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Summary

This paper develops a novel framework for iterative learning control (ILC) design
of discrete-time systems with non-uniform trial lengths by using alternating projec-
tions. In contrast to existing works for the non-uniform trial length problem, this
paper uses the Hilbert space settings and hence the discrete-time system dynamics
with non-uniform trial lengths can be represented by multiple affine subspaces (or
linear varieties). Motivated by the successive projection design between two closed
convex sets, the considered ILC problem can be transformed into alternating projec-
tions betweenmultiple sets, then well-defined convergence properties can be derived.
Moreover, an optimal ILC design is produced for systems with non-uniform trial
lengths under the proposed framework, which is also extended to the case of input
constraints. A numerical case study is given to illustrate the applicability of the new
design.
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1 INTRODUCTION

Iterative learning control (ILC) is applicable to systems that repeatedly complete the same finite duration task. An example is a
pick-and-place robot performing the following steps: i) collect the payload from a specified location, ii) transfer it over a finite
duration, iii) place the payload on a moving conveyor under synchronization, iv) return to the starting location, and v) repeat
these steps as many times as possible. Let the finite duration be termed the trial length and use the term trial to denote each
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execution. For discrete dynamics, the notation for the system output is yk(t), t ∈ [1, N], where both discrete time instant t and
trial number k are non-negative integers, andN <∞ denotes the trial length.
Once a trial is complete, all information generated, i.e., for t ∈ [0, N], is available for use in updating the control signal for

the next trial. Let uk(t), t ∈ [0, N − 1], k ≥ 0, denote the control input on trial k. Then in the ILC setting, suppose that yd(t),
t ∈ [1, N], is a supplied reference trajectory, e.g., the desired path to be followed by the pick-and-place robot on each trial. In
which case the sequence of errors {ek}k≥0 can be formed, where on trial k, ek(t) = yd(t) − yk(t).
The ILC design problem can now be formulated as the construction of a control input sequence {uk}k≥0 that enforces conver-

gence along the trial k under an appropriate norm to either zero in the ideal case, or to within some acceptable bounds. In ILC,
the input is regulated and one form of control law is to construct the control input for the next trial as the sum of that used on the
previous trial and a correction based on previous trial information (in some cases a current trial feedback term is also added). The
critical feature in ILC is that all information from the previous trial is available to the control law. Hence, for example, an ILC
phase-lead law has the structure uk+1(t) = uk(t) + !ek(t + �), � ≥ 0, where the non-negative integer � denotes the phase-lead.
The phase-lead term in this last ILC law is implementable because it acts on the previous trial error. If � = 0, it can be

shown that an equivalent feedback control law exists and ILC has no added benefit. Since the mid-1980s, in particular, ILC has
remained an active research area, e.g., the first work on robotics1 and the survey papers.2,3 A strong feature of the research is
the number of design algorithms that have proceeded to a least experimental validation. Engineering applications include multi-
agent systems,4,5 printing systems6 and center-articulated vehicles.7 Also in the process industries with batch processes, see,
e.g., batch process.8,9

In the great majority of the ILC literature, the systems are required to track a desired reference trajectory of a fixed length and
specified a priori. An application area, where variable or non-uniform trial lengths arise, is in the use of ILC to regulate the level
of stimulation applied to patients undergoing robotic-assisted stroke rehabilitation. People who suffer a stroke loose functionality
down one side of their body and the recommended method of attempting to recover lost functionality is repeated attempts at a
task, e.g., reaching out to an object. However, patients cannot move the affected limb and the quality of rehabilitation is poor.
Muscles can be made to move by application of electrical stimulation to the muscles involved, but there is a need to tightly

regulate the applied stimulation to achieve maximum effect. In previous work for the upper limb, it was established in the work
of Freeman et al,10 with supporting clinical trials,11 that ILC can be deployed to regulate the stimulation, where if the patient is
improving with each attempt, the voluntary effort should increase and the applied stimulation decrease. Exactly this effect was
detected in the clinical trials.
In the early stroke rehabilitation work, the reference trajectory is chosen based on a healthcare professionals interpretation of

the patients current ability, and must not be too hard (loss of motivation often results) or too easy (no benefit from the session).
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This early work led on to other work on the use of ILC in healthcare, where the trial length is fixed. One area is the use of ILC-
based functional electrical stimulation to help stroke patients to recover from physiological foot motion. However, for safety
reasons or unpredictable voluntary effort by the patient, the stimulation signal must be applied until the initial contact was
detected between foot and the ground, which gives rise to an ILC problem of design for non-identical trial lengths.12 Another
area where non-identical, termed non-uniform from this point onwards, trial lengths occur, lies in the filling phase of the injection
molding.13 The filling phase should be switched to the next phase instantly once the pressure in the molding chamber increases
to a certain value, and thus non-uniform trial lengths arise. In response, there has been research on ILC design for non-uniform
trial lengths.
Early research approaches to this last problem include an iterative average operator for improving learning performance by

utilizing the historical error and input information.14,15,16 However, the historical information may be redundant and affects
the utilization of up-to-date information. In the work of Shen et al,17 a lifted framework, also called intermittent ILC,18 was
developed for systems with randomly varying trial lengths using the P-type ILC law, in which stronger convergence results in
random sense were obtained. In contrast to the randommodel for varying trial lengths, a deterministic convergence property was
studied in the work of Meng and Zhang19 for tracking design in the presence of non-uniform trial lengths. Also, a necessary and
sufficient condition for monotonic convergence was developed for simple structure ILC design for systems with non-uniform
trial lengths in the work of Seel et al.20 It was reported in the work of Jin21 that a design where only information of the most
recent trial is learned and a modified composite energy function is employed to analyze the convergence property. Moreover,
a robust ILC scheme combined with adaptive design techniques was proposed to handle non-uniform trial length systems with
nonparametric uncertainties.22 It was also reported in the work of Shen et al23 that an adaptive ILC scheme is built for the
case under state alignment condition with varying trial lengths by resorting to a barrier composite energy function approach.
However, aforementioned approaches mainly focus on the improvement of learning efficiency, which cannot definitely increase
the convergence speed. A critical question in ILC performance is the speed of the error convergence and how to increase or
accelerate it if required. In this sense, the norm optimal ILC was modified for handling the non-uniform trial length problem
existing in the application of ventricular assist devices.24. However, there is no theoretical proof about the feasibility of optimal
ILC applied to the non-uniform trial lengths in this work. Also, an intermittent optimal learning control scheme was developed
in the work of Liu et al,25 which is intended to fast convergence speed by minimizing a designed performance index.
Moreover, how to conduct the convergence analysis of these ILC approaches for non-uniform trial length problem is also

one of main issues. Some effective methods have been introduced to deal with this difficulty, including contraction mapping
method14,16,26 and Lyapunov-based composite energy function method.21,22,23 Different from existing methods, this paper pro-
poses a new design and analysis framework for discrete-time systems with non-uniform trial lengths. This framework is based
on the method of alternating projections in Hilbert space, and hence naturally handles this issue from an optimization point of
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view. The introduction of Hilbert space setting can simplify the design and analysis of complex ILC control problem by using
the language of operator theory.27 The alternating projection method to ILC, also termed successive projection,28,29 has been
developed for constant trial length systems, which has been extended to the non-uniform trial length case by utilizing the math-
ematical expectation for employing only two projecting sets.30 Different from this previous work, this paper aims at extending
the alternating projection ILC framework to the non-uniform trial length case by introducing more than two sets, namely, finite
number of sets, so as to obtain stronger convergence results in a deterministic way. This is the main motivation of this paper. It
should be pointed that that alternating projections between multiple sets would not decrease the convergence speed compared
to that between two sets if the projection orders are reasonable designed.
To conclude, this paper develops an optimal ILC design using the modified alternating projection framework for discrete-time

multiple-input multiple-output (MIMO) systems with non-uniform trial lengths. Multiple affine subspaces (or linear varieties)
are employed to represent the discrete-time system dynamics with non-uniform trial lengths, then the result of alternating pro-
jections between multiple sets can be utilized for the optimal ILC design and convergence analysis. In this case, the causal
implementation is allowed by using the norm optimal setting with modifications. Furthermore, the ILC design is extended to
the case with non-uniform trial lengths where input constraints arise or must be imposed for applications specific reasons. In
all cases, the error convergence properties are analyzed. Finally, a numerical case study based on a model obtained from a
coarse-fine stage is given to demonstrate the applicability of the new design.
The major novel contributions of this paper are as follows:

• An ILC design framework is developed for discrete-time systems with non-uniform trial lengths by using the method of
alternating projections.

• A practical causal feedback plus feedforward design for discrete-time systems with non-uniform trial lengths is developed,
whose convergence is theoretically proved.

• The proposed alternating projection framework is extended to the design for non-uniform trial length case with input
constraints.

The structure of this paper is organized as below. The problem formulation is first addressed in Section 2. Section 3 develops
an ILC design for non-uniform trial lengths using alternating projections, and a causal feedback plus feedforward structure is
derived for practical implementation. Section 4 gives the new results for input constraints. A numerical case study is carried out
in Section 5, and the conclusions are given in Section 6.
Throughout this paper, ℕ denotes the set of natural number; ℝn and ℝn×m denote the sets of n-dimensional real vectors and

n × m real matrices, respectively; lm2 [a, b] denotes the space of ℝm valued Lebesgue square-summable sequences defined on
an interval [a, b]; The superscripts T and ⊥ respectively denote the transpose and the orthogonal complement operations; x⊥y
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represents that x and y are orthogonal; 0 denotes zero vector with compatible dimensions; PM (x) denotes the projection of x
onto the set M in a Hilbert space; ⋂ denotes the intersection of sets; ⟨⋅⟩ denotes the inner product, and X × Y denotes the
Cartesian product of two spaces X and Y . Other notations will be introduced when required.

2 PROBLEM FORMULATION

Consider a linear time-invariant discrete-time MIMO system with non-uniform trial lengths described in the ILC setting by the
state-space model

⎧

⎪

⎨

⎪

⎩

xk(t + 1) = Axk(t) + Buk(t),

yk(t) = Cxk(t),
(1)

where k ∈ ℕ and t ∈ [0, Nk] respectively denote the trial number and time index. Nk is a random variable that represents the
actual trial length of trial k. xk(t) ∈ ℝn, uk(t) ∈ ℝl and yk(t) ∈ ℝm denote the state, input and output of system (1), respectively.
It is assumed that CB is full-rank so that the relative degree is equal to one. Without loss of generality, it is also assumed that
xk(0) = x0 for all trials, i.e., same state initial vector on each trial.
One method for ILC analysis and design for the systems considered is to use the lifted model representation, where the values

of a variable are represented by assembling them in order as the entries in a vector, and this vector has a finite dimension due to
the finite trial length. In this approach, the error updating from trial-to-trial is governed by a standard difference equation and
analyzed by standard discrete linear systems theory. See, e.g., the survey papers,2,3 for the background on this approach to ILC
design.
The non-uniform trial length case does not follow as a direct generalization of lifted model. Therefore, the actual trial length

Nk is set to vary in
{

Nm, Nm + 1,… , N
}, whereNm andN respectively denote the minimum and maximum trial lengths that

occur in a particular application, for which there are J = N −Nm + 1 possible trial lengths. In this case, the lifted model with
same trial lengthN can be employed, i.e.

yk = Guk + dk, (2)

where G and dk represent the system model and the effect of the initial conditions respectively, i.e.

G =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

CB 0 0 ⋯ 0

CAB CB 0 ⋯ 0

CA2B CAB CB ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮

CAN−1B CAN−2B CAN−3B ⋯ CB

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (3)
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dk =
[

(CA)T
(

CA2
)T

⋯
(

CAN
)T

]T

xk(0), (4)

and

uk =
[

uTk (0), u
T
k (1),… , uTk (N − 1)

]T , (5)
yk =

[

yTk (1), y
T
k (2),… , yTk (N)

]T . (6)

This paper uses a Hilbert space setting. Let ll2 [0, N − 1] and lm2 [1, N] denote the input and output spaces respectively, with
inner products and associated induced norms

⟨u, v⟩R =
N−1
∑

i=0
uT (i)Rv (i), ‖u‖R =

√

⟨u, u⟩R, (7)

⟨y, e⟩Q =
N
∑

i=1
yT (i)Qe (i), ‖y‖Q =

√

⟨y, y⟩Q, (8)

where u, v ∈ ll2 [0, N − 1] and y, e ∈ lm2 [1, N], and R ∈ ℝl×l and Q ∈ ℝm×m are symmetric positive definite weighting
matrices. Define yd(t) as the desired output or reference trajectory for t ∈ [1, N] in the lifted model setting, i.e.

yd =
[

yTd (1), y
T
d (2),… , yTd (N)

]T . (9)

One problem for ILC design in the non-uniform trial length case is that the actual output values in yk on trial k are not known
for t ∈ [Nk + 1, N]. The reference trajectory is, however, known and hence it is possible to set

yk(t) = yd(t), t ∈ [Nk + 1, N]. (10)

In this way, learning efficiency of the lifted model for systems with non-uniform trial lengths along the trial can be maintained
when using the tracking error to update the input signal for the next trial.
To describe the tracking error of systems with non-uniform trial lengths, a trial-varying matrix is introduced as

Fk =

⎡

⎢

⎢

⎢

⎣

INk
⊗ Im 0

0 0⊗ Im

⎤

⎥

⎥

⎥

⎦

, (11)

where Il denotes the identity matrix with dimensions l × l, and ⊗ denotes the Kronecker product. Then, the tracking error can
be written as

ek = Fk
(

yd − yk
)

, (12)

even though the output at t ∈ [Nk + 1, N] is unknown. In this sense, the error vectors for different trials belong to different
subspaces, which depends on the trial number.
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Remark 1. These subspaces that the error vectors belong to are actually subsets of each other, and regarding them as independent
subspace one by one is the basis for the new ILC design developed in the next section.

The ILC design objective for problem with non-uniform trial lengths is stated as follows.

Definition 1. The ILC problem is to design an update law

uk+1 = f (uk, uk−1,…, ek, ek−1,…), (13)

to update the input signal for current trial utilizing both trial input and tracking errors that have been already obtained, such that
the modified tracking error (12) converges to zero in norm as k→∞, i.e.

lim
k→∞

‖

‖

ek‖‖ = 0. (14)

Note that in ILC it is possible to use information from any previous trials to update the control input to be applied on the next
trial. However in this work, only the most common case is considered, i.e., only information from the previous trial is used,
which is considered as a kind of efficient strategies for the non-uniform trial length case.21

3 ILC DESIGN USING ALTERNATING PROJECTIONS

In this section, an ILC design for the systems considered is developed by employing alternating projections.

3.1 Alternating Projections Interpretation

In the case when missing information of the output on a trial is replaced by the corresponding entries in the reference trajectory,
the tracking errors for t ∈ [Nk + 1, N] are set as zero. Then, the tracking errors of different trials belong to different subspaces
in Hilbert spaces, and there are J subspaces.
In this sense, the ILC design problem formulated in Definition 1 is equivalent to iteratively finding a point in the intersection

of the following multiple closed affine subspaces

Mj =
{

(e, u) ∈ H ∶ e = Fj(yd − y), y = Gu + d
}

, (15)
MJ+1 = {(e, u) ∈ H ∶ e = 0} , (16)



8 Zhuang ET AL

where Mj ∈
{

M1,M2,… ,MJ
} and MJ+1 respectively represent system dynamics and the tacking objective, and d ∈

lm2 [1, N]. The matrix Fj decides which affine subspaceMj lies in
{

M1,M2,… ,MJ
}, and is defined as

Fj =

⎡

⎢

⎢

⎢

⎣

INj
⊗ Im 0

0 0(N−Nj ) ⊗ Im

⎤

⎥

⎥

⎥

⎦

, (17)

whereNj = N − j + 1, for j ∈ {1, 2,… , J}. In addition, the Hilbert spaceH is defined as

H = ll2 [0, N − 1] × lm2 [1, N] , (18)

with the inner product and associated induced norm

⟨(e, u) , (y, v)⟩{Q,R} =
N
∑

i=1
eT (i)Qy (i) +

N−1
∑

i=0
uT (i)Rv (i), (19)

‖(e, u)‖{Q,R} =
√

⟨(e, u) , (e, u)⟩{Q,R}. (20)

The following assumption is required.

Assumption 1. The multiple affine subspacesMj andMJ+1 given by (15) and (16) have intersection region in the Hilbert space
H , i.e.M ∩MJ+1 ≠ ∅, whereM =

⋂J
1 Mj .

Assumption 1 guarantees the control objective is achievable, and hence the ILC problem has a solution. Also, due to the
existence of the intersection region, there must exist a point (0, u∗) ∈M ∩MJ+1.
Different from successive projections used for the constant trial length case,28,29 the method of alternating projections used

in this paper considers more than two closed sets in the iterative process for the non-uniform trial length case. Therefore, there
may be multiple projection orders. To better describe, denote {jk

}

k≥0 as a sequence taking values in {1, 2,… , J}, and define a
sequence {zk

}

k≥0 with
zk+1 = PMjk+1

(

zk
)

, k ≥ 0, (21)

by choosing arbitrary initial point z0 ∈ H .

Definition 2. The sequence s = {

jk
}

k≥0 taking i infinitely many times means

� (s, i) = sup
k

[

Δk+1 (i) − Δk (i)
]

<∞, (22)

where {Δk (i) ∈ ℕ
}

k≥0 is an increasing sequence such that jΔk(i) = i with Δ0 (i) = 0.

Taking i infinitely many times requires that the difference in the trial number between the appearance of i at one time and the
next is bounded. With Definition 2, the following lemma is required as a basis for the solution of the ILC problem considered
in this paper.
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Lemma 1. Suppose thatMj , for j ∈ {1, 2,… , J}, are closed subspaces in a Hilbert space. If the sequence s = {

jk
}

k≥0 takes
every value in {1, 2,… , J} infinitely many times and there exists a constant S, which is only associated with the sequence s,
such that

‖

‖

zn − zm‖‖
2 ≤ S

m−1
∑

k=m

‖

‖

zk+1 − zk‖‖
2, n > m ≥ 1, (23)

then {zk
}

k≥0 converges in norm to the orthogonal projection of z0 ontoM =
⋂J
1 Mj .

Proof. See Appendix A or the work of Sakai31 for more details.

Lemma 1 requires that the sequence s = {

jk
}

k≥0 takes every value in i ∈ {1, 2,… , J} infinitely many times and hence the
possibility of converging by choosing an appropriate sequence {jk

}

k≥0 taking values in {1, 2,… , J}. However, this is a very
strict condition for systems with non-uniform trial lengths, because it is not ensured in practice that actual trial length can take
every existent length infinitely many times. Therefore, another assumption is made to relax this condition, while the sequence
{

zk
}

k≥0 still converges.

Assumption 2. M1 appears infinitely many times in the process of alternating projections between (15) and (16), i.e.

� (s, 1) = sup
k

[

Δk+1 (1) − Δk (1)
]

<∞. (24)

Note thatM1 represents the system dynamics with Nk = N . Therefore, Assumption 2 demands that the case, whose actual
length is the desired one, appears infinitely many times and thus the interval between any two sequential trials with desired
length is bounded.

Remark 2. This assumption coincides with the persistent full-learning property in the work of Meng and Zhang,19 where the
actual trial can extend to the desired length at least once between any fixed finite interval of successive trials. Similarly, the
actual number of � (s, 1) has no influence on the convergence result of ILC design because it is only the existence of � (s, 1) that
matters. Nonetheless, the smaller this value is, the better the learning performance.

Different from Lemma 1, the convergence analysis of alternating projections between (15) and (16) should further consider
the affine subspaces of Hilbert spaceH . In other words, the original point of the Hilbert spaceH does not naturally belong to the
designed affine subspaces. Therefore, a property under a designed projection order is firstly proved to establish the convergence.
Denote z∗ as a point in the intersection region in Assumption 1, i.e., z∗ = (0, u∗) ∈ M ∩MJ+1, then the following theorem is
given.

Theorem 1. If the projection order satisfies

Mjk =

⎧

⎪

⎨

⎪

⎩

Mj ∈
{

M1,M2,… ,MJ
}

, k is odd,

MJ+1, k is even,
(25)
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then for any n > m ≥ 1, there exists
⟨zm − zn, z∗ − zn⟩ ≤ 0. (26)

Proof. According to Lemma 2 presented in Appendix A, the orthogonal projection operator is idempotent and self-adjoint, then
⟨

z − PMj
(z), PMj

(z) − z∗
⟩

=
⟨

z − z∗, PMj
(z) − z∗

⟩

+
⟨

z∗ − PMj
(z), PMj

(z) − z∗
⟩

=
⟨

z, PMj
(z)

⟩

− ⟨z, z∗⟩ +
⟨

z∗, PMj
(z)

⟩

−
⟨

PMj
(z), PMj

(z)
⟩

=
⟨

z∗, PMj
(z)

⟩

− ⟨z, z∗⟩ =
⟨

PMj
(z∗) , z

⟩

− ⟨z, z∗⟩ = 0, (27)

which yields

‖

‖

‖

z − PMj
(z)‖‖

‖

2
= ‖z − z∗‖2 − ‖

‖

‖

PMj
(z) − z∗‖‖

‖

2
− 2

⟨

z − PMj
(z) , PMj

(z) − z∗
⟩

= ‖z − z∗‖2 − ‖

‖

‖

PMj
(z) − z∗‖‖

‖

2
. (28)

Reformulating (28) by adding the trial number k yields

‖

‖

zk − z∗‖‖
2 − ‖

‖

zk+1 − z∗‖‖
2 = ‖

‖

zk − zk+1‖‖
2, (29)

then
‖

‖

zm − z∗‖‖
2 − ‖

‖

zn − z∗‖‖
2 =

n−1
∑

k=m

‖

‖

zk+1 − zk‖‖
2, (30)

for n > m ≥ 1. When m is odd and n is even, introduce a scalar � to establish the relationship between zm and zn, then

zn = zm−1 + �
(

zm+1 − zm−1
)

, n > m ≥ 2. (31)

Note that ‖
‖

zk − z∗‖‖
2 monotonically decreases as trial k increases by (29), so zn ∈MJ+1 should be a point on the line segment

with endpoints zm+1 and z∗ in the Hilbert spaceH , where zm+1 ∈MJ+1. Then,

‖

‖

zn − zm−1‖‖
2 = �2‖

‖

zm+1 − zm−1‖‖
2 ≥ ‖

‖

zm+1 − zm−1‖‖
2, (32)

which yields � ≥ 1. On the other hand, when ‖
‖

zn − zm−1‖‖
2 converges to 0, it follows that

⟨zn − zm, zm−1 − zm⟩ = 0, (33)

and substituting zn with (31) yields

� = −
‖

‖

zm − zm−1‖‖
2

⟨

zm+1 − zm−1, zm−1 − zm
⟩ =

‖

‖

zm − zm−1‖‖
2

⟨

zm+1 − zm−1, zm − zm+1 + zm+1 − zm−1
⟩ =

‖

‖

zm − zm−1‖‖
2

‖

‖

zm+1 − zm−1‖‖
2
, (34)

since ⟨zm+1 − zm−1, zm − zm+1
⟩

= 0, which has similar proof with (27). Then, it follows that

1 ≤ � ≤
‖

‖

zm − zm−1‖‖
2

‖

‖

zm+1 − zm−1‖‖
2
. (35)
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Moreover, reformulating ⟨zm − zn, z∗ − zn⟩ yields

⟨zm − zn, z∗ − zn⟩ =
⟨(

zm − zm+1
)

+
(

zm+1 − zn
)

, z∗ − zm−1 − �
(

zm+1 − zm−1
)⟩

=
⟨

zm − zm+1, (1 − �)
(

z∗ − zm−1
)⟩

+
⟨

zm − zm+1, �
(

z∗ − zm+1
)⟩

+
⟨

(1 − �)
(

zm+1 − zm−1
)

,
(

z∗ − zm−1
)

− �
(

zm+1 − zm−1
)⟩

=
⟨

zm − zm−1 + zm−1, (1 − �)
(

z∗ − zm−1
)⟩

− (1 − �)
⟨

zm+1, z
∗ − zm−1

⟩

+ (1 − �)
⟨

zm+1, z
∗ − zm−1

⟩

− (1 − �) ⟨zm−1, z∗ − zm−1⟩ − (1 − �) � ‖‖zm+1 − zm−1‖‖
2

= (1 − �)
(

⟨zm − zm−1, z∗ − zm−1⟩ − � ‖‖zm+1 − zm−1‖‖
2
)

,

(36)

by ⟨zm − zm+1, zm+1 − z∗
⟩

= 0 and ⟨zm − zm−1, zm − z∗⟩ = 0.
Except for � = 1, substituting � with ‖

zm−zm−1‖
2

‖
zm+1−zm−1‖

2 also yields ⟨zm − zn, z∗ − zn⟩ = 0, because in (36), there exists

⟨zm − zm−1, z∗ − zm−1⟩ − � ‖‖zm+1 − zm−1‖‖
2 = ⟨zm − zm−1, z∗ − zm−1⟩ − ⟨zm − zm−1, zm − zm−1⟩

= ⟨zm − zm−1, z∗ − zm⟩ = 0. (37)

Note that (36) is eventually transformed into a quadratic function with respect to �with a positive quadratic coefficient, therefore
⟨zm − zn, z∗ − zn⟩ ≤ 0 by (35) for n > m ≥ 2. For n > m = 1, the utilization of z2, z1 and P −1MJ+1

(

z1
) yields the same result,

where P −1MJ+1

(

z1
), belonging toMJ+1, represents the original orthogonal projection point of z1.

When m is even and n is odd, by employing two auxiliary points, i.e., PMjn

(

zm
) and P −1Mjn

(

zm
), the same result with the case

where n is even and m is odd can be established. When both m and n are odd or even, we can also achieve the result (26) since
‖

‖

zk − z∗‖‖
2 monotonically decreases as the trial number k increases, even though the two affine subspaces may not be same

when both m and n are odd. Finally, the proof is complete.

According to Theorem 1, the convergence result can now be established in the next theorem.

Theorem 2. The sequence {zk
}

k≥0 converges in norm to the orthogonal projection of z0 ontoM ∩MJ+1 under the projection
order (25).

Proof. It follows from the result (26) in Theorem 1 that

‖

‖

zn − zm‖‖
2 = ‖

‖

zm − z∗‖‖
2 − ‖

‖

zn − z∗‖‖
2 + 2 ⟨zm − zn, z∗ − zn⟩ ≤ ‖

‖

zm − z∗‖‖
2 − ‖

‖

zn − z∗‖‖
2, n > m ≥ 1, (38)

then combined with (30), it follows that

‖

‖

zn − zm‖‖
2 ≤

n−1
∑

k=m

‖

‖

zk+1 − zk‖‖
2, n > m ≥ 1. (39)
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Recall that (39) is the condition ensuring that the sequence {zk
}

k≥0 converges in norm with S = 1 as Lemma 1 states, while
the difference lies in that allMj , j ∈ {1, 2,… , J}, are affine subspaces for Theorem 2.
Since ‖

‖

zk − z∗‖‖
2 monotonically decreases as k increases and bounded below by 0 according to (29), so there exists a constant


 > 0 such that lim
k→∞

‖

‖

zk − z∗‖‖
2 = 
 . Moreover, given a constant � > 0, there exists k ∈ ℕ such that 0 ≤ ‖

‖

zm − z∗‖‖
2 − 
 < �∕2

whenever m ≥ k and it also works when it comes to n ≥ k. Then, it follows from (38) that

‖

‖

zn − zm‖‖
2 ≤ ‖

‖

zm − z∗‖‖
2 − 
 + 
 − ‖

‖

zn − z∗‖‖
2 < �∕2 + �∕2 = �, (40)

which yields that {zk
}

k≥0 converges in norm to a point according to the completeness of Hilbert spaces. For brevity, the
convergent point is denoted by z∞.
Note thatM1 appears infinitely many times as stated in Assumption 2, so there is a convergent sub-sequence {zΔk(1)

}

k≥0 such
that each zΔk(1) ∈M1. Therefore, there exists

⟨

zΔk(1), z
′⟩ = 0 for every point z′ ∈M⊥

1 , which gives rise to
⟨

z∞, z
′⟩ =

⟨

lim
k→∞

zΔk(J+1), z
′
⟩

= lim
k→∞

⟨

zΔk(J+1), z
′⟩ = 0, (41)

and hence z∞ ∈M1. SinceMJ+1 also appears infinitely many times under the designed projection order (25) with � (s, J + 1) =
2, so z∞ ∈MJ+1. Then, z∞ = (0, u∞) ∈M1 ∩MJ+1, where u∞ is the convergent control input and

e = 0 = F1
(

yd − Gu∞ − d
)

=
(

yd − Gu∞ − d
)

, (42)

since F1 = IN by (17). When it comes toMj , it follows that

e = Fj
(

yd − Gu∞ − d
)

= 0, (43)

for each j ∈ {2, 3,… , J}. Then, z∞ = (0, u∞) ∈Mj for every j ∈ {2, 3,… , J} and hence z∞ ∈M∩MJ+1 sinceM =
⋂J
1 Mj .

Furthermore, considering the following subspaces to project on in the Hilbert spaceH yields zk −PMjk+1

(

zk
)

∈M⊥
jk+1

. Note
also that z∗ ∈M ∩MJ+1 and thus z∗ ∈Mjk+1 , then

⟨

zk − zk+1, z∗
⟩

=
⟨

zk − PMjk+1

(

zk
)

, z∗
⟩

= 0, (44)

which yields
⟨z0 − z∞, z∗⟩ = lim

k→∞

⟨

z0 − zk+1, z∗
⟩

= lim
k→∞

(⟨z0 − z1, z∗⟩ +⋯ +
⟨

zk − zk+1, z∗
⟩

) = 0. (45)

Hence, z0 − z∞ ∈
(

M ∩MJ+1
)⊥. According to the projection theorem in Hilbert spaces, z∞ is the orthogonal projection of z0

ontoM ∩MJ+1 by z0 = z∞ +
(

z0 − z∞
) and the proof is complete.



Zhuang ET AL 13

The difference between z∗ and z∞ lies in that, z∗ can be any point that exists inM ∩MJ+1 according to Assumption 1, while
z∞ is the convergent point of the sequence {zk

}

k≥0 under the designed projection order (25). Also, z∞ belongs toM ∩MJ+1

by Theorem 2. Next, the result of Theorem 2 is used to obtain an ILC law design.

3.2 Optimal ILC Design and Convergence Analysis

To design an optimal ILC update law, a cost function should be designed for each trial to reduce the tracking error or other
targets. According to the alternating projection interpretation, the distance ‖

‖

zk+1 − zk‖‖ in Hilbert spaceH is going to be reduced.
Therefore, according to the inner product and associated induced norm (19) and (20), the cost function can be taken as

J
(

uk+1
)

= ‖

‖

zk+1 − zk‖‖
2 = ‖

‖

ek+1‖‖
2
Q + ‖

‖

uk+1 − uk‖‖
2
R . (46)

Moreover, the norm optimal ILC update law as used in the work of Amann et al32 can be employed to deal with (46), i.e.

uk+1 = uk + G∗ek+1, (47)

where G∗ denotes the adjoint operator of G in Hilbert space and I = IN ⊗ Im.

Remark 3. Due to the property of adjoint operator, the form of norm optimal ILC update law (47) is not causal, and is not
implementable. It will be shown later in this paper that (47) can be reformulated to enable implementation as a simple feedforward
or causal feedback plus feedforward structure.

The next result establishes that the ILC update law (47) solves the problem given in Definition 1.

Proposition 1. The input sequence {uk
}

k≥0 generated by update law (47) iteratively solves the ILC problem with non-uniform
trial lengths given in Definition 1.

Proof. With the multiple affine subspaces defined in (15) and (16), the ILC problem with non-uniform trial lengths is
transformed into the projection problem onto Mjk , where alternating sequence {

Mjk

}

k≥1 takes values in the order of
{

Mj ,MJ+1,Mj ,MJ+1,…
} under (25). In this sense, let z̃ = (ẽ, ũ) ∈ Mj where j ∈ {1, 2,… , J} and z = (0, u) ∈ MJ+1.

Hence, for j ∈ {1, 2,… , J},

PMj
(z) = argmin

ẑ∈Mj

‖ẑ − z‖2H = argmin
(ê,û)∈Mj

‖(ê, û) − (0, u)‖2{Q,R}

= argmin
(ê,û)∈Mj

{

‖ê − 0‖2Q + ‖û − u‖2R
}

= argmin
û

{

‖ê‖2Q + ‖û − u‖2R
}

,
(48)

which is an optimization problem and is solved by update law (47). Similarly,

PMJ+1
(z̃) = argmin

ẑ∈MJ+1

‖ẑ − z̃‖2H = argmin
(0,û)∈MJ+1

‖(0, û) − (ẽ, ũ)‖2{Q,R} = argmin
(0,û)∈MJ+1

{

‖0 − ẽ‖2Q + ‖û − ũ‖2R
}

, (49)
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whose solution is û = ũ when (0, û) ∈MJ+1. In this sense, using (47) to solve (48) and (49) repeatedly means alternating
projections under the designed order (25). Therefore, the resulting sequence {uk

}

k≥0 generated by update law (47) solves the
ILC problem in Definition 1.

The convergence of the new design will now be analyzed with the alternating projections of Theorem 2.
According to Assumption 1, there exists a point z∗ belonging to the intersection region of the multiple subspaces Mj and

MJ+1, which means systems with non-uniform trial lengths can eventually operate with zero tracking error. This convergence
property is established by the following theorem.

Theorem 3. Given system (1) with initial input u0, if Assumption 1 holds, application of the optimal ILC update law (47) results
in

lim
k→∞

uk = u∞, lim
k→∞

‖

‖

ek‖‖ = 0. (50)

Proof. Since the sequence {zk
}

k≥0 converges in norm to z∞ =
(

0, u∞
) under the projection order of (25) by Theorem 2, the

distance between each two projections converges to 0. Hence, given the cost function (46), it follows that

lim
k→∞

{

‖

‖

0 − ek‖‖
2
Q + ‖

‖

u∞ − uk‖‖
2
R

}

= 0, (51)

which establishes (50) by Assumption 1.

Remark 4. Although the norm optimal ILC update law (47) is applied, monotonic convergence property of the modified tracking
error in norm cannot be achieved in general because the actual lengths are not identical. However, when k is even, there exists
⟨

zk − zk+2, zk+2 − zk+1
⟩

= 0, which can be proved by (27) similarly, and it follows that

‖

‖

zk − zk+1‖‖
2 = ‖

‖

zk − zk+2‖‖
2 + ‖

‖

zk+2 − zk+1‖‖
2 + 2

⟨

zk − zk+2, zk+2 − zk+1
⟩

≥ ‖

‖

zk+1 − zk+2‖‖
2, (52)

which shows that monotonic performance under (25) in Theorem 2 is possible. When k is odd, however, (52) does not always
hold because both zk and zk+2 are not always located in the same affine subspace defined in (15), i.e., each two actual trial
lengths of the ILC process are not always identical.

In Theorem 3, the convergence of the ILC design for systems with non-uniform trial lengths is proved under the alternating
projection framework. Next, it is shown that the ILC law can be reformulated to allow implementation.

3.3 Causal Feedback Plus Feedforward Implementation

The following steps compose a causal implementation procedure for the ILC law considered in this paper.
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Step 1 Input the system dynamics (1), initial input u0, positive definite matricesQ and R and stopping criterion value � > 0, and
set k = 0;

Step 2 Calculate the state feedback matrices K (t) for t ∈ [0, N − 1] using the Riccati equation

K (t) = ATK (t + 1)
[

In + BR−1BTK(t + 1)
]−1A + CTQC, (53)

with the boundary condition K (N) = 0;

Step 3 Set k = k + 1, then calculate feedforward terms �k+1 (t) for t ∈ [0, N − 1] by the difference equation

�k+1 (t) =
[

In +K (t)BR−1BT
]−1 [AT �k+1 (t + 1) + CTQek(t + 1)

]

, (54)

with the boundary condition �k+1 (N) = 0;

Step 4 Calculate the control input uk+1(t) until t = Nk+1 − 1 by

uk+1 (t) = uk (t) + R−1BT pk+1 (t) , (55)

with
pk+1(t) = −K(t)

[

In + BR−1BTK(t)
]−1 A ×

[

xk+1 (t) − xk (t)
]

+ �k+1 (t) , (56)

where pk+1 (t) is a defined costate vector;

Step 5 Set uk+1 (t) = uk (t) for t ∈
[

Nk+1, N − 1
];

Step 6 If ‖
‖

ek+1‖‖ < �, finish the procedure, otherwise return to Step 3.

Remark 5. Steps 1-6 above compose a practical implementation for systems with non-uniform trial lengths, where there exists an
extended setting on the input signal when the current trial is ended prematurely. In this case, this procedure can handle systems
with non-uniform trial lengths for some complex situations in practice by adjusting to practical requirements. For instance, when
t ∈

[

Nk+1, N − 1
], set uk+1 (t) as some actual achievable values for safety reasons or just zero to avoid wasted computational

effort.

The next result formally establishes this implementation procedure.

Proposition 2. The norm optimal ILC update law (47) for systems with non-uniform trial lengths can be implemented using
the feedback plus feedforward structure given as Steps 1-6.

Proof. See Appendix B for the details.
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4 EXTENSION TO INPUT CONSTRAINTS

When considering constraints on the input signal,MJ+1 may not be a closed subspace but still a closed set. Furthermore, the
constrained set is usually convex in practice. Therefore, the convex constraint on the input signal can be embedded into the
tracking objective, i.e.

Mj =
{

(e, u) ∈ H ∶ e = Fj
(

yd − y
)

, y = Gu + d
} (57)

MJ+1 = {(e, u) ∈ H ∶ e = 0, u ∈ Ω} , (58)

where Ω is a closed convex set that represents the input constraints and alsoMj ∈
{

M1,M2,… ,MJ
}.

Remark 6. The reason why the input constraints is embedded intoMJ+1, instead ofMj for j ∈ {1, 2,… , J}, is that PMJ+1
(z̃)

is equivalent to PΩ (ũ) by (49) when finding the projection point onMJ+1 with input constraints. On the contrary, if embedding
the input constraints intoMj , a complex constrained optimization problem is to be solved. See the work of Chu and Owens28

for a detailed discussion.

Note that when applying alternating projections between (57) and (58), the projection sequence can still be proved to converge
in norm if Assumption 1 still holds. Nevertheless, the convergent point may not be the orthogonal projection of initial point
onto the intersection region. Although faster convergence speed occurs under convergence to the projection of initial point, this
property is still ensured when the convergent point belongs to the region. In this case, a theorem for ILC design problem with
non-uniform trial lengths under input constraints is established next.

Theorem 4. IfMJ+1 is a closed convex set and Assumption 1 still holds, the sequence {zk
}

k≥0 converges in norm to a point
that belongs toM ∩MJ+1 under the projection order of (25).

Proof. Due to the convexity ofMJ+1, there exists
⟨

zk − PMJ+1

(

zk
)

, PMJ+1

(

zk
)

− z
⟩

≥ 0, (59)

for any z ∈MJ+1. In particular, when k is even, there exists ⟨zk+1 − zk+2, zk+2 − zk
⟩

≥ 0, and hence

‖

‖

zk+1 − zk‖‖
2 = ‖

‖

zk+1 − zk+2‖‖
2 + ‖

‖

zk+2 − zk‖‖
2 + 2

⟨

zk+1 − zk+2, zk+2 − zk
⟩

≥ ‖

‖

zk+1 − zk+2‖‖
2. (60)

When k is odd, (60) may not always hold because it comes to the affine subspaces under the projection order (25), i.e., Mj ,
instead of just convex sets. Nonetheless, it similarly follows from (27) that

⟨

zk − PMj

(

zk
)

, PMj

(

zk
)

− z′
⟩

= 0, (61)
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for any z′ ∈ Mj , where j ∈ {1, 2,… , J}. Therefore, for z∗ ∈ M ∩MJ+1 and all k, there exists ⟨zk − zk+1, zk+1 − z∗
⟩

≥ 0,
which yields

‖

‖

zk − z∗‖‖
2 = ‖

‖

zk − zk+1‖‖
2 + ‖

‖

zk+1 − z∗‖‖
2 + 2

⟨

zk − zk+1, zk+1 − z∗
⟩

≥ ‖

‖

zk − zk+1‖‖
2 + ‖

‖

zk+1 − z∗‖‖
2. (62)

Furthermore,
‖

‖

z0 − z∗‖‖
2 ≥ ‖

‖

zk − z∗‖‖
2 +

k−1
∑

i=0

‖

‖

zi − zi+1‖‖
2, (63)

and when k→∞,
∞ > ‖

‖

z0 − z∗‖‖
2 ≥

∞
∑

i=0

‖

‖

zi − zi+1‖‖
2. (64)

Therefore, when k→∞, it follows that
inf

z∈Mjk+1

‖

‖

zk − z‖‖ → 0, (65)

and hence the sequence {zk
}

k≥0 converges in norm to a point belonging toM ∩MJ+1 in the defined finite-dimensional Hilbert
spaceH .

Using Theorem 4, an optimal ILC update law for systems with non-uniform trial lengths under input constraints is next
designed and it consists of two parts. The first part is to find the optimal solution in the absence of the input constraints, i.e.,

ũk+1 = uk + G∗ek+1, (66)

which is consistent with (47) and can be implemented using Steps 1-6 given in the previous section. The second part is to project
the optimal solution onto the constraint set Ω, i.e.,

uk+1 = argminu∈Ω

{

‖

‖

u − ũk+1‖‖
2
R

}

, (67)

which could be implemented by setting constraints on uk (t) in Steps 1-6.
The next result shows that the ILC problem in Definition 1 can be solved by (66) and (67) in the presence of input constraints.

Proposition 3. The input sequence {uk
}

k≥0 generated by update law (66) and (67) iteratively solves the ILC problem with
non-uniform trial lengths in Definition 1 under input constraints.

Proof. With the multiple closed sets defined in (57) and (58), the ILC problem can be still transformed into the projection
problem ontoMjk with the order of

{

Mj ,MJ+1,Mj ,MJ+1,…
}. Similar to the proof of Proposition 1, it follows that

PMj
(z) = argmin

û

{

‖ê‖2Q + ‖û − u‖2R
}

, (68)
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for j ∈ {1, 2,… , J}, which can be solved by (66). Projecting onMJ+1 gives

PMJ+1
(z̃) = argmin

(0,û)∈MJ+1

{

‖0 − ẽ‖2Q + ‖û − ũ‖2R
}

= argmin
û∈Ω

{

‖û − ũ‖2R
}

, (69)

which can be solved by (67). Then, the sequence {uk
}

k≥0 generated by the update law (66) and (67) solves the ILC problem in
Definition 1 in this case.

AlthoughMJ+1 becomes a closed convex set for the problem considered, the convergence of alternating projections, in the
order of (25), can be still guaranteed under Assumption 1. Hence the convergence property of ILC update law (66) and (67) can
be established as the following theorem.

Theorem 5. In the presence of input constraints, consider a system described by (1) with initial input u0 ∈ Ω. If Assumption 1
still holds and both optimal ILC update law (66) and (67) are applied, then

lim
k→∞

uk = u∗, lim
k→∞

‖

‖

ek‖‖ = 0. (70)

Proof. By Theorem 4 and Proposition 3, althoughMJ+1 is a closed convex set, the sequence {zk
}

k≥0 converges in norm to a
point that belongs to M ∩MJ+1 when applying the ILC update law (66) and (67). Therefore, the distance between each two
projections converges to 0, and hence

lim
k→∞

{

‖

‖

0 − ek‖‖
2
Q + ‖

‖

u∗ − uk‖‖
2
R

}

= 0. (71)

By Assumption 1, the convergence (70) is established.

In the presence of input constraints, the specific monotonic performance of Remark 4 for the unconstrained case still exists.
Next, a numerical case study is given to illustrate the new results in this paper.

5 NUMERICAL CASE STUDY

In this section, a coarse-fine stage is employed to verify the effectiveness of the new design. The coarse-fine stage uses multiple
actuators, where coarse and fine actuators are respectively in charge of long and short range positioning. High-precision posi-
tioning is usually required in many of its practical applications, including some that perform repeating tasks. Therefore, ILC is
usually applied to such systems for high tracking performance.33 However, varying trial lengths may happen during the itera-
tive learning process because of some unexpected obstacles in the path or other kinds of output constraints, which gives rise to
the non-uniform trial length case. In this simulation, the ILC control problem with non-uniform trial lengths in the control of a
coarse-fine stage is considered.
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5.1 Modeling and Design

The employed coarse-fine stage consists of two parts33: the coarse stage employs a rotary motor to drive a linear ball-screw
stage, and the fine stage is driven by a voice coil actuator. Both outputs of the two stages are the position relative to the ground.
Denote the superscript (⋅) as the components of a vector, then inputs and outputs of the coarse and fine stages can be denoted by
u(1), y(1), u(2) and y(2), respectively. The transfer functions from u(1) to y(1), u(1) to y(2), u(2) to y(1) and u(2) to y(2) are as follows:

P11 (s) =
m2s2 + cs + k

D (s)
, P12 (s) =

m2s2

D (s)
, P21 (s) =

cs + k
D (s)

, P22 (s) =
m1s2 + bs
D (s)

,

D (s) = m1m2s4 +
(

bm2 + cm1 + cm2
)

s3 +
(

bc + km1 + km2
)

s2 + bks, (72)

where m1 and m2 respectively denote the masses of the coarse and fine stages, k and c respectively denote the stiffness and
viscous damping coefficient between the two stages, and b denotes the coefficient of viscous damping between the ground and
the coarse stage. For more modeling details, please refer to the work of Yoon et al.33 The model parameters are as follows:

m1 = 39.3 kg, m2 = 0.5 kg, b = 60 Ns∕m, k = 105 N∕m, c = 45 Ns∕m. (73)

For the non-uniform trial length situation, set the maximum and minimum tracking time of the coarse-fine stage as 2s and
1.8s respectively, which means that the actual length Nk varies from Nm = 180 to N = 200 with sample time Ts = 0.01s.
Note that the new design requires no settings on the distribution ofNk, and a discrete uniform distribution is employed here for
simplicity. Without loss of generality, set xk (0) = [0 ⋯ 0

⏟⏟⏟
n

]T and u0 (t) = [0, 0]T , for t ∈ [0, N − 1]. The desired trajectory of
the positioning is taken as

y(1)d (t) = y(2)d (t) = 1.6t2
[

1 + cos
(�t
4
− �

)]

, (74)

which means the outputs of both coarse and fine stages follow the same paths and the initial positions of the two stages are
identical.

5.2 Simulation Results

The simulation is implemented in MATLAB R2020a. The weighting matrices are firstly selected as Q = 10000Im and R =

0.001Il , respectively. The design is for a total of 20 trials, and the 2nd, 4th and 20th output profiles are shown in Fig. 1. The
output of 20th trial can track the desired trajectory for 1 ≤ t ≤ N20 and the output of the first few trials are also plotted with
their actual trial lengths in Fig. 1. In particular, the outputs of the 4th trial have worse tracking performance during the interval
[

Nk, N
] and this also possibly occurs at the 20th trial especially when the number of desired length occurs less, which coincides

with comments in Remark 2. The variation of the trial lengths along the trial is given in Fig. 2.
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FIGURE 1 The 2nd, 4th and 20th output profiles under the new ILC design with the desired trajectory.
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FIGURE 2 The variation of the actual trial lengths.

The tracking errors in 2-norm along the trial are plotted in Fig. 3, which confirms that the tracking errors can converge
asymptotically to zero. For comparisons, the ILC method based on an iterative average operator14 is employed with almost best
tuned learning gain 5Im, whose tracking errors in 2-norm are also plotted in Fig. 3. Moreover, the P-type ILC method with
Arimoto-like gain17 is also simulated, whose learning parameters are tuned to 20Im. The 2-norm of tracking errors in logarithmic
coordinates is also embedded in Fig. 3. It is shown that the new ILC design converges faster than these two classic methods. The
cost function of the new ILC design defined in (46) is given in Fig. 4. The monotonic convergence cannot be obtained because
of the non-uniform trial length case, which is consistent with the discussion in Remark 4.
Different choices of the weighting matrices Q and R can result in different convergence performance of the new ILC design.

Fig. 5 gives the results of different Q and R, where increasing Q or decreasing R will result in faster convergence speed. From
an intuitive point of view, bothQ and R can decide the angle between sets defined in (15) and (16) in Hilbert spaceH . Changes



Zhuang ET AL 21

0 2 4 6 8 10 12 14 16 18 20

Trial, k

0

5

10

15

20

25

30

35

40

45

50

||
e

k
||

2

the new ILC design

averaging operator ILC

P-type ILC with Arimoto-like gain

0 5 10 15 20

100

FIGURE 3 The tracking errors in 2-norm of the new ILC design and classic ILC methods along the trial.

0 2 4 6 8 10 12 14 16 18 20

Trial, k

0

0.5

1

1.5

2

2.5

C
o
s
t 
fu

n
c
ti
o
n
, 
J

10
7

Q=10000I
Q

 and R=0.001I
R

0 5 10 15 20
104

106

FIGURE 4 The cost function of the new ILC design along the trial.

of the angle will fundamentally affect the results of the convergent sequence {zk
}

k≥0 and eventually affect the performance of
the new ILC design.
In addition, to check the constraint handling capability, the new ILC design is applied under input constraints. Fig. 6 and Fig.

7 respectively present the 2nd, 4th and 20th output and input profiles with the input constraint [−3000N, 3000N]. The actual
output can still track the desired trajectory under input constraints after certain trials. The cost function of the new ILC design
under the saturation constraint is shown in Fig. 8. It is still convergent and there is less fluctuation along the trials.
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FIGURE 6 The 2nd, 4th and 20th output profiles under the new ILC design with input constraints.

6 CONCLUSION AND FUTUREWORK

In this paper, a novel alternating projection framework has been developed for ILC design with non-uniform trial lengths. The
causal feedback plus feedforward structure of the uniform norm optimal ILCwasmodified to give an implementation for discrete-
time systems with non-uniform trial lengths. Furthermore, it has been shown that alternating projections for analysis extends to
allow input constraints without the need to solve complex optimization problems. Moreover, the convergence properties of the
new ILC design were analyzed theoretically. Finally, a numerical simulation based on the model of a coarse-fine stage has been
given to demonstrate the effectiveness of the new design for discrete-time systems, including a comparison with two alternative
designs, namely, the iterative average ILC and P-type ILC with Arimoto-like gain.
For future work, the ILC design for continuous-time systems with non-uniform trial lengths, where there exists infinite number

of sets, will be studied. Furthermore, the new design will be implemented in practice to determine its experimental performance.
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FIGURE 7 The 2nd, 4th and 20th input profiles of the new ILC design with input constraints.
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FIGURE 8 The cost function of the new ILC design under input constraints.
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APPENDIX

A PROOF OF LEMMA 1

Before proving Lemma 1, a technical lemma is firstly introduced.

Lemma 2. The projection operator P is idempotent and self-adjoint.

Proof. According to the projection theorem in Hilbert spaces, given a Hilbert space H and a subspace Z ⊂ H , each z ∈ H

can be written uniquely as z = z1 + z2, where z1 ∈ Z and z2 ∈ Z⊥. Then

P 2Z (z) = PZ
(

PZ
(

z1 + z2
))

= PZ
(

z1
)

= z1 = PZ (z) , (A1)

for the proof of idempotency. Given another z′ ∈ H , there exist unique z′1 ∈ Z and z′2 ∈ Z⊥, then
⟨

PZ (z) , z′
⟩

=
⟨

z1, z
′
1 + z

′
2
⟩

=
⟨

z1 + z2, z′1
⟩

=
⟨

z, PZ
(

z′
)⟩

, (A2)

for the proof of self-adjointness.

Proof of Lemma 1. According to Lemma 2, it follows that
⟨

PMj
(z), z − PMj

(z)
⟩

=
⟨

PMj
(z), z

⟩

−
⟨

PMj
(z), PMj

(z)
⟩

=
⟨

PMj
(z) , z

⟩

−
⟨

PMj

(

PMj
(z)

)

, z
⟩

= 0, (A3)

which yields z − PMj
(z)⊥PMj

(z) and zk − zk+1⊥zk+1 by adding the trial number k. Then, it follows from (A3) that ‖
‖

zk‖‖
2 =

‖

‖

zk+1‖‖
2 + ‖

‖

zk − zk+1‖‖
2, and doing recursion yields

‖

‖

zm‖‖
2 = ‖

‖

zn‖‖
2 +

n−1
∑

k=m

‖

‖

zk+1 − zk‖‖
2. (A4)

Substituting (A4) into the given condition (23) yields ‖
‖

zn − zm‖‖
2 ≤ S

(

‖

‖

zm‖‖
2 − ‖

‖

zn‖‖
2
)

. Also, it follows from (A4) that ‖
‖

zk‖‖
2

is monotonically decreasing and bounded below by 0, so there exists a constant � ≥ 0 such that lim
k→∞

‖

‖

zk‖‖
2 = �. Furthermore,

given " > 0, there exists k ∈ ℕ such that 0 ≤ ‖

‖

zn‖‖
2 − � < "∕2S whenever n ≥ k. Therefore,

‖

‖

zn − zm‖‖
2 ≤ S

(

‖

‖

zm‖‖
2 − � + � − ‖

‖

zn‖‖
2
)

< S ⋅ "∕2S + S ⋅ "∕2S = ", (A5)

and since the sequence {zk
}

k≥0 is a Cauchy sequence in Hilbert spaces,
{

zk
}

k≥0 converges in norm to a point, which is denoted
by z∞.
Moreover, since {jk

}

k≥0 takes every value in {1, 2,… , J} infinitely many times, so there is a sub-sequence {zΔk(i)
}

k≥0 such
that each zΔk(i) ∈Mj . Then, there exists

⟨

zΔk(i), z
′⟩ = 0 for every point z′ ∈M⊥

j , which gives rise to
⟨

z∞, z
′⟩ =

⟨

lim
k→∞

zΔk(i), z
′
⟩

= lim
k→∞

⟨

zΔk(i), z
′⟩ = 0. (A6)
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Therefore, there exists z∞ ∈Mj for each j ∈ {1, 2,… , J}, and hence we have z∞ ∈M =
⋂J
1 Mj .

Finally, z∞ = PM
(

z0
) is going to be obtained to finish the proof. To show that z∞ is the orthogonal projection of z0 ontoM ,

it suffices to show that z0 − z∞ ∈M⊥, because it will give rise to

z0 =

∈M
⏞⏞⏞
z∞ +

∈M⊥

⏞⏞⏞
z0 − z∞, (A7)

by the projection theorem in Hilbert spaces. Let z ∈M , and hence z ∈Mjk+1 . Since the projection operator is self-adjoint and
idempotent, it can also be proved that zk − PMjk+1

(

zk
)

∈M⊥
jk+1

, then
⟨

zk − zk+1, z
⟩

=
⟨

zk − PMjk+1

(

zk
)

, z
⟩

= 0, (A8)

which yields

⟨z0 − z∞, z⟩ = lim
k→∞

⟨z0 − zk, z⟩ = lim
k→∞

(

⟨z0 − z1, z⟩ + ⟨z1 − z2, z⟩ + ⋯ + ⟨zk−1 − zk, z⟩
)

= 0. (A9)

Note that z ∈M , so we have z0 − z∞ ∈M⊥, and the proof is complete.

B PROOF OF PROPOSITION 2

By the definition of the adjoint, it follows that

⟨e, Gu⟩Q = eTQGR−1Ru =
⟨

R−1GTQe, u
⟩

R = ⟨G∗e, u⟩R, (B10)

where R = diag {R,R,… , R} ∈ ℝl⋅N×l⋅N and Q = diag {Q,Q… , Q} ∈ ℝm⋅N×m⋅N. The update law (47) can now be written
as

uk+1 = uk + R−1GTQek+1, (B11)

i.e.
uk+1 (t) = uk (t) +

N
∑

i=t+1
R−1BT

(

AT
)i−t−1CTQek+1 (i). (B12)

Then, set pk+1 (t) as
pk+1 (t) =

N
∑

i=t+1

(

AT
)i−t−1CTQek+1 (i), (B13)

which yields (55), and hence for t ∈ [0, N − 1], pk+1 (t) can be computed by the recursion relation

pk+1 (t) = AT pk+1 (t + 1) + CTQek+1 (t + 1) , (B14)
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with the boundary condition pk+1 (N) = 0. As in the work of Amann et al,32 assume that the state of system (1) is fully known,
then there exists a causal implementation with respect to pk+1 (t) in the form (56). It now follows from (1), (56) and (B14) that

xk+1 (t + 1) − xk (t + 1) = A
[

xk+1 (t) − xk (t)
]

+ BR−1BT pk+1 (t)

=
[

In + BR−1BTK (t)
]−1A

[

xk+1 (t) − xk (t)
]

+ BR−1BT �k+1 (t) . (B15)

Furthermore, to eliminate pk+1 (t), substituting (56) and (B15) to (B14) yields

f1 [X,K(t), K(t + 1)] ⋅
[

xk+1(t + 1) − xk(t + 1)
]

= f2
[

X,K(t + 1), �k+1(t), �k+1(t + 1), ek(t + 1)
]

, (B16)

where f1 (⋅) and f2 (⋅) are functions of their arguments and X =
{

A,B, C,Q,R−1
}. If both f1 (⋅) and f2 (⋅) are set equal to

0, (B16) holds independently of system state and it gives rise to the Riccati equation (53) and the difference equation (54),
respectively. Finally, according to pk+1 (N) = 0, if both K (N) and �k+1 (N) are also set equal to 0, (56) still holds independent
of system state when t = N .

References

1. Arimoto S, Kawamura S, Miyazaki F. Bettering operation of robots by learning. J Robot Syst. 1984; 1(2): 123-140.

2. Bristow DA, Tharayil M, Alleyne AG. A survey of iterative learning control: a learning-based method for high-performance
tracking control. IEEE Control Syst Mag. 2006; 26(3): 96-114.

3. Ahn HS, Chen Y, Moore KL. Iterative learning control: brief survey and categorization. IEEE Trans Syst Man Cybern Part

C. 2007; 37(6): 1099-1121.

4. Tao H, Zhou L, Hao S, Paszke W, Yang H. Output feedback based PD-type robust iterative learning control for uncertain
spatially interconnected systems. Int J Robust Nonlinear Control. 2021; 31(12): 5962-5983.

5. Bu X, Liang J, Hou Z, Chi R. Data-driven terminal iterative learning consensus for nonlinear multiagent systems with output
saturation. IEEE Trans Neural Netw Learn Syst. 2020; 32(5): 1963-1973.

6. Blanken L, Willems J, Koekebakker S, Oomen T. Design techniques for multivariable ILC: application to an industrial
flatbed printer. IFAC-PapersOnLine 2016; 49(21): 213-221.

7. Dekker LG, Marshall JA, Larsson J. Experiments in feedback linearized iterative learning-based path following for center-
articulated industrial vehicles. J Field Robot. 2019; 36(5): 955-972.



Zhuang ET AL 27

8. Hao S, Liu T, Rogers E. Extended state observer based indirect-type ILC for single-input single-output batch processes with
time- and batch-varying uncertainties. Automatica. 2020; 112: 108673.

9. Tao H, Paszke W, Rogers E, Yang H, Galkowski K. Iterative learning fault-tolerant control for differential time-delay batch
processes in finite frequency domains. J Process Control. 2017; 56: 112-128.

10. Freeman CT, Hughes AM, Burridge JH, Chappell PH, Lewin PL, Rogers E. Iterative learning control of FES applied to the
upper extremity after stroke. Control Eng Pract. 2009; 17(3): 368-381.

11. Hughes AM, Freeman CT, Burridge JH, Chappell PH, Lewin PL, Rogers E. Feasibility of iterative learning control mediated
by functional electrical stimulation for reaching after stroke. J Neurorehabil Neural Repair. 2009; 23(6): 559-568.

12. Seel T, Werner C, Raisch J, Schauer T. Iterative learning control of a drop foot neuroprosthesis - generating physiological
foot motion in paretic gait by automatic feedback control. Control Eng Pract. 2016; 48: 87-97.

13. Shi J, He X, Zhou D. Iterative learning control for nonlinear stochastic systems with variable pass length. J Franklin Inst.

2016; 353(15): 4016-4038.

14. Li X, Xu JX, Huang D. An iterative learning control approach for linear systems with randomly varying trial lengths. IEEE

Trans Autom Control. 2014; 59(7): 1954-1960.

15. Li X, Shen D. Two novel iterative learning control schemes for systems with randomly varying trial lengths. Syst Control

Lett. 2017; 107: 9-16.

16. Wei YS, Li XD. Robust iterative learning control for linear continuous systems with vector relative degree under varying
input trail lengths and random initial state shifts. Int J Robust Nonlinear Control. 2021; 31(2): 609-622.

17. Shen D, Zhang W, Wang Y. On almost sure and mean square convergence of P-type ILC under randomly varying iteration
lengths. Automatica. 2016; 63: 359-365.

18. Strijbosch N, Oomen T. Iterative learning control for intermittently sampled data: monotonic convergence, design, and
applications. Automatica. 2022; 139: 110171.

19. Meng D, Zhang J. Deterministic convergence for learning control systems over iteration-dependent tracking intervals. IEEE

Trans Neural Netw Learn Syst. 2018; 29(8): 3885-3892.

20. Seel T, Schauer T, Raisch J. Monotonic convergence of iterative learning control systems with variable pass length. Int J

Control. 2017; 90(3): 393-406.



28 Zhuang ET AL

21. Jin X. Iterative learning control for MIMO nonlinear systems with iteration-varying trial lengths using modified composite
energy function analysis. IEEE Trans Cybern. 2021; 51(12): 6080-6090.

22. Shen D, Xu J. Robust learning control for nonlinear systems with nonparametric uncertainties and nonuniform trial lengths.
Int J Robust Nonlinear Control. 2019; 29(5): 1302-1324.

23. Shen M, Wu X, Park JH, Yi Y, Sun Y. Iterative learning control of constrained systems with varying trial lengths under
alignment condition. IEEE Trans Neural Netw Learn Syst. 2021: 1-7.

24. Ketelhut M, Stemmler S, Gesenhues J, Hein M, Abel D. Iterative learning control of ventricular assist devices with variable
cycle durations. Control Eng Pract. 2019; 83: 33-44.

25. Liu C, Ruan X, Shen D, Jiang H. Optimal learning control scheme for discrete-time systems with nonuniform trials. IEEE

Trans Cybern. 2022: 1-12. doi: 10.1109/TCYB.2022.3166558

26. Wang L, Li X, Shen D. Sampled-data iterative learning control for continuous-time nonlinear systems with iteration-varying
lengths. Int J Robust Nonlinear Control. 2018; 28(8): 3073-3091.

27. Owens DH. Iterative Learning Control: An Optimization Paradigm. Springer London . 2016.

28. Chu B, Owens DH. Iterative learning control for constrained linear systems. Int J Control. 2010; 83(7): 1397-1413.

29. Chen Y, Chu B, Freeman CT. Generalized iterative learning control using successive projection: algorithm, convergence,
and experimental verification. IEEE Trans Control Syst Technol. 2020; 28(6): 2079-2091.

30. Zhuang Z, Tao H, Chen Y, Stojanovic V, Paszke W. Iterative learning control for repetitive tasks with randomly varying
trial lengths using successive projection. Int J Adapt Control Signal Process. 2022; 36(5): 1196-1215.

31. Sakai M. Strong convergence of infinite products of orthogonal projections in Hilbert space. Appl Anal. 1995; 59(1-4):
109-120.

32. Amann N, Owens D, Rogers E. Iterative learning control for discrete-time systems with exponential rate of convergence.
Control Theory Appl. 1996; 143(2): 217-224.

33. Yoon D, Ge X, Okwudire CE. Optimal inversion-based iterative learning control for overactuated systems. IEEE Trans

Control Syst Technol. 2020; 28(5): 1948-1955.

34. Liu S, Wang J, Shen D, O’Regan D. Iterative learning control for noninstantaneous impulsive fractional-order systems with
varying trial lengths. Int J Robust Nonlinear Control. 2018; 28(18): 6202-6238.

http://dx.doi.org/10.1109/TCYB.2022.3166558

	Alternating projection-based iterative learning control for discrete-time systems with non-uniform trial lengths
	Abstract
	Introduction
	Problem Formulation
	ILC Design using Alternating Projections
	Alternating Projections Interpretation
	Optimal ILC Design and Convergence Analysis
	Causal Feedback Plus Feedforward Implementation

	Extension to Input Constraints
	Numerical Case Study
	Modeling and Design
	Simulation Results

	Conclusion and Future Work
	Acknowledgments
	Appendix
	Proof of Lemma 1
	Proof of Proposition 2
	References


