of duration. However, when actual trial lengths are
not identical to the desired one, although tracking error can
not be utilized to update the control signal directly, the error
information available is still useful for the following trials to
learn. Therefore, to better use such available information for
optimal ILC design, we can still append zero signal values to
the absent time instances and set the desired trial length as the
maximum one. Then, the modified tracking error is defined as

ek =


Nd︷ ︸︸ ︷

eTk (1), · · · , eTk (Nk),︸ ︷︷ ︸
Nk

0, · · · , 0


T

, (9)

where Nk denotes the actual trial length of the k-th trial.
Denote Nm as the minimum actual length, then Nk varies
randomly within {Nm, Nm + 1, · · · , Nd}, which means there
will be ns = Nd −Nm + 1 possible trial lengths in total. Let
the probability of the trial length Nm, Nm + 1, · · · , Nd to be
p1, p2, · · · , pns

, then we have
ns∑
i=1

pi = 1, (10)

where all pi > 0, for 1 ≤ i ≤ ns. To formulate the modified
tracking error with the actual output and the desired one, a
random matrix is introduced as

Mk =

[
INk
⊗ Im 0
0 0

]
∈ R(m·Nd)×(m·Nd), (11)

where Il denotes unit matrix with dimension of l × l and
0 denotes zero matrix with appropriate dimension, and the
notation ⊗ denotes Kronecker product. Then one has

ek = Mk (yd − yk) . (12)

For simplicity, the mathematical expectation of different di-
mensions in random matrix is seen as same in this paper,
which is in line with most practice scenarios. To calculate
the mathematical expectation of the random matrix, another
random variables χk(t) ∈ {0, 1} is introduced to represent
whether the output occurs at time t at the k-th trial as in [13].
Let χk(t) = 1 represents the output occurs, and denote its
probability as p(t), i.e.

p (t) = P {(χk(t) = 1)} =


1, t ≤ Nm − 1,
ns∑

i=t−Nm+1

pi, Nm ≤ t ≤ Nd.

(13)

According to probability theory, we have E {χk(t)} = p (t),
which gives rise to

E {Mk}

=diag


Nm−1︷ ︸︸ ︷

1, 1, · · · , 1, E {χk(Nm)} , · · · , E {χk(Nd)}

⊗ Im
= diag


Nm−1︷ ︸︸ ︷

1, 1, · · · , 1, p (Nm) , · · · , p (Nd)

⊗ Im ∆
= M̄.

(14)

C. Input Constraints

To ensure safety or match the performance of the actuator,
input constraints also exist in practice and are often expressed
in the form of mathematical inequalities when using ILC.
Some practical forms of input constraints in ILC are listed.
• Input saturation constraint:

umin ≤ uk+1 ≤ umax, (15)

where umin, umax are the upper and lower bounds of the
input signal uk+1.
• Input constraint with respect to the trial index:

∆umin ≤ ∆uk+1 = uk+1 − uk ≤ ∆umax, (16)

where ∆umin,∆umax are the upper and lower bounds of the
rate of input changes with respect to the trial index ∆uk+1.
• Input constraint with respect to the time index:

δumin ≤ δuk+1 (t) =uk+1 (t)− uk+1 (t− 1) ≤ δumax, (17)

where δumin, δumax are the upper and lower bounds of the
rate of input changes with respect to the time index δuk+1.

Denote above three kinds of constraints as one with respect
to the input signal uk+1 as that in [26]. In other words, the
constraint (16) is changed to be

∆umin + uk ≤ uk+1 ≤ ∆umax + uk. (18)

Next, assume δuk (0) = uk (0), then one has

δuk+1 = µuk+1, (19)

where

µ =


Il 0l · · · 0l 0l
−Il Il · · · 0l 0l

0l −Il
. . .

... 0l
...

. . . . . . . . .
...

0l 0l · · · −Il Il

 ∈ R(l·Nd)×(l·Nd). (20)

Then (17) is changed to be

δumin ≤ µuk+1 ≤ δumax, (21)

which gives rise to

ζuuk+1 ≥ ζk+1, (22)
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where

ζu =


I
−I
µ
−µ

 , ζk+1 =


max (umin,∆umin + uk)
−min (umax,∆umax + uk)

δumin

−δumax

 .
(23)

According to engineering characteristics, the input constraint
set Ω defined by (22) is usually a convex set.

D. ILC Design Problem
With the definition of the modified ILC problem, the ILC

design problem under the input constraints throughout this
paper is presented as follows:

Definition 1: The ILC design problem with nonuniform
trial lengths under input constraints aims at designing an
input update law

uk+1 = f(uk, uk−1, · · · , ek, ek−1, · · · ), (24)

which consists of previous trial’s input and tracking error
under input constraints, such that the modified tracking error
converges to zero as k → ∞ in the sense of mathematical
expectation along the trials, i.e.

lim
k→∞

‖E {ek}‖ = 0. (25)

Definition 1 describes the problem to be discussed in
this paper with simple and clear mathematical expression,
which provides the necessary theoretical basis for the control
algorithm design in the following section.

III. CONSTRAINED ILC ALGORITHM DESIGN

In this section, the ILC design problem is reformulated
as a constrained optimization problem, which hence can be
solved by numerical optimization methods. Moreover, an ILC
algorithm combined with a primal-dual interior point method
is designed for problem in Definition 1.

A. Reformulated as a Constrained Optimization Problem
When using optimization ideas to design ILC algorithms, a

cost function must be defined firstly. For the problems with
nonuniform trial lengths in this paper, a cost function with
respect to weighted norm of modified error in the sense of
mathematical expectation and input increment is defined. As
an additional term, the input increment is a necessary condition
for optimal ILC algorithms to achieve complete tracking and
also results in smoothness. Therefore, the cost function is
defined as

J (E {ek+1} , uk+1) = ‖E {ek+1}‖2Q+‖uk+1 − uk‖2R . (26)

To obtain the optimization problem, first of all, substitute
(12) into the cost function (26) and reformulate it to the form
with respect to uk+1, then we have

J (E {ek+1} , uk+1) =uTk+1

(
GT K̄G+R

)
uk+1−

2
[
uTk
(
GT K̄G+R

)
+ eTkQM̄G

]
uk+1

+ d,
(27)

where

d = uTkRuk + (yd − dd)T K̄ (yd − dd) .

When just considering the (k + 1)th trial, information of
the kth trial, as well as trials before it, can be seemed as con-
stants. Therefore, constrained ILC problem is reformulated as
quadratic programming problem under inequality constraints
as follows:

min
uk+1

J (uk+1) = 1
2u

T
k+1Huk+1 + cTuk+1 + d

s.t. ζuuk+1 − ζk+1 ≥ 0,
(28)

where

H = 2
(
GT K̄G+R

)
,

cT = −2
[
uTk
(
GT K̄G+R

)
+ eTkQM̄G

]
.

Note that if the weight matrices Q and R are chosen
appropriately so that H is a positive definite matrix and
the input constraint set Ω is convex, (28) will be a convex
constrained optimization problem, whose optimal solution is
hence unique.

B. Primal-Dual Interior Point Method Design

Note that interior point methods in numerical optimization
are efficient to solve problems with inequality constraints
iteratively, and consequently can be adapted to ILC algorithm
design. In this paper, primal-dual interior point method is
selected to design an algorithm for constrained ILC problems
with non-uniform trial lengths. Different from the design
using barrier methods in [33], there is only one loop in
primal-dual method, where the primal and dual variables are
updated simultaneously and thus the convergence speed can
be increased in practice.

Define the dual variable λ ∈ Rs with s = 4l · Nd for
symbolic simplification, and note that if H is a positive definite
matrix, the optimal solution of problem (28) is unique and
satisfies the following Karush-Kuhn-Tucker (KKT) conditions:

Huk+1 + c− ζTu λ = 0,

ζuuk+1 − ζk+1 ≥ 0,

(ζuuk+1 − ζk+1)
(i)
λ(i) = 0, i = 1, 2, . . . , s,

λ ≥ 0.

(29)

Introduce a slack variable ω ∈ Rs to give rise to the modified
KKT conditions:

Huk+1 + c− ζTu λ = 0,

ζuuk+1 − ζk+1 − ω = 0,

ΛWβ = ϕβ,

λ, ω ≥ 0,

(30)

where

Λ = diag
(
λ(1), λ(2), · · · , λ(s)

)
,

W = diag
(
ω(1), ω(2), · · · , ω(s)

)
,

β = [1, 1, · · · , 1]
T ∈ Rs,

ϕ = δ · θ/s,
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with parameter δ ∈ (0, 1). θ = λTω denotes the com-
plementarity in path-following methods, which is also the
duality gap for the convex problem (28). For arbitrary
ϕ > 0, the solution of modified KKT conditions (30) is
unique and denote it as uk+1(ϕ), λ(ϕ), ω(ϕ). In addition,
{uk+1(ϕ), λ(ϕ), ω(ϕ)|ϕ > 0} is the central path of the primal
problem (28). By reducing ϕ continuously, duality gap gets
smaller so as to keep approaching to the global optimal
solution.

When fixing ϕ and applying Newton’s method, substi-
tute (uk + ∆ūk+1, λ+ ∆λ, ω + ∆ω) to (30) and ignore the
quadratic terms, then we have −H ζTu 0

ζu 0 −Is
0 W Λ

 ∆ūk+1

∆λ
∆ω

 =

 σ
ρ

ϕβ − ΛWβ

 ,
(31)

where
σ = Huk + c− ζTu λ,
ρ = ζk+1 − ζuuk + ω,

and ∆ūk+1, ∆λ and ∆ω denote the step directions.
The step directions will be obtained by computing (31),

while these step directions is based on the premise that the
step length α is 1. However, in path-following methods, the
dual and slack variables are ensured to be positive definite as
in (30), that is

λ(i) + α∆λ(i) > 0,
ω(j) + α∆ω(j) > 0,

i, j = 1, 2, . . . , s. (32)

While (32) is the condition that path-following algorithms
must meet, a neighborhood of the central path can be defined
further to prevent the outputs from coming too close to the
boundary, which yields a nontrivial step can be taken along
each trial.

Definition 2: Define a neighborhood of the central path of
the primal problem (28), which satisfies

N (γ) =
{

(uk+1, λ, ω) |λ(i)ω(i) ≥ γθ, i = 1, 2, . . . , s
}
,

(33)
where γ ∈ (0, 1).

Remark 1: According to Definition 2, each pairwise product
λ(i)ω(i) ≥ γθ must be at least some small multiple γ of their
average value θ. Therefore, reducing γ means encompassing
more feasible region.

Remark 2: By introducing the neighborhood (33), there
will be a boundary that the step length should stay in.
Furthermore, if we choose αk as the largest value of the
boundary in each trial, the algorithm will become more
efficient, which also makes up the convergence analysis.

After confirming the step directions and the selection of the
step length, an ILC algorithm for problems with nonuniform
trial lengths under input constraints based on a primal-dual
interior point method is designed as follows:

Algorithm 1: Given system dynamics (1), γ, δ ∈ (0, 1) and
(u0, λ0, ω0) ∈ N−∞ (γ), compute the step directions by (31)
and choose αk as the largest value such that

(uk+1, λk+1, ωk+1) ∈ N−∞ (γ) , (34)

then an input sequence {uk}k≥0 for ILC design problem in
Definition 1 can be generated by the ILC update law

uk+1 = uk + αk∆ūk+1, (35)

together with

λk+1 = λk + αk∆λk+1, (36)
ωk+1 = ωk + αk∆ωk+1. (37)

Remark 3: When facing the input constraints, Algorithm 1
can achieve higher convergence accuracy although the desired
input can not be obtained because of the primal-dual interior
point design. Its performance will be shown in the simulation
later.

Remark 4: Different from standard Newton’s method, the
search direction of each trial in Algorithm 1 is upon the
experimental data in the ILC process, instead of calculating
the gradient and Hessian matrices.

To explain how Algorithm 1 can solve the problem in
Definition 1, a proposition is as follows:

Proposition 1: The input sequence generated by Algorithm
1 iteratively solves the ILC design problem in Definition 1.

Proof: Given initial input signal u0, with modified prob-
lem definition for nonuniform trial lengths before, the input
sequence generated by (35) in Algorithm 1 is within input
constraints and varies along the trial, and hence can solves
the ILC design problem in Definition 1 iteratively.

An algorithm for problems with nonuniform trial lengths
under input constraints is designed in this section. In the
next section, we will analyze the global convergence of the
proposed algorithm.

IV. CONVERGENCE ANALYSIS

In this section, the convergence of Algorithm 1 will be
analyzed. Before this, an assumption with respect to the input
signal is presented as follows:

Assumption 1: There exists a desired input ud such that
the tracking error of systems with nonuniform trial lengths
converges to zero in the sense of mathematical expectation.

Assumption 1 ensures that the systems with nonuniform
trial lengths are possible to achieve the zero tracking error
in the sense of mathematical expectation. While with some
input constraints, it would be not possible. Therefore, with
input constraint set Ω, ud ∈ Ω is called the perfect tracking
being possible and ud /∈ Ω is called the perfect tracking being
not possible.

The analysis of the global convergence consists of two
parts. The first part is to find out the global solution of the
constrained optimization problem (28), and the second part is
to analyze the monotonic and zero convergence property of
the tracking error in the sense of mathematical expectation.

In order to find the global solution of (28), an optimal
solution that satisfies the conditions (29) should be found
out, then the following lemma can be used to show that this
solution is global.
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Lemma 1: If u∞ satisfies the conditions (29) for λ(i), i =
1, 2, . . . , s, and H is positive definition, then u∞ is a global
solution of (28).

Proof: See Chapter 16 in [34] for more details.
With Lemma 1, we are going to show that Algorithm 1 can

find out the global solution of (28) as follows:
Theorem 1: When ud ∈ Ω and it means perfect tracking

is possible, given systems with nonuniform trial lengths (1),
applying Algorithm 1 with given δ, γ ∈ (0, 1) and positive
definite matrix H , then the input sequence {uk}k≥0 converges
to the global solution u∞ of the constrained optimization
problem (28).

Proof: Firstly, analyze the three feasible measurement ρ,
σ and θ in duality theory along the trial axis. For the (k+1)th
trial, we have

ρk+1 = ζk+1 − ζuuk+1 + ωk+1. (38)

Substituting (36) and (37) in Algorithm 1 yields

ρk+1 = ζk+1 − ζuuk + ωk − αk (ζu∆ūk+1 −∆ωk+1)

= ρk − αk (ζu∆ūk+1 −∆ωk+1) .
(39)

Add the trial index k to (31), then one gives

ζu∆ūk+1 −∆ωk+1 = ρk, (40)

substituting which to (39) yields

ρk+1 = (1− αk) ρk, (41)

similarly
σk+1 = (1− αk)σk. (42)

For complementarity, there exists

θk+1 = λTk+1ωk+1

= (λk + αk∆λk+1)
T

(ωk + αk∆ωk+1)

= θk + αk
(
∆λTk+1ωk + λTk ∆ωk+1

)
+ α2

k ·∆λTk+1∆ωk+1.

(43)

Look also back to (31) with the trial index k, we have

∆λTk+1ωk + λTk ∆ωk+1 = βT (Wk∆λk+1 + Λk∆ωk+1)

= βT (ϕkβ − ΛkWkβ)

= δθk − θk,
(44)

substituting which to (43) with ∆λT∆ω = 0 gives rise to

θk+1 = [1− (1− δ)αk] θk. (45)

Then, we are going to find the boundary that the step length
should stay in when (34) is satisfied, which means

λ
(i)
k+1ω

(i)
k+1 ≥ γθk+1, i = 1, 2, . . . , s. (46)

Expanding the left hand side of (46), one has

λ
(i)
k+1ω

(i)
k+1 =

(
λ

(i)
k + αk∆λ

(i)
k+1

)T (
ω

(i)
k + αk∆ω

(i)
k+1

)
= λ

(i)
k ω

(i)
k + αk

(
∆λ

(i)
k+1ω

(i)
k + λ

(i)
k ∆ω

(i)
k+1

)
+ α2

k∆λ
(i)
k+1∆ω

(i)
k+1

≥ γ (1− αk) θk + αkδθk − α2
k

∣∣∣∆λ(i)
k+1∆ω

(i)
k+1

∣∣∣ .
(47)

If we find out the boundary of ∆λ
(i)
k+1∆ω

(i)
k+1 in (47), we can

combine (45) and (46) to find the boundary of the step length.
Now, we are going to do this.

According (31), we have

Λ−1/2W 1/2∆λ+Λ1/2W−1/2∆ω = (ΛW )
−1/2

(ϕβ − ΛWβ) .
(48)

Note that when applying Newton’s method to obtain (31), we
ignore the quadratic terms, that is

(
Λ−1/2W 1/2∆λ

)T (
Λ1/2W−1/2∆ω

)
= ∆λT∆ω = 0.

(49)
Let v = Λ−1/2W 1/2∆λ and q = Λ1/2W−1/2∆ω, which satis-
fies vT q ≥ 0. For i = 1, 2, . . . , s, define F1 =

{
i|v(i)q(i) ≥ 0

}
and F2 =

{
i|v(i)q(i) < 0

}
, and define ∆Λ and ∆W as

∆Λ = diag
(

∆λ(1),∆λ(2), · · · ,∆λ(s)
)
,

∆W = diag
(

∆ω(1),∆ω(2), · · · ,∆ω(s)
)
.

Since we know that
∣∣∣∆λ(i)

k+1∆ω
(i)
k+1

∣∣∣ ≤ ‖∆Λ∆Wβ‖, it is
necessary to show that

‖∆Λ∆Wβ‖=
∥∥∥(Λ−1/2W 1/2∆Λ

)(
Λ1/2W−1/2∆W

)
β
∥∥∥

=

(∥∥∥∥[v(i)q(i)
]
i∈F1

∥∥∥∥2

+

∥∥∥∥[v(i)q(i)
]
i∈F2

∥∥∥∥2
)1/2

≤

(
2

∥∥∥∥[v(i)q(i)
]
i∈F1

∥∥∥∥2

1

)1/2

≤
√

2

∥∥∥∥∥
[

1

4

(
v(i) + q(i)

)2
]
i∈F1

∥∥∥∥∥
1

= 2−3/2
∑
i∈F1

(
v(i) + q(i)

)2

≤ 2−3/2
m∑
i=1

(
v(i) + q(i)

)2

≤ 2−3/2‖v + q‖2,

= 2−3/2
∥∥∥Λ−1/2W 1/2∆λ+ Λ1/2W−1/2∆ω

∥∥∥2

,

(50)
with some mathematical definitions and transformations be-
fore. Substitute (48) to (50), then we have

‖∆Λ∆Wβ‖ ≤ 2−3/2
∥∥∥(ΛW )

−1/2
(ϕβ − ΛWβ)

∥∥∥2

. (51)

Expanding the squared Euclidean norm with λTω = θ, βTβ =
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s and λ(i)ω(i) ≥ γθ in (33) gives rise to∣∣∣∆λ(i)
k+1∆ω

(i)
k+1

∣∣∣ ≤ ‖∆Λ∆Wβ‖

≤
2−3/2

[
βTΛWβ − 2ϕβTβ

+(ϕβ)
T

(ΛW )
−1
ϕβ
]

= 2−3/2

[
θ − 2δθ + ϕ2

s∑
i=1

1

λ(i)ω(i)

]

≤ 2−3/2

[
θ − 2δθ + ϕ2 s

γθ

]
= 2−3/2

[
θ − 2δθ +

δ2

γ · s
θ

]
≤ 2−3/2

(
1 +

1

γ

)
θ,

(52)

for 0 < δ < 1, which eventually finds the boundary.
Combining (47) with (52), if (46) is going to be met, the

followings should be satisfied

γ (1− αk) θk + αkδθk − α2
k2−3/2

(
1 +

1

γ

)
θk

≥ γ [1− (1− δ)αk] θk,

(53)

that is
0 < αk ≤ 23/2δγ

1− γ
1 + γ

. (54)

According to Algorithm 1, the step length αk is at least as
long as the upper bound of (54), so we have

αk ≥ 23/2δγ
1− γ
1 + γ

= z. (55)

After achieving (55), we finally find the value away that the
step lengths remain bigger than and the value is away from
zero. So From (41) and the bound on αk, it follows that

‖ρk+1‖1 ≤ (1− z) ‖ρk‖1 ≤ · · · ≤ (1− z)k+1‖ρ0‖1, (56)

and similarly for (42), it follows that

‖σk+1‖1 ≤ (1− z) ‖σk‖1 ≤ · · · ≤ (1− z)k+1‖σ0‖1. (57)

For (45), it follows that

θk+1 ≤ [1− (1− δ) z] θk ≤ . . . ≤ [1− (1− δ) z]k+1
θ0.

(58)
Combining the results of (56), (57) and (58) with γ, δ ∈

(0, 1), a solution u∞ that satisfies the KKT condition (29)
is eventually found as k → ∞. Furthermore, according to
Lemma 1, due to H is positive definite, u∞ is the global
solution of the constrained optimization problem (28) and the
proof is completed.

Remark 5: Different with (56) and (57), the duality gap θ in
(58) goes down by a smaller factor 1− (1− δ) z. Substitute z
into it to get the convergence factor of the duality gap, which
is represented as 1 − 23/2γ 1−γ

1+γ · δ (1− δ). By choosing the
appropriate δ, the convergence speed to the global optimal
solution can become faster.

After finishing finding the global solution u∞ of the
constrained optimization problem (28) as the first part, the

relationship between u∞ and ud in Assumption 1 is explored
to show the convergence property of Algorithm 1.

Theorem 2: When ud ∈ Ω and it means perfect tracking
is possible, given systems with nonuniform trial lengths (1),
applying Algorithm 1 with appropriate parameters yields

‖E {ek}‖ ≥ ‖E {ek+1}‖ , (59)

together with
lim
k→∞

‖E {ek+1}‖ = 0. (60)

Proof: Considering the kth cost function, when applying
Algorithm 1, the (k + 1)th input always gives rise to

J (E {ek} , uk) = ‖E {ek}‖2Q
≥ J (E {ek+1} , uk+1)

= ‖E {ek+1}‖2Q + ‖uk+1 − uk‖2R ,
(61)

which yields the monotonic convergence (59).
In addition, substitute (35) to (12) and fix ∆uk+1 = 0, then

we have

E {ek+1} = E {ek} − M̄Gαk∆ūk+1 = E {ek} , (62)

which means (E {ek} , uk+1) is also a feasible point in convex
set Ω. Then we have

J (E {ek} , uk)−∆uTk+1R∆uk+1 = J (E {ek} , uk+1)

≥ J (E {ek+1} , uk+1) ≥ 0,
(63)

which gives rise to

J (E {e0} , u0) ≥ J (E {ek+1} , uk+1) +

k+1∑
i=1

∆uTi R∆ui ≥ 0.

(64)
Due to the fact that J (E {e0} , u0) <∞, we have

∆u∞ = lim
k→∞

∆uk+1 = 0. (65)

Recall that (E {e∞} , u∞) is the global solution of the
constrained optimization problem (28), so any direction of the
directional derivative with respect to the cost function (26)
at the point (E {e∞} , u∞) is no less than zero. Considering
the directional derivative from (E {e∞} , u∞) to (0, ud) in
Assumption 1, it follows that

∇JT |(E{e∞},u∞) ·
[
−E {e∞}
ud − u∞

]
=
[
E
{
eT∞
}
Q ∆uT∞R

]
·
[
−E {e∞}
ud − u∞

]
= −E

{
eT∞
}
QE {e∞}+ ∆uTk+1R (ud − u∞) ≥ 0,

(66)

which gives rise to

∆uT∞Rud ≥ E
{
eT∞
}
QE {e∞}+ ∆uTk+1Ru∞ ≥ 0, (67)

which yields ‖E {e∞}‖ = 0, and zero convergence property
(60) is finally obtained.

Remark 6: Theorem 2 reveals that when choosing
appropriate Q and R, the tracking error of Algorithm 1 also
converges to zero in the sense of mathematical expectation
with u∞ = ud. That is, the sequence {uk}k≥0 generated
by Algorithm 1 can also converge to the desired input in
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Assumption 1.

After finishing the analysis of the global convergence with
two parts above, a corollary is deduced when perfect tracking
is not possible.

For convex quadratic programming problem under inequal-
ity constraints, the global solution must be on the the boundary
of the convex constraint set Ω. When perfect tracking is
not possible, denote the the global optimal solution under
inequality constraints as u∗s , then each components of u∗s may
reach to the boundary or partially, which depends on the
relationship between Ω and ud. Moreover, a corollary is given
rise to

Corollary 1: When ud /∈ Ω and it means perfect tracking is
not possible, given systems with nonuniform trial lengths (1),
applying Algorithm 1 with appropriate parameters, it follows
that

lim
k→∞

‖E {ek}‖=
∥∥M̄ (yd −Gu∗s − dd)

∥∥ . (68)

Proof: With input constraints, the input signal can not
converge to ud, which yields

lim
k→∞

uk = u∗s. (69)

Then, according to the result of Theorem 2, (68) is obtained.

The convergence boundary is obtained in Corollary 1 when
the perfect tracking is not possible. Furthermore, with the
neighborhood defined in Definition 2, Algorithm 1 can take
a nontrivial step along each trial so as to get closer to
the theoretical boundary derived from Corollary 1, which is
verified in the simulation part by comparing with the norm
optimal ILC method.

V. PRACTICAL IMPLEMENTATION OF THE ALGORITHM

In this section, a practical implementation of Algorithm 1
is provided by confirming the selection of the step length and
the choice of the initial point. Finally, the practical algorithm
is presented.

A. Selection of Step Length and Initial Point

Actually, the condition for the step length (34) in Algorithm
1 is utilized to reveal a property that the step length remains
bounded away from zero as in Theorem 1. While in practical
implementation, a further selection of the step length, which
can achieve faster convergence in the iterative process, should
be discussed.

Recall that the dual and slack variables should be positive
definite so that (32) is satisfied. Therefore, different step
lengths are indeed generated

λ(i) + αpri∆λ(i) > 0,
ω(j) + αdual∆ω(j) > 0,

i, j = 1, 2, . . . , s, (70)

where αpri and αdual denote the step lengths that ensure the
positive definite of the dual and slack variables respectively.

Introduce a parameter τ ∈ (0, 1) to achieve the equality, then
we have

αpri = max
{
α : τλ(i) + α∆λ(i) ≥ 0, i = 1, 2, . . . , s

}
,

(71)

αdual = max
{
α : τω(j) + α∆ω(j) ≥ 0, j = 1, 2, . . . , s

}
,

(72)

where α ∈ (0, 1] and τ is often close to but strictly less than
1 so as to accelerate the convergence.

As to the initial point, positive definite of λ and ω is also
essential. Moreover, it is better to choose an initial point that
is far away from the boundary of the region λ, ω ≥ 0. In this
case, Algorithm 1 may take long steps in the first few trials.
More details about the choice of the initial point are presented
in [35].

B. A Practical Algorithm
After confirming the practical step length selection as well

as the instruction of the initial point, a practical algorithm is
presented as follows:

Algorithm 2 Practical Implementation of Algorithm 1

Input: System dynamics (1), weight matrices Q,R ≥ 0,
u0, λ0, ω0 with u0 ∈ Ω and λ0, ω0 ≥ 0, parameters
δ, γ ∈ (0, 1) and τ ∈ (0, 1).

Output: A sequence {uk}k≥0 to solve the ILC design prob-
lem in Definition 1.

1: for k = 0, 1, 2, · · · do
2: Calculate the two step lengths αprik and αdualk using

(71) and (72);
3: Set the step length αk = min

{
αprik , αdualk

}
with αk ∈[

23/2δγ 1−γ
1+γ , 1

]
;

4: Calculate σ, ρ and ϕ in (31);
5: Solve (31) for the step directions ∆ūk+1, ∆λk+1 and

∆ωk+1;
6: Set

uk+1 ← uk + αk∆ūk+1,

λk+1 ← λk + αk∆λk+1,

ωk+1 ← ωk + αk∆ωk+1;

7: end for
8: return {uk}k≥0.

With this practical algorithm, the ILC design problem in
Definition 1 can be solved, which will be verified in the next
section on a numerical simulation example.

VI. NUMERICAL SIMULATION VERIFICATIONS

To verify the effectiveness of the proposed algorithm in this
paper, a numerical model of mobile robot with two indepen-
dent driving wheels as in [36] is employed. By controlling the
driving voltages ur and ul of each wheel, the linear velocity v
and the azimuth φ of the mobile robot can be taken in control
so that the mobile robot can perform trajectory tracking tasks
on a fixed two dimensional rectangular coordinate system.
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A. Simulation Specification

Define the state variable of the mobile robot as x =[
v φ φ̇

]T
, the input variable as u = [ur ul]

T , and the

output variable as [v φ]
T . Set the repeat operation period

as T = 2s and the sampling period as 0.05s, which yields
Nd = 40. Then, the discrete-time state-space parameters are

A =

 0.9975 0 0
0 1 0.0499
0 0 0.9955

 , B =

 0.0125 0.0125
−0.0021 −0.0042
−0.0833 −0.1666

 ,
C =

[
1 0 0
0 1 0

]
.

(73)
When a mobile robot is going to move along a specific

desired trajectory under control of ILC algorithms, some
output constraints usually arise from the obstacles on the
trajectory, which may lead to the problem with nonuniform
trial lengths. In fact, the running trajectory of the robot is
always larger deviation from the desired trajectory in the
previous few trials, and get closer as the progress of the ILC
process. Although the obstacles are sometimes far from the
desired trajectory, the output is possible to be constrained, and
thus the situation that trial lengths vary still happens.

In this paper, the actual trial length Nk is set to satisfy the
discrete uniform distribution, which means Nk vary randomly
between an integer set. Let the set be {33, 34, · · · , 40} and
thus pi = 1/8. It should be pointed out that the algorithm
proposed in this paper can be used as long as the probability
distribution of the actual trial length can be known. Set the
initial state and the initial input signal as xd (0) = [0, 0, 0]

T

and u0 (t) = 0, 0 ≤ t ≤ Nd − 1, respectively. Set k = 30 and
N30 = Nd for better observation.

Furthermore, note that the mobile robot system (73) is a
linear coupling MIMO system and can be decoupled[

ur
ul

]
=

[
1 −1
0 1

] [
u1

u2

]
. (74)

Then, the linear velocity v is controlled by u1 alone and
the azimuth φ is controlled by both u1 and u2. The control
procedure in this simulation is to control the linear velocity v
firstly and then let the u1 be a disturbance so that the azimuth
φ can be control by u2 alone. In this way, the robustness of
the proposed algorithm to disturbance can also be verified. Set
the desired trajectory of the linear velocity and the azimuth be
νd = 1 m/s and φd = πt rad respectively, then the desired
trajectory of the mobile robot is round.

B. Performance of the Proposed Algorithm

When applying the ILC algorithm proposed in this paper,
some other parameters should be confirmed. Choose δ = 0.1
and initial the dual variable and slack variable such that
λ0 = 2Is×1 and ω0 = 2Is×1. Choose weight matrices Q = I
and R = 0.001I , which also ensures the positive definite of
matrix H . When perfect tracking is possible, set constraints
on u1 being umax, umin = ±150V , ∆umax,∆umin = ±100V
and δumax, δumin = ±100V , and constraints on u2 be-
ing umax, umin = ±20V , ∆umax,∆umin = ±20V and
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Fig. 1. Location tracking of the 5th, 7th and 30th trials when the perfect
tracking is possible.
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Fig. 2. Output of linear velocity and azimuth for the 1st, 5th and 30th trials
when the perfect tracking is possible.
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Fig. 3. Tracking error of linear velocity and azimuth along the trial axis when
the perfect tracking is possible.

δumax, δumin = ±20V . Recall that the proposed algorithm
embeds the input constraints into the ILC process actively,
which means output range as well as performance can be
regulated independently. It should be also pointed that the real
input constraints on ur and ul can also be transformed into
the constraints on u1 and u2 by (74), and so we directly do it
on u1 and u2 for simplification.

Simulation results are shown in Fig. 1 to Fig. 4. When the
perfect tracking is possible, the tracking trajectories of the 5th,
7th and 30th trials are shown in Fig. 1. The 5th and the 7th
trials do not run a complete trajectory because of the situation
that trial lengths vary as explained before. Fig. 2 shows the
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Fig. 5. Tracking error of linear velocity when umax, umin = ±50V ,
∆umax,∆umin = ±10V and δumax, δumin = ±100V .

output of the linear velocity and the azimuth, whose tracking
errors along the trial axis are shown in Fig. 3. The input signals
of the right and left wheels for the 1st, 3rd and 30th trials are
shown in Fig. 4, all of which are under the input constraints
set before.

When the perfect tracking is not possible, to illustrate the
advantages of the proposed algorithm, a comparative example
is presented. Choose the norm optimal ILC law in [22] as
a comparison, and choose the weight matrices Q = I and
R = 0.001I too. Set the saturation constraints for u1 as
umax, umin = ±50V and the input constraints with respect
to the trial index as ∆umax,∆umin = ±12V , and keep
δumax, δumin unchanged. Then the tracking error of the linear
velocity is as shown in Fig. 5. Though the convergence speed
of the proposed algorithm is a litter lower at the first few
trials, a lower convergence boundary as well as monotonic
convergence property are obtained, which also verifies the
Corollary 1. To further show the performance of the proposed
algorithm with input constraint along the time axis, we just
change δumax, δumin from ±100V to ±12V , which is shown
in Fig. 6. The proposed algorithm can still keep its better
convergence than the norm optimal ILC.

VII. CONCLUSION AND FUTURE WORK

This paper proposed an optimal ILC algorithm for linear
time-invariant MIMO systems with nonuniform trial lengths
under input constraints. By reformulating the optimal ILC
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Fig. 6. Tracking error of linear velocity when umax, umin = ±50V ,
∆umax,∆umin = ±10V and δumax, δumin = ±12V .

problem with input constraints into an constrained optimiza-
tion problem, the primal-dual interior point method was used
to handle it, and thus the proposed algorithm can achieve
a better convergence performance when the perfect tracking
is not possible. Moreover, with the modified cost function,
the convergence of the proposed algorithm for problems with
nonuniform trial lengths was analyzed theoretically, and a
corollary was achieved under the circumstance that the perfect
tracking is not possible. The effectiveness of the proposed
algorithm was verified on a mobile robot model by comparing
with the norm optimal ILC under the same input constraints.

The future work includes experimental verification to re-
search on the practice performance of the proposed algorithm.
Also, the proof of the robustness to modeling uncertainty and
non-repeatable disturbance is going to be addressed in the
future.
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