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The current research work considers a two-parameter singularly perturbed two-point boundary value problem.
Here, we suggest a computational scheme derived by using an exponential spline for the numerical solution of the
problem on a uniform mesh. The proposed numerical scheme is analyzed for convergence and an accuracy of O(h?)
is achieved. Numerical experiments are considered to validate the efficiency of the spline method, and compared
comparison with the existing method to prove the superiority of the proposed scheme.
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1. Introduction

Numerous physical problems are often connected with the solution of boundary value problems with
several small parameters. Problems similar to these come up frequently in the research on transport processes
in chemistry and biology [1], the theory of lubrication [2] and in the theory of chemical reactors [3]. O'Malley
[4, 5] investigated the asymptotic performance and qualitative features of the solution to the steady-state

version of two-parameter problems. He found that the ratio of convection coefficient u’ to the diffusion
coefficient € determines the limiting behaviour of the asymptotic solution of the two-parameter singularly
perturbed boundary value problem [TPSPBVP] of order two. Therefore, the ratio of u’ to € is crucial in

understanding the asymptotic behaviour of these issues.

It is widely known that the analytical solution of the singularly perturbed boundary value problem
approaches a discontinuous limit and the appearance of boundary or interior layers as the perturbation
parameter approaches zero. This kind of problem has solutions that are layered, meaning that there are thin
areas in the domain of the differential equation where the derivatives of the solutions are quite large. Due to
the existence of boundary and/or inner layers, numerically solving singularly perturbed differential equations
presents significant computing challenges. Among the many articles and books that describe several
approaches to solving singly perturbed problems, we highlight those by Bender and Orszag [6], Doolan et al.
[7] and Miller et al. [8].
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A defect correction technique was devised by Kadalbajoo and Jha [9] for numerically solving the
TPSPBVP on the Bakhvalov-Shishkin mesh. A model of the linear convection diffusion reaction problem was
studied by Lin and Roos [10]. The authors used the method of barrier functions to derive sharp bounds on the
solution's derivatives. In order to solve a class of TPSPBVP, the authors of [11] introduced the B-spline
collocation method on a piecewise uniform Shishkin mesh. Streamline-diffusion FEM was first introduced by
Torsten Linss in [12] to address a TPSPBVP of reaction-convection-diffusion type that gives rise to two
boundary layers. Gracia et al. [13] devised a monotone numerical method for solving a TPSPBVP. A piecewise
uniform Shishkin mesh is combined with the monotone operator in this method. Theoretically, it has been
demonstrated that the error constants of the asymptotic error bound in the maximum norm are independent of
the perturbation parameters.

To solve a TPSPBVP of a semilinear equation, the authors in [14] suggested a uniformly convergent
numerical approach involving an exponential spline on a Shishkin mesh. An approximation method was
developed by Kumar ef al. [15] for solving a TPSPBVP with layers at both ends. The authors of this technique
conceptually split the area into an interior and exterior section. A zeroth order asymptotic expansion is utilised to
estimate the solution in the outside region, while the B-spline collocation approach is used in the inner region.

This paper proposes a higher-order numerical method for addressing a TPSPBVP. In Section 2, we
describe the problem's statement and its characteristics. The spline methodology is outlined in Section 3. In
Section 4, the author describes a numerical technique that utilizes splines to address the problem. Section 5
discusses convergence analysis for the approach. A few numerical examples and their results are provided in
Section 6 to illustrate the method in action. The final section includes some concluding remarks.

2. Statement and properties of the problem
Considered a TPSPBVP of the form:
—€0"(¢)+no(r)6'(¢)+PB(2)0(7) =v(¢), O<e<l, O<u<l, (2.1
8(0)=&, 6(/)=n. 2.2)
The functions o(¢),B(¢),y(¢) are sufficiently smooth with o(¢)=6>0 and B(t)>B>0 in [0,1],
and &, M are finite constants. € is the small positive perturbation parameter and p is the small positive
parameter. The roots of the characteristic equation:

—eMt)” +uo(t)A(2)+B(2)=0, (2.3)

can be used to illustrate the solution of Eq.(2.1). It has two real solution functions given by:

2 ()= o) _\/{ua(t)y B0

2¢€ 2¢e €

xz(t)=‘w(t)+\/[w(t)j2 s 2.4)
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Put ®; =—max A, <M< and ®, = min A,. The solution decay in the boundary layer region is
e[0,1] € te[0.1]

defined by ®; and ®,.

For M%S]’ ‘@‘ZO(EJ and ‘&;‘20(&}
ol ool )

The layer at # =0 is defined by the term ¢ @ and t=1 defined by the term e o2l
[13], we have:

2
For M—S 1,
€

It . .
). As given in

VY8 W _p Vo w _p
b 2_,., 2 2_~
6)1:158 O and @, =) NE €@
L Bsp P B P
e ¢ @ 2u e a
t
where & = min 0/(¢) and p = min B(1) .
1e[0,1] fo.1]0u(t)

3. Description of spline method

Take a regular mesh with ¢ as its nodes in [0,1] such that 0=1¢, <t, <----<t, =1, where h=t, —1;_,
for i=1,2,...,N. A function S;(#,7) of class C?[0,1] in the interval [¢,z,,;] which interpolates 6(¢) at
discrete mesh ¢;, depends on a parameter T, transforms into a cubic spline S; (t) , in [0,1] as T— 0 is named

as an exponential spline.

Let 6(7) represent the accurate solution and ©; represent an approximation to 6(z;) based on the
spline S; (z,7) passing through the points (7,,6;) and (£.,,8,,,). In each i segment, the function S (z,7)
has the following form satisfying the first derivative continuity condition at the joint nodes (t- 6-)

1271

S;(t) =L+ M, (t—=1,)+C;e" "™ 4 D) =012, N-1. 3.1)

i
where L;, M; C; and D, are constant coefficients, and 7T is a free parameter that will be used to increase the
efficiency of the scheme.

Define S, (£,,7)=0;, S;(t;1,,T) =617, S; (4,7)=M,,S; (t;,,,T)=M,,; to calculate the coefficient
values in Eq.(3.1) in terms of 6,,0,,;,M,;, and M, ;. Using the algebraic transformation, we get the following
expression:
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M; 01— 8 (Miy—M;) (M"” _e_QMi) (egMi _M"”)
Lizei__zl’ Mi: L L 5 Ci= > 5 Dl:2—
T h 0 27 sinh(©) 272 sinh(©)

where @ =1h, for i=0, 1,..,N—1. With the help of continuity condition of the first derivative, i.e.,
S

1

()= S, (#;) at (¢.,8;), we obtain the subsequent relationships for i =1,2,...,N —1.

0,20, +0,,=h" (SM,_; + 2MM,; +3M, ;) (3.2)
where S:L—,;, X:COthg—i, Mj=9"(tj), j=i,ixl and ©=1h.
©’ ©Osinh® €] e’

The local truncation error 7; (/) for the scheme proposed in Eq.(3.2) is:

Ti(h)zhz(z—z(am))e;+h4(i—8j9?+h6(i—3jey"+...+oo for i=12,..,N-1.
12 360 12

As © —0,(3,1) > (ééj then Eq.(3.1) reduces to ordinary cubic spline scheme. The scheme given

in Eq.(3.2) is a tridiagonal scheme and consists of (N—I) equations with (N —7) unknowns
6,,i=123,...,N-1.
We have different orders for 7; (h) for different values of @ and A in Eq.(3.2):

(i) fourth order for any arbitrary 6 and B with §+A = é ,

(ii) sixth order for 8= i, A= = .
12 12
4. Description of method

At the point of grid ¢;, the proposed scheme for the two-parameter singularly perturbed differential
equation (2.1) may be discretized by:

eM; =pou(t; )6 (1) +B(4)0(1)—v(5)- 4.

Using the above equations in Eq.(3.2) and applying the following first order derivative approximations
of O at the grid points ¢,,¢,,...,txy_;,

v 79,146,368, , 361,46, +6,,

0, , 8, ~
i—1 oh +1 oh

B
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0, ~ [1 + 2Wh2l3i+1 +yh [3ai+1 + OCi—J]
i 2h

Jem - 2W[0‘i+1 +Q; ] 0, -

+[1+2\|/h2f)i_[ _\Ifh[(xi+] +3ai—]]
2h

Jei—l +yh [Yi+1 ~Yi-1 ]’

we get the following tridiagonal system:

where
3 2 d 2
L; =—s—38ai_1h—kaih[l+2\uh B, —wh(oy,, +30c,~_,)}+30c,-+,h+8|3,~_1h ,
C,=2e+280,_; h—4hoh’y[oy,, +o,_;]-280,, h+20B4°,
) 2 3 2
U=~ hhouh| 1+ 29h7B,,, +wh(30,,, +oci_,)}+38ai+,h+aﬁi+,h ,
W, =’ [ (8+ 2yhoyh) Yy, + 20y, +(8—2yhoyh)y, |,
wo(s)=oy, B(4)=B; v(t;)=v for i=0,1,...,N.
The tridiagonal system Eq.(4.2) is solved for i=1,2,...,N —1 in order to obtain the approximations
0,0,,...,0y_; of the solution 0(¢) at 7,,1,...... ty_; -The local truncation error in Eq.(4.2) scheme is:

T (h)=¢[ -1+ 2(8+M]Meu{(ws%jx—%ﬂ a,.e”'+(—1+128)%e”}h4 +0(i°).

Hence, for various values of dandA , the truncation error has the following orders:

(i) For any arbitrary choice of 8,A with d+2A :é and for any value of y, 7; () has fourth order.

(i1) For 6=i, X:i and \|I=—L, T;(h) has sixth order.
12 12 20e

5. Convergence analysis

In this section, we examine the convergence analysis of the proposed method. The following matrix
of equations can be generated by including in boundary conditions:

(D+F)0+G+T(h)=0 (5.1)
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84
(26— 0 0 ... 0]
-£ 2& - 0 ... 0
0 —-e 2 —¢& ... 0
where D= [—g, e, _g] =
| 0 0 -e 2¢]
and
(v, W, 0 0 ... 0 |
ZZ \72 ‘;{/2 0 ........ 0
F=[2,5,W]= 0 Z; V3 W3 e 0
| 0 0 Zy_; V1]
where
- 3 5 S 5
Z; :—ESai_,h—kaih[1+2wh [31._]—\ph(ocm+3oci_])J+Eoci+,h+6[3i_,h ,
% =280, h—4hoh’wloy,, + o |28, h+ 20BA°
- ) 3 3 5
wi=—5ai_1h+kocih[1+2\ph B,.+,+\|fh(30ci+1+oc,-_1)]+380ci+1h+6[5i+1h
and

G=[q,-2£,95.93>qn_; —Wy_M|]

where

g, =1’ [ (8+2yhoyh)y,,, + 20y, +(8—-2yhayh)y, , |, for i=1,2.3,.. .N-1

and
1 5 1 T
T(h):O(h6) for 6=E, 7\,=E and l|f=—2—0£ and 9:[91,92,...,9N_1] .

T, (h)= [TI,TZ,...,TN_I]T ,0=[0,0,.. .,O]T associated vectors of Eq.(5.1).

1

Let the vector ¢ = [(p,,(pz,...,(pN_I]T =0 that satisfies the equation:

(D+F) o+G=0. (5.2)

Let ¢; =¢; —6,, i=1(1) N —1 be the error corresponding to the discretization so that:
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T
E:[el,ez,...,eN_I] :(P_e
Subtracting Eq.(5.1) from Eq.(5.2), we obtain the error equation:
(D+F)E=T(h). (5.3)
Let |0c(t)| <&, and |B(t)| <&,where £;,&,. are positive constants. If F; ; be the (i,j)th element of F, then

‘E,i+,‘=|fvi|g(h(8+k)§,+h28&2+4kwh2§f+2h3kw§,§2), for i=1,2,3,...,N-2,
\FI.J.,,\ =|Z|<h(8+R)E, +h78E, + IMyh’E] + 2h°AyE 5, for i=2,3,4,...N~1.

Thus, for a sufficiently small /4, we have:
|Fji| <8, i=1,2,.,N=2. (5.4)
|Fii| <€ i=2.3..,N-1. (5.5)

Let 5:' be the sum of the i row elements of the matrix (D +F ) , then we have:

S, =s—67h(oc,-+, —30y_; )+ ko +h7 (8B, + 2AB; ) +

+hP Ay, (304, + 0y, )= 2K A youB,_; for i=1,
S, =h? (Biy + 2AB; + 8By, ) + 20Ny w B,y —Biy) for i=2,3,..,N-2,

S, =£+87h(oci_, — 30, ) —hhoy + 17 (8B,_; + 2AB;) -

+h* Ao 30y, + oy )= 2 youB,_, for i=N—1.

, &2*:]rsrll_i;]1v|q(ti)| and &;:Ir;z;ﬂq(tlﬂ Since O<e<x ]

Let §. =12isr11\/|p(ti)| and &, :g§§v|p(ti)

and €o< O(h), it is verified that (D+ F) is monotone [16, 17] with sufficiently small 4.
Therefore (D + F)_I exists and (D + F)_J > (. So, from Eq.(5.5), we get:

[E|< D+ )il (5.6)

Let (D+F) i be the(i, k)™ element of (D+ F)_I and we define:

i,
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N-1
H(D+F H— max Z (D+F)., and ”T ”— max |T | (5.7)
ISi<N-1 4= I<i<N—1
N-1 5
Since (D+F and > (D+F) 8¢ =1 for i=1,2,3...N—1.
k=1
Hence:
_ 1 1
(D+F) <=< , (5.8)
TS w5+ 2B)E, - 4BvE] |
_ 1 1
(D+F)\  S=—< : (5.9)
NS W [(8+ 2B)E o — 4BvE] |
Furthermore,
N=2 , ] I
D> (D+F),, < <5 . =23, ,N-2. (5.10)
k=2 L Sk h [2(8+B)§2*}
By the help of Egs. (5.7) - (5.10), from (5.6), we obtain:
HESO(M‘)H. (5.11)

Thus, the method given by Eq.(5.10) is convergent in fourth order for

1 5 1
0=—, B=— and y=—
12 b 12 V= 20e

6. Numerical examples

To illustrate the computational feasibility of our proposed method based on an exponential spline
function, three TPSPBVPs are considered. These problems were selected because they have received extensive
attention in the literature and have well-defined solutions that may be used as comparisons. Maximum absolute

errors [MAE] for the problems under consideration have been tabulated and compared to existing methods to
demonstrate the superiority of the proposed method.

Example 1. €0”+u8’-0=—1, 0<sr</ with 0(0)=1, 8(1)=0.

The exact solution is given by:
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(1+u)+(7-p) exp(2,)
exp(A,)—exp(A;)

(Z+p)+(I-p)exp(A))

0(7)= exp(A;)—exp(A,)

exp (A1) +

exp(A,t)+t+1

where

2 _u—\/u2+4£ 2 _u+\/u2+4e
1 25— T -

- 2¢e ’ - 2¢e
MAEs for different values of €, L and /4 are shown in Tab.1 and Tab.2.
Example 2.-€6”+ 160"+ 0 =cos(nt), 0<t</ with 6(0)=1,6(/)=0.

The exact solution is 6(¢)=p; cos(nt) +p, sin(mr) + 4; exp(A;1) + A4, exp [—kl (1- t):| , Where

2
emn’ +1 e I+exp(—A
Pr= 7> P2= 7> AJZ—PJJ 75 ;) >
£2n2+(en2+1) £2n2+(en2+1) —exp (A =2;)
A= I+exp () N Cu—u’ e z TR/ TaE:
> =P =, A= — .

I-exp(h;=1,)’ ! 2¢ 2¢e
MAE:s for different values of €,)1 and / are shown in Tab.3.

Example 3. -€0"-2u8'+40=1, 0<r</ with 6(0)=0, 6(1)=1.

The maximum absolute errors are obtained using the principle of double mesh, El»N = ma)ﬂv

ey
0<i<

i

MAE:s for different values of € and /4 are shown in Tab.4 and Tab.5.
7. Conclusion

In this article, a fourth-order numerical approach for solving a class of TPSPBVP is developed using
the spline method. To solve the difference method's tridiagonal scheme, discrete invariant embedding was used
to solve the resulting tridiagonal difference scheme from the suggested scheme. Three standard test examples
from the literature were considered, and the maximum absolute errors of their solutions were presented in Tabs
1-5. Graphical representations are used to show how small parameters affect the behaviour of the solution
(Figs 1-6). We observed that as € declined for a fixed |, the width of the left and right boundary layer

decreases. For a fixed € , when u decreases the width of the left layer increases and right layer decreases.

The numerical solutions also correspond extremely well to the exact solutions. Finally, it was noticed that the
proposed fourth-order scheme produced better outcomes than the previous methods, proving the superiority of
the suggested method.
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Table 1. MAE and rate of convergence in Example 1 for ¢ =1 073,

ud N — 64 128 256 512 1024
Results in [18]

1077 3.6590e-03 1.1005¢-03 2.7573e-04 6.8812e-05 1.7196e-05
1.7332 1.9968 2.0025 2.0025 -

107 3.0262e-03 7.4023e-04 1.8406e-04 4.5953e-05 1.1484e-05
2.0314 2.0077 2.0019 2.0005 -

107* 2.9008e-03 7.0989¢-04 1.7654e-04 4.4076e-05 1.1015e-05
2.0307 2.0076 2.0019 2.0005 -

Our method

107° 4.7349¢-005  3.0188e-006  1.8909e-007  1.1840e-008  7.3990e-010
3.9713 3.9968 3.9973 4.0002 -

1073 4.5944e-005  2.8914e-006  1.8104e-007  1.1320e-008  7.0776e-010
3.9900 3.9974 3.9994 3.9995 -

1077 4.5331e-005  2.8528e-006  1.7862e-007  1.1169e-008  6.9796e-010
3.9900 3.9974 3.9993 4.0002 -

Table 2. MAE and rate of convergence in Example - 1 for p=707"".
el N> 64 128 256 512 1024
Results in [18]

107! 1.5752e-05 3.9408¢-06  9.8514e-07  2.4628e-07 6.1570e-05
1.9990 2.0001 2.0000 2.0000 -

1077 2.8064e-04 7.0125e-05 1.7522e-05 4.3807e-06 1.0952¢-06
2.0007 2.0008 1.9999 2.0000 -

107 2.9008e-03 7.0989¢-04 1.7654e-04 4.4076e-05 1.1015e-05
2.0307 2.0076 2.0019 2.0005 -

Our method

107! 2.5619¢-009  1.6033e-010  1.0225¢-011  1.5884e-012  4.5530e-012
3.9981 3.9709 3.9973 4.0002 -

107° 4.5465¢-007  2.8485e-008  1.7806e-009  1.1131e-010  7.0776e-010
3.9900 3.9998 3.9997 3.9994 -

1073 4.5331e-005  2.8528e-006  1.7862e-007  1.1169e-008  6.9796e-010
3.9900 3.9974 3.9993 4.0002 -
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Table 3. MAE in Example 2.

e=10"", N=128

u Results in [11] Results in [14] Results in [19] Our Result

107 0.94446e-002 0.47598e-002 0.51964e-002 0.27811e-003
107 0.90436¢-002 0.42856e-002 0.41710e-002 0.27240e-003
107 0.90036e-002 0.42295e-002 0.40754e-002 0.27148e-003
107° 0.89996¢-002 0.42238e-002 0.40659e-002 0.27139e-003
107 0.89992e-002 0.42232e-002 0.40650e-002 0.27138e-003

Table 4. MAE and rate of convergence in Example 3 for €=/ 03

ud N - 64 128 256 512 1024
Results in [18]

107 3.6016e-03 1.6211e-03 7.0696e-04 2.8171e-04 1.0312e-04
1.1516 1.1972 1.3274 1.4498 -

1073 3.7743e-03 1.5538e-03 5.9114e-04 2.0815e-04 6.2089e-05
1.2804 1.3942 1.5058 1.7452 --

107* 3.7827¢-03 1.5541e-03 5.8893e-04 2.0559e-04 5.9990e-05
1.2833 1.3999 1.5183 1.7769 -

Our method

107° 5.1235¢-004  3.2945e-005  2.1013e-006  1.3163e-007  8.2422¢-009
3.9590 3.9707 3.9967 3.9973 -

1073 5.0365e-004  3.2257e-005  2.0307e-006  1.2716e-007  7.9513e-009
3.9647 3.9896 3.9973 3.9993 -

107° 4.9741e-004  3.1856e-005  2.0054e-006  1.2557e-007  7.8521e-009
3.9648 3.9896 3.9973 3.9993 -
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Table 5. MAE and rate of convergence in Example 3 for p = 1077,

el N> 64 128 256 512 1024
Results in [18]
107" 8.2643e-05 2.0643e-05 5.1596e-06 1.2899e-06 3.2247e-07
2.0012 2.0003 2.0000 2.0000 --
107 8.4861e-04 2.1035e-04 5.2577e-05 1.3137e-05 3.2843e-06
2.0123 2.0002 2.0007 1.9999 --
1073 3.7827e-03 1.5541e-03 5.8893e-04 2.0559e-04 5.9990e-05
1.2833 1.3999 1.5183 1.7769 --
Our method
107" 5.0396e-008  3.1508e-009  1.9659¢-010 1.1526e-011  1.0001e-012
3.9995 4.0025 4.0922 3.5267 --
107 5.1107¢-006  3.2037e-007  2.0078e-008  1.2550e-009  7.8151e-011
3.9957 3.9961 3.9999 4.0053 --
1073 4.9741e-004  3.1856e-005  2.0054e-006  1.2557e-007  7.8521e-009
3.9648 3.9896 3.9973 3.9993 --
1
0.8 — Exact solution 7
2 - Numerical solution
=10
c 0.6 H
Re]
E
o)
w04 b
=10
e=10"°
0.2
OO 0i2 0i3 0i4 0i5 Oi6 Oi? 0i8 0i9 1
Mesh points

Fig.1. Solution profile of example 1 with p =707
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0.8+ —Exact solution i
- Numerical solution
c 06
9
=]
o
04
0.2
0 | | | |
0 0.2 0.4 0.6 0.8 1
Mesh points
Fig.2. Solution profile of example 1 with €=1 0.
1
— Exact solution
0.5H - Numerical solution
c
Re]
5 0
[}
n
_0.5,
-1 | |
0 0.2 0.4 0.6 0.8 1
Mesh points
Fig.3. Solution profile of example 2 for p=1072.
1
— Exact solution
0.5 - Numerical solution
C
RS
5 0
o
n
-0.5
L L

0 0.2 0.4 0.6 0.8 1
Mesh points

Fig.4. Solution profile of example -2 for e=1 0.
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- Numerical solution

o
(o]
T

Solution
o
S

N
N
T

©
N
..ﬁ
L

0 1 1 1 1

0 0.2 0.4 0.6 0.8 1
Mesh points
Fig.5. Solution profile of example 3 for =107
1
0.8 - Numerical solution i
n =107,
5 0.6 1 =102 R
3
B o4t u=10" 7
0.2r i
0 L L L L
0 0.2 0.4 0.6 0.8 1
Mesh points
Fig.6. Solution profile of example 3 for e= 107, p=1072.
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Nomenclature

E — error matrix
EN  —absolute error
h —mesh size
N —number of sub-intervals
T;(h) — truncation error
— independent variable
— mesh points
0 — positive constant
a(), B(7), y(¢) - smooth functions
€

— perturbation parameter
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6 —solution
u  —small positive parameter
&, n - finite constants

T — free parameter
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