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ABSTRACT
This paper applies iterative learning control to point-to-point tracking problems
with a general networked structure. The data is quantized and transmitted through
restricted communication channels from the controller to the actuator. Combining
a logarithmic quantizer with an encoding and decoding mechanism to quantize the
input signals reduces the influence of the quantization error. New design algorithms
are developed with conditions for convergence of the tracking error and an extension
to fault-tolerant performance under actuator failures. A numerical-based case study
demonstrates the application of the new designs, which includes a comparison with
another ILC law and the relative merits of the encoding and decoding schemes.
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1. Introduction

Iterative learning control (ILC) is a well-established research area for application to
systems that repeatedly complete the same finite-duration task. Each execution of
the task is commonly known as a trial, and the term trial length denotes the finite
duration of a trial. Once each trial is complete, all information generated is available
for use in computing the control input to be applied on the subsequent trial. In ILC
design, a reference trajectory is specified, and the objective is to construct a sequence
of trial inputs to improve performance from trial-to-trial sequentially.

In this paper, the nonnegative integer subscript k on variables denotes the trial
number, and 0 ≤ t ≤ α is the variable along a trial where α < ∞ denotes the trial
length (continuous or discrete dynamics along the trial are possible, where in the
latter case the number of samples along the trial is often used instead of the trial
length). Let yk(t) represent the output on trial k and uk(t) the input on this trial,
where these variables can be vector or scalar-valued. Suppose that yd(t) is the reference
trajectory. Then the error on trial k is ek(t) = yd(t) − yk(t) and the control design
problem is to construct a sequence of control inputs {uk}k such that {ek}k converges.
An appropriate norm measures convergence, and the objective is to force the output
sequence to converge with k to zero or to within a specified tolerance.

Once a trial is complete, the system resets to the starting location. All information
generated over 0 ≤ t ≤ α is available to construct the control input to be applied on
the subsequent trial. Hence in a common form of ILC law, the input for any trial is
constructed as the sum of that used on the previous trial plus a correction term that



can use information from the previous complete trial data. Since the first work, widely
credited to (Arimoto et al., 1984), ILC has been applied in many practical applications,
such as chemical batch processes (Tao et al., 2017), robotics (Chen et al., 2019; Jin,
2018b), and wafer stage design (Oomen and Rojas, 2017).

ILC in healthcare applications is a significant area of research. For example, peo-
ple with a stroke lose functionality down one side of their body and hence have an
impaired ability to complete daily tasks, such as reaching out to an object over a
tabletop. The recommended way, supported by the healthcare literature, is repeated
attempts at the task where the error at the end of one attempt acts as feedback on
improving performance on a subsequent attempt. The difficulty is that stroke patients
have impaired functionality of the affected limb, i.e., in the ability to move the limb,
and therefore do not benefit from the feedback.

One way of assisting the patient in recovering lost functionality is to apply functional
electrical stimulation, through patches, applied to the muscles(s) involved, where there
are known relationships that determine the response of the muscles(s) to the applied
stimulation, and if carefully controlled, beneficial movement results. In the first re-
search, the reaching out task, a 2D plane movement, the patents hand was connected
to a robot, and an optically based target trajectory was beamed down onto the surface.
The patient then attempted to follow a moving spot over the trial length. Once com-
plete, the error between the reference trajectory and the achieved result is available
and used to compute the change in the stimulation applied on the next attempt.

In this first work, the stimulation applied to the muscle generates a torque about
the elbow, which assists the patient in steering the robot as close as possible to the
reference trajectory. The output is in the form of a measured angle. The ILC law is
used between trials to compute the stimulation to be applied in the subsequent trial.
This work was followed through to clinical trials and the research reported in the
control and rehabilitation sciences literature. The clinical trials replicated the desired
feature that if the patient improved with each attempt, the voluntary effort increased,
and the stimulation level went down. A comprehensive treatment of this research is
given in (Freeman et al., 2012; Meadmore et al., 2012).

Two desirable extensions of this first ILC healthcare research provide one source
of motivation for the new results in this paper. In this application area, in the first
research the trajectory (determined by healthcare professionals based on an assessment
of the patients current ability) specified the reference trajectory at all instances along a
trial. A more physically relevant option is to provide ‘waypoints’ along the trajectory or
specify the starting and end locations, see, e.g. (Freeman et al., 2012). Among others,
this option recognizes that no two or more people complete a task in exactly the same
way. In this context, point-to-point ILC, see, e.g., (Freeman et al., 2011; Son et al.,
2013) is more relevant. The task description of point-to-point ILC has been extended
in (Chen et al., 2019), by considering the tracking time instants of desired positions
as changing variables. Moreover, a particular case of point-to-point ILC, known as
terminal ILC, has recently seen an application with supporting experimental results
in agriculture (Johansen et al., 2021).

For robotic-assisted stroke rehabilitation, the eventual goal would be for patients to
take equipment to their homes to increase the level of practice and avoid adding to the
healthcare burden by going to a treatment center. In this sense, remote supervision
would be very beneficial, but it requires reliable networked information transfer. This
application provides further motivation for basic research into ILC with quantized
inputs. In the point-to-point ILC design framework, much of the literature assumes
that the input signal can be transmitted directly from the controller to the actuator,
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and the output signal can also be transmitted directly to the controller.
In networked control systems, the system and the controller are usually physically

located at different sites and communicate with each other through wired/wireless
networks. Due to the limited transmission bandwidth, see, e.g., (Liu et al., 2020),
the assumption that signals are transmitted accurately may no longer be valid. In
some cases, it is feasible to quantify signals before transmission. Signal quantization
converts continuous-valued inputs into discrete-valued inputs, which can reduce the
burden of communication and improve the system’s efficiency. Therefore, the effect of
signal quantization on control performance needs to be addressed for point-to-point
ILC laws.

Previously reported research has addressed the analysis and design of ILC with the
quantized signals. For example, in (Bu et al., 2015), a logarithmic quantizer is used to
quantize the output signals. Zero-error tracking performance was investigated in (Shen
and Xu, 2016) for quantized error signals for discrete dynamics. This work established
that the tracking error converges to a specified range with an upper bound depending
on quantization density and the desired output measurement. Still, this design is not
directly applicable to input quantization.

In subsequent research, an encoding-decoding mechanism was introduced to quan-
tify the measurement output in (Huo and Shen, 2020; Zhang and Shen, 2018). This
mechanism was extended in (Huo and Shen, 2020) to provide a framework for quan-
tized ILC for systems with quantization at both the measurement and actuator sides,
where zero-error tracking performance was guaranteed via an encoding-decoding mech-
anism. However, previous research for discrete systems has focused on the case where
the reference trajectory is specified at each sample instant along the trial. The focus
of this paper is the point-to-point ILC tracking problem.

As in standard control, there are simple structure ILC laws that do not necessarily
require a model of the system for design. It is essential, therefore, to demonstrate that
a model-based design has the potential to deliver better performance. In this paper,
norm optimal ILC is considered, i.e., the control signal is designed by minimizing a
cost function using a model of the dynamics. Moreover, a comparison is made with
P-type ILC, i.e., uk+1 = uk + Lek, where a single parameter L is to be chosen.

The fault-tolerance problem for actuator faults in quantized ILC is also an important
issue from the perspectives of safety and performance, especially given the updating
structure. Therefore, the ILC design in this paper considers the fault-tolerant perfor-
mance of actuator faults. For example, a fault-tolerant ILC scheme with quantization
is given in (Gao et al., 2017), which uses the lifted model-based ILC design. An ILC
algorithm is given in (Jin, 2018a) to deal with the effects of quantized input signal
under actuator faults and system output constraints. The design in this paper is also
extended to fault tolerance in the presence of actuator faults.

The new contributions in this paper are ILC update laws for two different quantized
schemes and the novel features of these are:

• Using an encoding-decoding mechanism and the logarithmic quantizer to develop
a method of quantifying the input and ILC design with a norm-optimal setting
to design the ILC laws to achieve point-to-point tracking.
• The designed quantization ILC laws have passive fault-tolerance characteristics.

When an actuator fault occurs, they will ensure the tracking of the desired points
as the trial number increases.

The remainder of this paper is organized as follows. Section 2 describes point-to-
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point tracking problems in linear discrete-time systems and two different quantized
schemes. In Section 3, two point-to-point ILC laws are derived, and their convergence
properties are established. The fault-tolerant performance of the control update laws
is studied in Section 4. A numerical case study is given to demonstrate the application
of new results of Section 5, and Section 6 concludes this work.

2. Problem formulation and background results

This section first introduces the system dynamics and then designs an encoding-
decoding scheme for quantifying the input signals.

2.1. System dynamics

This paper considers single-input single-output discrete linear time-invariant systems
described in the ILC setting by the state-space model{

xk(t+ 1) = Axk(t) +Buk(t),

yk(t) = Cxk(t),
(1)

where xk(t) ∈ Rn, uk(t) ∈ R and yk(t) ∈ R are, respectively, the state vector, input,
and output, the subscript k ∈ N denotes the trial number, t ∈ [0, N ] is the sample
number over finite time interval, with N denoting the total number of samples number
along a trial. The state initial vector xk(0) is assumed, without loss of generality, to be
the same on each trial, i.e, xk(0) = x0. Also no loss of generality arises from assuming
that x0 = 0.

For ILC analysis and design, the ILC dynamics are written in the so-called lifted
form by introducing the vectors

uk = [uk(0) uk(1) . . . uk(N − 1)]T ,

yk = [yk(1) yk(2) . . . yk(N)]T , (2)

and hence

yk = Guk, (3)

where

G =


CB 0 · · · 0
CAB CB · · · 0

...
...

...
...

CAN−1B CAN−2B · · · CB

 . (4)

Without loss of generality, it is assumed that CB 6= 0 (if this is not the case then some
routine modifications are needed, see, e.g., (Owens, 2016)). The results developed in
this paper generalize directly to multiple-input multiple-output examples and hence
the details are omitted.

In ILC a reference trajectory yd is specified and the design problem is to construct a
sequence of trial inputs {uk}k≥0 such that the sequence of outputs {yk}k≥0 converges to
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yd as k →∞, and the input sequence to the so-called ‘learned’ control u∞. Convergence
is measured in terms of the norm on the underlying function space, and in applications
convergence to zero error may have to be replaced by convergence to a prescribed
tolerance.

Applications have also arisen where it is not necessary to enforce tracking at all
instants along a trial. Instead a series of ‘waypoints’ along each trial are specified,
known as point-to-point trajectory, or to only specify the value at the final instant N.
A particularly relevant case is stroke rehabilitation where it is not necessarily required
to specify desired behavior at all instants, e.g., reaching out across a table top to an
object. Instead, the start and end positions can be specified and possibly one or more
waypoints in between if deemed necessary based on the patients current capabilities.

Point-to-point ILC only considers the tracking performance at certain instances
along the output trajectory. Let M denote the number of sample instances over [1, N ]
and let ti, i = 1, . . . ,M , in ascending order, denote the sample instances of interest,
i.e.,

0 ≤ t1 < t2 < · · · < tM ≤ N. (5)

Also ypd represents the point-to-point reference trajectory and introduce the lifted
representation

ypd = [yd(t1) yd(t2) . . . yd(tM )]T , (6)

and also

ypk = [yk(t1) yk(t2) . . . yk(tM )]T , (7)

epk = [ek(t1) ek(t2) . . . ek(tM )]T . (8)

Moreover, the selection matrix Ψ ∈ RM×N is defined as

Ψij =

{
1, j = ti,
0, j 6= ti.

(9)

where this matrix provides a direct method of transforming the standard ILC prob-
lem to the point-to-point version

ypd = Ψyd, y
p
k = Ψyk, e

p
k = Ψek. (10)

These relationships will be used in the analysis below. The point-to-point ILC design
problem is formulated by obvious modifications to that given above.

2.2. Quantifying the input signals

In a point-to-point tracking problem, only the signal values at the corresponding points
need to be transmitted at the output side, and the bandwidth is assumed to be suffi-
cient. For this reason, only the case of quantifying the signals at the input side before
transmission is considered.

The systems represented by the block diagram of Fig. 1 are considered, where com-
munication between the controller and actuator is via a limited capacity channel. This
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scenario includes cases where only quantized information is transmitted to reduce the
communication burden. Therefore, two quantization methods are used. One of these
quantifies signals via an encoding and decoding mechanism, and the other quantifies
the input without an encoding-decoding scheme.

p
ky p

dy

p
ke

1ku 

1kû 

ku

D

E

Figure 1. Block diagram of the ILC scheme considered.

The E and D blocks in Fig. 1 represent, respectively, the encoder and decoder inputs.
In this structure, the controller output is first encoded by E for transmission and then
decoded by D for application to the system by the actuator. The systems used are as
follows:

E :

 ζ0 (t) = 0,
θk+1 (t) = q (uk+1 (t)− ζk (t)) ,
ζk+1 (t) = θk+1 (t) + ζk (t) ,

(11)

and

D :

{
û0 (t) = 0,
ûk+1 (t) = θk+1 (t) + ûk (t) ,

(12)

where uk (t), θk (t) and ζk (t) are, respectively, the input, output, and internal state.
The system input ûk (t) is the output of decoder D, which is an estimate of the

generated input uk (t). A infinite logarithmic quantizer q (·) as demonstrated in (Bu
et al., 2015) is used, i.e.,

q (v) =

 zi, if 1
1+δzi < v ≤ 1

1−δzi,

0, if v = 0,
−q (−v) , if v < 0,

(13)

where δ = (1−µ)/(1+µ), the parameter µ is associated with the quantization density
and zi is a member of the set

Z =
{
±zi|zi = µiz0, i = 0,±1,±2, · · ·

}⋃
{0}, 0 < µ < 1, z0 > 0. (14)

Each of the quantization levels corresponds to a segment, i.e., the quantizer maps
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the entire segment to this quantization level. Moreover, these segments are disjoint and
their union equals the real number R. Hence the quantizer q (v) in (13) is symmetric
and time-invariant.

The sector bound method given in (Fu and Xie, 2005) is used to represent the
quantization error of the logarithmic quantizer. Hence, for a given quantization density
µ,

q (v) = v + ∆v = v + η · v = (1 + η) v, (15)

where v is the source signal of the logarithmic quantizer, ∆v is the quantization er-
ror, η is the relative quantization error and |η| ≤ (1 − µ)/(1 + µ). Given (15), the
quantizer input and output for different trials and time instants satisfy q (vk (t)) =
(1 + ηk (t)) vk (t).

Before designing the update law for quantifying the input with encoding-decoding
scheme, it is necessary to consider the relationship between the generated input uk (t)
and the system input ûk (t). Substituting θk (t) from the encoder into the system input
ûk (t) in (11), gives

ûk+1 (t) = θk+1 (t) + ûk (t)
= q (uk+1 (t)− ζk (t)) + ûk (t)
= (1 + ηk+1 (t)) (uk+1 (t)− ζk (t)) + ûk (t)
= (1 + ηk+1 (t))uk+1 (t)− ηk+1 (t) ζk (t) + ûk (t)− ζk (t) ,

(16)

where ηk+1 (t) is the relative quantization error. Moreover, the following property for
the term ûk (t)− ζk (t) in (16) holds.

Proposition 1. The term ûk (t)− ζk (t) in (16) satisfies ûk (t)− ζk (t) = 0, ∀ k.

Proof. This proof is by mathematical induction. As the first step, û0 (t) = ζ0 (t) due
to the definitions for the encoder (11) and decoder (12), and the conclusion holds
for the first step. Next, assume that the proposition holds for trial k and then the
requirement is to show that it also holds for trial k + 1, where k is arbitrary. Using
(11) and (12) gives

ûk+1 (t)− ζk+1 (t) = (θk+1 (t) + ûk (t))− (θk+1 (t) + ζk (t)) = 0, (17)

and by the inductive principle the proof is complete.

The inherent identity property between the encoder and decoder is used to establish
the asymptotically precise data transmission and asymptotic tracking performance
using quantized data. Combining Proposition 1 and (16) gives

ûk+1 (t) = (1 + ηk+1 (t))uk+1 (t)− ηk+1 (t) ζk (t) . (18)

To facilitate ILC update law design, the system input and the generated input are
written in super-vector form as

ûk+1 = Hk+1uk+1 − H̄k+1ζk, (19)
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where Hk = diag (1 + ηk (0) 1 + ηk (1) · · · 1 + ηk (N − 1))
and H̄k = diag (ηk (0) ηk (1) · · · ηk (N − 1)). Hence Hk+1 = H̄k+1 + I and
‖HK+1‖ ≤ 1 + δ,

∥∥H̄k+1

∥∥ ≤ δ.
Also q (uk (t)) = (1 + ηk (t))uk (t) is used to quantize the input without encoding-

decoding scheme from (15) and reformulate the logarithmic quantizer input and output
as the super-vectors

uqk = q (uk) = Fkuk, (20)

where Fk = diag (1 + ηk (0) 1 + ηk (1) · · · 1 + ηk (N − 1)).

3. ILC design

The ILC design, known as norm optimal iterative learning control (NOILC), developed
in this section is based on minimizing a norm-optimal cost function with the structure

Jk+1 =
∥∥epk+1

∥∥2

Q
+ ‖uk+1 − uk‖2R + ‖uk+1‖2S , (21)

where epk+1 = ypd − y
p
k+1 is the error on trial k + 1, Q and R are symmetric positive-

definite weighting matrices and S is a semi-positive definite matrix, each of compatible
dimensions. The induced norm on, e.g., x, is defined as ||x||2Q = xTQx. This cost
function on trial k + 1 is the sum of a quadratic term in the current trial error, a
similar term on the difference between the control signals on successive trials, and a
similar term in the current trial control input.

The structure of the second term in the cost function is to regulate against large
changes in the control input from one trial to the next, where in ILC it is the sequence
of control inputs that are designed as opposed to the controller in other methods.
Moreover, the last entry regulates the control effort.

As shown in (Zhou et al., 2022; Zhuang et al., 2022), minimizing the cost function
(21) with respect to uk+1 gives the point-to-point ILC update law

uk+1 = Tuuk + Tee
p
k, (22)

where the operators Tu and Te are given by

Tu =
[
(ΨG)T Q (ΨG) +R+ S

]−1 [
(ΨG)T Q (ΨG) +R

]
,

Te =
[
(ΨG)T Q (ΨG) +R+ S

]−1
(ΨG)T Q.

3.1. Quantifying the input with encoding-decoding scheme

To account for the quantization error caused by quantifying the input, the cost func-
tion (21) must be modified. The relative quantization error for the logarithmic quanti-
zation is bounded by the quantization density. In quantifying the input with encoding-
decoding scheme, the NOILC cost function is
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Jk+1 =
∥∥epk+1

∥∥2

Q
+ ‖ûk+1 − ûk‖2R + ‖ûk+1‖2S , (23)

where epk+1 = ypd −ΨGûk+1. ûk is not directly available on the controller side, but can
be obtained indirectly by Proposition 1, i.e., ûk = ζk, ∀k. To derive the point-to-point
ILC update law, the following result is needed.

Proposition 2. Denoting the optimal solution by u∗k+1, and minimizing the cost func-
tion (23) with respect to uk+1 gives

u∗k+1 = ûk −H−1
k+1

[
(ΨG)T Q (ΨG) +R+ S

]−1
Sûk

+H−1
k+1

[
(ΨG)T Q (ΨG) +R+ S

]−1
(ΨG)T Qepk.

(24)

Proof 1. From (23), it follows that

epk+1 = epk + ΨGûk −ΨGHk+1uk+1 + ΨGH̄k+1ζk = epk + ΨGHk+1ûk −ΨGHk+1uk+1.
(25)

Minimizing the cost function (23) with respect to uk+1 gives

0 = −HT
k+1 (ΨG)T Q

(
epk + ΨGHk+1ûk −ΨGHk+1u

∗
k+1

)
+HT

k+1R
(
Hk+1u

∗
k+1 −Hk+1ûk

)
+HT

k+1S
(
Hk+1u

∗
k+1 − H̄k+1ûk

)
,

(26)

and by HT
k+1 = Hk+1,

Hk+1

[
(ΨG)T Q (ΨG) +R+ S

]
Hk+1u

∗
k+1

= Hk+1

[
(ΨG)T Q (ΨG) +R+ S

]
Hk+1ûk −Hk+1Sûk +Hk+1 (ΨG)T Qepk.

(27)

Since Hk+1 and (ΨG)T Q (ΨG) +R+ S are invertible matrices, it follows that

u∗k+1 = ûk −H−1
k+1

[
(ΨG)T Q (ΨG) +R+ S

]−1
Sûk

+H−1
k+1

[
(ΨG)T Q (ΨG) +R+ S

]−1
(ΨG)T Qepk,

(28)

which completes the proof.

The optimal solution in Proposition 2 contains Hk+1, which is not available on
the current trial. To obtain an implementable ILC law and simplify the design, each
non-zero element in the diagonal matrix Hk+1 satisfies 1 − δ ≤ 1 + ηk+1 (t) ≤ 1 + δ
and hence I can be substituted for Hk+1 to obtain an approximate optimal solution.
It can be proved that the output of system can still track the desired points as the
number of trials increases under this change. Hence the point-to-point ILC update law
for quantifying the input with encoding-decoding scheme is

uk+1 = Kuûk +Kee
p
k, (29)
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where

Ku =
[
(ΨG)T Q (ΨG) +R+ S

]−1 [
(ΨG)T Q (ΨG) +R

]
,

Ke =
[
(ΨG)T Q (ΨG) +R+ S

]−1
(ΨG)T Q.

This point-to-point ILC update law modifies the input signal uk+1 to reduce the
tracking error epk+1 gradually such that the associated output ypk tracks the points

in ypd over the time horizon [1, N ]. The corresponding properties are summarized in
Theorem 1 given next.

Theorem 3.1. Consider a discrete linear system of the form (3) with the encoding-

decoding mechanism and the ILC update law (29) applied and let (ΨG)† denote the
pseudo-inverse of (ΨG). Then if∥∥∥(ΨG) (Ku −KeΨG) (ΨG)†

∥∥∥+ δ ‖ΨG‖
∥∥∥(Ku −KeΨG− I) (ΨG)†

∥∥∥ ≤ ρ1 < 1, (30)

the point-to-point tracking error is norm bounded in the sense that

lim
k→∞

∥∥epk∥∥ ≤ b1
1− ρ1

, (31)

where b1 = (1 + δ) ‖ΨG‖ ‖I −Ku‖ ‖ud‖.

Proof 2. For the system (4) with the encoding-decoding mechanism, there exists a

unique input ud such that yd = Gud. Set ∆uk
∆
= ud − ûk and it then follows from (19)

that

∆uk+1 = ud − ûk+1 = ud −
(
Hk+1uk+1 − H̄k+1ζk

)
. (32)

By Proposition 1, ûk (t) = ζk (t) , ∀ k, and substituting (29) into this last equation
gives

∆uk+1 = ud − ûk+1 = ud −Hk+1

(
Kuûk +Kee

p
k

)
+ H̄k+1ûk, (33)

and from (10)

epk = ypd − y
p
k = ΨGud −ΨGûk = ΨG∆uk. (34)

Substituting (34) and ûk = ud −∆uk into (33) gives

∆uk+1 = ud −Hk+1Ku (ud −∆uk)−Hk+1KeΨG∆uk + H̄k+1 (ud −∆uk)
=
(
I −Hk+1Ku + H̄k+1

)
ud +

(
Hk+1Ku −Hk+1KeΨG− H̄k+1

)
∆uk.

(35)

Given epk = ΨG∆uk, it follows that

epk+1 = ΨG
(
I −Hk+1Ku + H̄k+1

)
ud+ΨG

(
Hk+1Ku −Hk+1KeΨG− H̄k+1

)
(ΨG)† epk.

(36)
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and taking the norm across this last equation gives∥∥epk+1

∥∥ ≤ ∥∥ΨG
(
I −Hk+1Ku + H̄k+1

)∥∥ ‖ud‖
+
∥∥∥ΨG

(
Hk+1Ku −Hk+1KeΨG− H̄k+1

)
(ΨG)†

∥∥∥∥∥epk∥∥ . (37)

If
∥∥∥(ΨG) (Ku −KeΨG) (ΨG)†

∥∥∥+ δ ‖ΨG‖
∥∥∥(Ku −KeΨG− I) (ΨG)†

∥∥∥ ≤ ρ1 < 1 holds,

then ∥∥∥ΨG
(
Hk+1Ku −Hk+1KeΨG− H̄k+1

)
(ΨG)†

∥∥∥
=
∥∥∥ΨG

[
(Ku −KeΨG) + H̄k+1 (Ku −KeΨG− I)

]
(ΨG)†

∥∥∥
≤
∥∥∥ΨG (Ku −KeΨG) (ΨG)†

∥∥∥+ ‖ΨG‖
∥∥H̄k+1

∥∥∥∥∥(Ku −KeΨG− I) (ΨG)†
∥∥∥

≤
∥∥∥ΨG (Ku −KeΨG) (ΨG)†

∥∥∥+ δ ‖ΨG‖
∥∥∥(Ku −KeΨG− I) (ΨG)†

∥∥∥
≤ ρ1 < 1.

(38)

Next, define∥∥ΨG
(
I −Hk+1Ku + H̄k+1

)∥∥ ‖ud‖ = ‖ΨG (Hk+1 −Hk+1Ku)‖ ‖ud‖
= ‖ΨGHk+1 (I −Ku)‖ ‖ud‖ ≤ (1 + δ) ‖ΨG‖ ‖I −Ku‖ ‖ud‖ = b1,

(39)

and then combined with (37), (38) and (39), we have∥∥epk+1

∥∥ ≤ b1 + ρ1

∥∥epk∥∥ . (40)

After k executions of the last formula, the following inequality is established

∥∥epk+1

∥∥ ≤ 1− ρk+1
1

1− ρ1
b1 + ρk1 ‖e

p
0‖ . (41)

Applying lim
k→∞

ρk1 = 0 to this last inequality gives

lim
k→∞

∥∥epk∥∥ ≤ b1
1− ρ1

, (42)

and the proof is complete.

From the proof of Theorem 1, if the last term ‖ûk+1‖2S is deleted from the cost
function, the point-to-point tracking error epk also converges as k →∞ to zero, which
is established by the following corollary to the last theorem.

Corollary 1. If S = 0, and∥∥∥(ΨG) (Ku −KeΨG) (ΨG)†
∥∥∥+ δ ‖ΨG‖

∥∥∥(Ku −KeΨG− I) (ΨG)†
∥∥∥ ≤ ρ1 < 1

the point-to-point tracking error converges to zero as k →∞, i.e., lim
k→∞

∥∥epk∥∥ = 0.

11



Proof 3. When S = 0

I −Ku = I −
[
(ΨG)T Q (ΨG) +R

]−1 [
(ΨG)T Q (ΨG) +R

]
= 0. (43)

Moreover

∥∥ΨG
(
I −Hk+1Ku + H̄k+1

)∥∥ ‖ud‖ ≤ δ ‖ΨG‖ ‖I −Ku‖ ‖ud‖ = b1 = 0, (44)

and by combining with the result of Theorem 1

0 ≤ lim
k→∞

∥∥epk∥∥ ≤ b1
1− ρ1

= 0, (45)

which completes the proof.

Remark 1. If S 6= 0

b1 = (1 + δ) ‖ΨG‖
∥∥∥∥[(ΨG)T Q (ΨG) +R+ S

]−1
S

∥∥∥∥ ‖ud‖ , (46)

i.e., when different quantization densities are used, the tracking error converges in norm
to a bounded value by appropriate choice of the cost function weighting matrices Q,
R and S.

3.2. Quantifying the input without encoding-decoding scheme

As for quantifying input signals without encoding-decoding scheme, the cost function
used is

Jk+1 =
∥∥epk+1

∥∥2

Q
+
∥∥uqk+1 − u

q
k

∥∥2

R
+
∥∥uqk+1

∥∥2

S
, (47)

where epk+1 = ypd − ΨGuqk+1 = epk + ΨGuqk − ΨGFk+1uk+1. Minimizing this function
with respect to uk+1 gives

u∗k+1 = F−1
k+1

[
(ΨG)T Q (ΨG) +R+ S

]−1 [
(ΨG)T Q (ΨG) +R

]
uqk

+F−1
k+1

[
(ΨG)T Q (ΨG) +R+ S

]−1
(ΨG)T Qepk,

(48)

where u∗k+1 denoted the optimal solution for the cost function (47). Similar to the
previous section, substitute I for Fk+1 to obtain the approximate optimal solution,
and then the implementable ILC law can be written as

uk+1 = Luu
q
k + Lee

p
k, (49)
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where

Lu =
[
(ΨG)T Q (ΨG) +R+ S

]−1 [
(ΨG)T Q (ΨG) +R

]
,

Le =
[
(ΨG)T Q (ΨG) +R+ S

]−1
(ΨG)T Q.

Then, the following result gives the stability property of this ILC law.

Theorem 3.2. Consider a linear discrete-time system (3) where the input signals are
quantized without encoding-decoding scheme and the ILC law (49) is applied. Then if∥∥∥(ΨG) (Lu − LeΨG) (ΨG)†

∥∥∥+ δ ‖ΨG‖
∥∥∥(Lu − LeΨG) (ΨG)†

∥∥∥ ≤ ρ2 < 1, (50)

and the point-to-point tracking error satisfies

lim
k→∞

∥∥epk∥∥ ≤ b2
1− ρ2

, (51)

where b2 = (‖ΨG (I − Lu)‖+ δ ‖ΨG‖ ‖Lu‖) ‖ud‖.

Proof 4. Set ∆uk := ud − uqk and following similar steps as in the proof of Theorem
1 gives∥∥epk+1

∥∥ ≤ ‖ΨG (I − Fk+1Lu)‖ ‖ud‖+
∥∥∥ΨGFk+1 (Lu − LeΨG) (ΨG)†

∥∥∥∥∥epk∥∥
≤
(∥∥∥ΨG (Lu − LeΨG) (ΨG)†

∥∥∥+ δ ‖ΨG‖
∥∥∥(Lu − LeΨG) (ΨG)†

∥∥∥)∥∥epk∥∥
+ (‖ΨG (I − Lu)‖+ δ ‖ΨG‖ ‖Lu‖) ‖ud‖ .

(52)

Also, if
∥∥∥(ΨG) (Lu − LeΨG) (ΨG)†

∥∥∥ + δ ‖ΨG‖
∥∥∥(Lu − LeΨG) (ΨG)†

∥∥∥ ≤ ρ2 < 1, it

follows that

lim
k→∞

∥∥epk∥∥ ≤ b2
1− ρ2

, (53)

where (‖ΨG (I − Lu)‖+ δ ‖ΨG‖ ‖Lu‖) ‖ud‖ = b2. This completes the proof.

Remark 2. By δ = 1−µ
1+µ , a larger quantization density µ results in a smaller relative

quantization error and |η| ≤ δ. Also Lu = I when S = 0 and hence

‖ΨG (I − Fk+1Lu)‖ ‖ud‖ =
∥∥ΨGF̄k+1

∥∥ ‖ud‖ ≤ δ ‖ΨG‖ ‖ud‖ = b2.

In contrast to the encoding and decoding scheme considered above, the tracking error
converges in the norm to a bounded value that depends on the quantization density
in quantifying the input without encoding-decoding scheme.

Remark 3. The basic idea of quantization is to actively reduce information content
for adapting to the limitation of transmission channel bandwidth. For the logarithmic

13



quantizer, when the quantization density is closer to the unit, the information trans-
mitted is more accurate, but the equipment and channel bandwidth requirements are
higher. The smaller the quantization density is, the more information is lost, which
leads to a greater quantization error.

The inherent property of the logarithmic quantizer is that a smaller source signal
results in a smaller quantization error. The encoding and decoding schemes essen-
tially quantify the change of input between the previous and current trial. When the
sequence whose entries are the changes between the control input on two successive
trials converges as the number of trials increases, the quantization error also reduces.
Consequently, the encoding and decoding scheme can perform well even if the quan-
tizer is coarse. However, the quantization density must have the largest possible value
within the bandwidth to result in better tracking performance for quantifying the
input without encoding-decoding scheme

4. ILC Fault-tolerant performance

Actuator faults are as critical in ILC as in other areas, which may cause unsatisfactory
performance or even instability. In such cases, it is necessary to design the update law
such that the system output can ensure tracking in the presence of actuator failures.
For the control input ûk (t) from quantifying the input with the encoding-decoding
scheme, let uFk (t) denote the signal from the failed actuator, where the superscript F
denotes the presence of a fault. Then (Wang et al., 2012), the following failure model
can be considered

uFk (t) = αiûk (t) , i = 0, 1, · · · , N − 1, (54)

where αi is the fault parameter, and 0 ≤ αi ≤ αi ≤ 1, i = 0, 1, · · · , N − 1, and αi is a
known scalar.

The parameter αi is unknown but assumed to lie within a known range. If αi = 1,
the actuator is fault-free. Also, 0 < αi < 1 corresponds to a partial failure due to, e.g.,
mechanical wear and aging. If αi = 0, then the actuator has a complete failure, and
the system is no longer controllable. In this paper, only 0 < αi ≤ 1 is considered.

Introduce

uFk =
[
uFk (0) uFk (1) · · · uFk (N − 1)

]T
,

ûk = [ûk (0) ûk (1) · · · ûk (N − 1)]T ,
α = diag (α0 α1 · · · αN−1) .

Then the failure model can be written as

uFk = αûk, (55)

and hence

ypk = ΨGuFk = ΨGαûk. (56)

The following assumption is also required.
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Assumption 1. There exists a desired input ud such that uFd = αud satisfies ypd =
ΨGuFd .

Remark 4. To clarify the rationality of the statement in Assumption 1, let (ΨG)†

denote the pseudo-inverse of (ΨG). Then. from ypd = ΨGuFd , it follows that

uFd = (ΨG)†ypd, (57)

and from the failure model, it follows that

uFd = αûd, (58)

where ûd = ud and

α =

 α0 · · · 0
...

. . .
...

0 · · · αN−1

 , 0 < αi ≤ 1. (59)

Consequently, there exists a desired input ud that satisfies

ud = α−1uFd = α−1(ΨG)†ypd. (60)

To proceed, introduce

∆α = diag (∆α0 ∆α1 · · ·∆αN−1) , (61)

such that α = I+∆α. Then the fault-tolerant property for quantifying the input with
encoding-decoding scheme can be established.

Theorem 4.1. Consider a linear discrete-time system described by(3) with encoding-
decoding mechanism and ILC update law (29) applied. Then if∥∥∥ΨG (I −KeΨG) (ΨG)†

∥∥∥+ δ ‖ΨG‖ ‖Ke‖+ (1 + δ) ‖ΨG‖ ‖∆α‖ ‖Ke‖

+ (1 + δ) 1+‖∆α‖
1−‖∆α‖ ‖ΨG‖ ‖Ku − I‖

∥∥∥(ΨG)†
∥∥∥ ≤ ρ3 < 1,

(62)

the system has the actuator fault-tolerant capability, and the point-to-point tracking
error satisfies

lim
k→∞

∥∥epk∥∥ =
b3

1− ρ3
, (63)

where (1 + δ) (1 + ‖∆α‖) ‖ΨG‖ ‖I −Ku‖ ‖ud‖ = b3.

Proof 5. Set ∆uk := ud − ûk, and then from (19) it follows that

∆uk+1 = ud − ûk+1 = ud −Hk+1uk+1 + H̄k+1ûk. (64)
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Substituting (29) into the last equation gives

∆uk+1 = ud − ûk+1 = ud −Hk+1

(
Kuûk +Kee

p
k

)
+ H̄k+1ûk, (65)

and using (10) it follows that

epk = ypd − y
p
k = ΨGuFd −ΨGûFk = ΨGαud −ΨGαûk = ΨGα∆uk. (66)

Substituting (66) and ûk = ud −∆uk into (65) gives

∆uk+1 = ud −Hk+1Ku (ud −∆uk)−Hk+1KeΨGα∆uk + H̄k+1 (ud −∆uk)
=
(
I −Hk+1Ku + H̄k+1

)
ud +

(
Hk+1Ku −Hk+1KeΨGα− H̄k+1

)
∆uk.

(67)
Since epk+1 = ΨGα∆uk+1, it follows that

epk+1 = ΨGα
(
I −Hk+1Ku + H̄k+1

)
ud

+ΨGα
(
Hk+1Ku −Hk+1KeΨGα− H̄k+1

)
α−1 (ΨG)† epk.

(68)

Taking the norm to this last equation gives∥∥epk+1

∥∥ ≤ ∥∥ΨGα
(
I −Hk+1Ku + H̄k+1

)∥∥ ‖ud‖
+
∥∥∥ΨGα

(
Hk+1Ku −Hk+1KeΨGα− H̄k+1

)
α−1 (ΨG)†

∥∥∥∥∥epk∥∥ , (69)

Also∥∥ΨGα
(
I −Hk+1Ku + H̄k+1

)∥∥ ‖ud‖ ≤ ‖ΨG‖ ‖I + ∆α‖ ‖Hk+1‖ ‖I −Ku‖ ‖ud‖
≤ (1 + δ) (1 + ‖∆α‖) ‖ΨG‖ ‖I −Ku‖ ‖ud‖ = b3.

(70)
If the inequality (62) holds, then∥∥∥ΨGα

(
Hk+1Ku −Hk+1KeΨGα− H̄k+1

)
α−1 (ΨG)†

∥∥∥
=
∥∥∥ΨG

(
I −Hk+1αKeΨG+Hk+1α (Ku − I)α−1

)
(ΨG)†

∥∥∥
≤
∥∥∥ΨG (I −Hk+1αKeΨG) (ΨG)†

∥∥∥+
∥∥∥ΨG

(
Hk+1α (Ku − I)α−1

)
(ΨG)†

∥∥∥
≤
∥∥∥ΨG (I −KeΨG) (ΨG)†

∥∥∥+ ‖ΨG‖ ‖∆α‖ ‖Ke‖+ ‖ΨG‖
∥∥H̄k+1

∥∥ ‖Ke‖

+ ‖ΨG‖
∥∥H̄k+1

∥∥ ‖∆α‖ ‖Ke‖+ ‖ΨG‖ ‖Hk+1‖ ‖I + ∆α‖ ‖Ku − I‖
∥∥α−1

∥∥∥∥∥(ΨG)†
∥∥∥

≤
∥∥∥ΨG (I −KeΨG) (ΨG)†

∥∥∥+ δ ‖ΨG‖ ‖Ke‖+ (1 + δ) ‖ΨG‖ ‖∆α‖ ‖Ke‖

+ (1 + δ) 1+‖∆α‖
1−‖∆α‖ ‖ΨG‖ ‖Ku − I‖

∥∥∥(ΨG)†
∥∥∥

≤ ρ3 < 1.
(71)

Substituting (70) and (71) into (69) gives∥∥epk+1

∥∥ ≤ b3 + ρ3

∥∥epk∥∥ . (72)

16



After k trials it follows that

∥∥epk+1

∥∥ ≤ 1 + ρk+1
3

1− ρ3
b3 + ρk3 ‖e

p
0‖ . (73)

Also since lim
k→∞

ρk3 = 0

lim
k→∞

∥∥epk∥∥ ≤ b3
1− ρ3

. (74)

This completes the proof.

Remark 5. Passive fault-tolerance is used in this paper by considering the actuator
faults to design an ILC law to improve the reliability of the system. Quantifying the
input with encoding-decoding scheme can guarantee the tracking performance of the
networked system in the presence of faults.

Remark 6. Consider the case when S = 0, Ku = I. It follows that b3 =
(1 + δ) (1 + ‖∆α‖) ‖ΨG‖ ‖I −Ku‖ ‖ud‖ = 0 and, by combining with the result of The-
orem 4.1, lim

k→∞

∥∥epk∥∥ = 0.

For control input uqk (t), let uFk (t) denote the signal from the failed actuator.
Then (Wang et al., 2012), the following failure model can be used

uFk (t) = αuqk (t) , i = 0, 1, · · · , N − 1, (75)

or

uFk = αq (uk) , (76)

where

uFk =
[
uFk (0) uFk (1) · · · uFk (N − 1)

]T
,

uqk =
[
uqk (0) , uqk (1) , · · · , uqk (N − 1)

]T
,

α = diag (α0 α1 · · · αN−1) .

Hence, there exists

ypk = ΨGuFk = ΨGαuqk (77)

and the following theorem can be established.

Theorem 4.2. Consider the system (4) when the input signals are quantified without
an encoding-decoding scheme. Suppose also the ILC law (49) is applied. Then if∥∥∥ΨG (I − LeΨG) (ΨG)†

∥∥∥+ δ ‖ΨG‖
∥∥∥(I − LeΨG) (ΨG)†

∥∥∥+ ‖ΨG‖ ‖∆α‖ ‖Le‖

+δ ‖ΨG‖ ‖∆α‖ ‖Le‖+ (1 + δ) 1+‖∆α‖
1−‖∆α‖ ‖ΨG‖ ‖Ku − I‖

∥∥∥(ΨG)†
∥∥∥ ≤ ρ4 < 1,

(78)
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the system has the actuator fault-tolerant capability,and the norm-bounded point-to-
point tracking error satisfies

lim
k→∞

∥∥epk∥∥ ≤ b4
1− ρ4

, (79)

where (‖I − Lu‖+ δ ‖Lu‖) (1 + ‖∆α‖) ‖ΨG‖ ‖ud‖ = b4.

Proof 6. Set ∆uk := ud − uqk and define ‖ΨGα (I − Fk+1Lu)‖ ‖ud‖ ≤
‖ΨGα‖

(
‖I − Lu‖+

∥∥F̄k+1Lu
∥∥) ‖ud‖ ≤ (‖I − Lu‖+ δ ‖Lu‖) (1 + ‖∆α‖) ‖ΨG‖ ‖ud‖ =

b4. The proof from this stage follows by routine changes to that for Theorem 3, and
hence the details are omitted for brevity.

5. Simulation case study

In this section, the effectiveness of the new design approach developed in this paper
is demonstrated using a simulation case study, which uses the model of one axis of a
gantry robot testbed (Ratcliffe, 2004) that has been obtained from measured frequency
response tests. Network communication is used between the system and controller
with communication bandwidth capacity. Therefore, the controller output has to be
quantized by a logarithmic quantizer before transmission to the actuator. The system
output only needs to transmit the tracking errors at selected sample instants to the
control law, and it is not necessary to quantify them.

A proportional feedback control loop with gain 300 has been applied and the
transfer-function of the axis dynamics has been discretized with a sampling time of
Ts = 0.01s to get discrete transfer-function

G (z) =
0.0003507z2 + 0.00003062z + 2.164× 10−6

z3 − 0.8798z2 − 0.004291z − 0.0008451
, (80)

whose discrete state space model matrices are shown as follows

A =

 0.0214 0.0451 0.0124
−0.0515 −0.0497 −0.1771
0.0916 0.1202 0.9081

 ,
B =

[
−5.0269× 10−5 7.1601× 10−4 3.7143× 10−4

]T
,

C =
[

0 0.0621 0.8245
]
.

In the state-space equations, the input variable uk(t) denotes the input voltage, and
the output variable yk(t) denotes the position of z-axis of the gantry robot, and then
the lifted form model yk = Guk can be obtained.

The reference trajectory is of the point-to-point form with M = 5 and associated
reference trajectory

ypd = [0.0029, − 0.0048, 0.0048, − 0.0029, 0]T , (81)

with a trial length of T = 2 seconds and hence N = 200.

18



The five reference instances correspond to

t1 = 0.2s, t2 = 0.6s, t3 = 1.0s, t4 = 1.4s, t5 = 2.0s. (82)

Hence the performance requirement for this system to move from the initial position
to yd (t1) at the specified time t1, and then to yd (t2) at specified time t2 and likewise
for the other three. For the initial design studies, the weighting matrices in the cost
function are taken to have the diagonal forms Q = qI, R = rI, S = sI, where q, r
are positive scalars and s is nonnegative scalar. Also the initial input signal is taken
as u0 = 0.
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Figure 2. Output trajectories for quantifying the input with encoding-decoding scheme over the first few

trials and the final trial (i.e., 30).

Consider quantifying the input with the encoding-decoding scheme, and set z0 = 2
and µ = 0.8 in the logarithmic quantizer. Choosing the weighting parameters as q =
80, 000, r = 0.04, s = 0.0001, we can obtain the control law matrices Ku and Ke (not

shown for ease of presentation) then (29) results in
∥∥∥(ΨG) (Ku −KeΨG) (ΨG)†

∥∥∥ +

δ ‖ΨG‖
∥∥∥(Ku −KeΨG− I) (ΨG)†

∥∥∥ = 0.4338 < 1. Hence Theorem 1 holds in this case

and consider the case that the controlled system is simulated for 30 trials. Fig. 2
confirms that trial outputs trajectories converge to the reference values (marked by
the red circles in the figure). Hence quantifying the input with encoding-decoding
scheme is effective for the point-to-point tracking task under limited communication
bandwidth.

The corresponding input signals are shown in Fig. 3, which confirms that this signal
approaches the learned control one as the trial number increases. Moreover, as a com-
parison with a non-model based ILC consider the P-type ILC law uk+1 = uk +LΨT epk
for the particular case when L = 1200. Then Fig. 4 leads to the conclusion that the
design in this paper has a faster convergence rate than the P-type ILC (the case
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Figure 3. System input signals for quantifying the input with encoding-decoding scheme over the first few

trials and the final trial (i.e., 30) .
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Figure 4. A comparison of tracking error between the norm optimal ILC and the P-type ILC.

considered is quantifying the input with the encoding-decoding scheme. (An area for
possible future research is to investigate the performance of the new design against
other non-model based ILC designs.)

To illustrate the effect of q, consider the parameters r and s to be fixed and let
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Figure 5. Tracking error of different value q for quantifying the input with encoding-decoding scheme.
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Figure 6. Tracking error of different value r for quantifying the input with encoding-decoding scheme.

q is a variable parameter. Setting r = 0.04 and s = 0.0001, simulations for different
values of q have been undertaken. Over 30 trials, the resulting tracking error is shown
in Fig. 5. The larger q will result in a faster rate of decrease for the tracking error
and the value of parameter q relative to parameter s will affect the tracking accuracy.
Similarly, the effects of r and s are shown in Fig. 6 and Fig. 7. The smaller r will
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Figure 7. Tracking error of different value s over 30 ILC trials for encoding-decoding scheme.

result in a faster rate of decrease for the tracking error, but input change between the
previous trial and the next trial will more obvious and the smaller s will lead to the
smaller tracking error.

0 5 10 15 20 25 30

0

1

2

3

4

5

6

7

8
10

-3

Figure 8. Tracking error of different quantization density for quantifying the input with encoding-decoding

scheme.

To understand the effect of quantization, simulations with different quantization
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Figure 9. Tracking error of different quantization density for quantifying the input without encoding-decoding

scheme.
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Figure 10. Cost function comparison of different quantization scheme along the trial axis.

densities µ for the two different quantization schemes were undertaken using the same
cost function weighting parameters. Over 30 trials, the resulting tracking error is shown
in Fig. 8 for the first scheme and Fig. 9 for the second. It is seen that the tracking
performance for quantifying the input with encoding-decoding scheme is similar un-
der different quantization densities, and the tracking performance improves with the
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Figure 11. Tracking error comparison of different quantization scheme with actuator fault.

increase of the quantization density in the scheme for quantifying the input directly.
Hence if quantifying input with encoding-decoding scheme is used, the quantization
density can be chosen to be slightly smaller under the network resource constraint.
However, if quantifying the input without encoding-decoding scheme is used, µ should
be set slightly bigger to produce better tracking performance. A comparison of the cost
function values for different quantization schemes along the trials are shown in Fig. 10
with the quantization density µ = 0.8. Under this measure, the encoding-decoding
scheme has better performance than the scheme for quantifying the input without
encoding-decoding scheme.

To examine the fault-tolerance performance, an actuator time-varying fault α =
0.9+0.1 sin (πt) is introduced on trial 15, and in this case ‖∆α‖ = 0.2 from α = I+∆α.
The parameters in the quantizer are chosen as z0 = 2 and µ = 0.8. In quantifying the
input with encoding-decoding scheme, the values of Ku and Ke (not shown for ease
of presentation) are obtained by setting the weighting parameters as q = 80, 000,
r = 0.04, s = 0.0001 and the condition (62) of Theorem 3 is satisfied. The condition of
Theorem 4 for quantifying input without encoding-decoding scheme also holds in this
case, and the results of simulating the controlled system over 30 trials are shown in
Fig. 11, it can be seen that the norm of point-to-point tracking errors for two different
quantization schemes can return to an acceptable value when the actuator fault occurs
on trial 15.

6. Conclusion and future work

In this paper, the point-to-point ILC problem for linear discrete-time systems with
quantized signals is considered under the general networked structure. To solve this
problem, both the encoding-decoding mechanism and logarithmic quantizer are used
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to develop a method of quantifying the designed NOILC inputs. It is shown that
the encoding-decoding scheme can achieve accurate tracking effect despite the small
quantization density. In addition, an extension to fault-tolerant design is developed
and it is shown that a better actuator fault-tolerant performance can be achieved for
quantifying the input with the encoding-decoding scheme. Finally, a numerical case
study is given to illustrate the application of the designs.

The results from the numerical case study demonstrate the effectiveness of the new
designs. These support further research to enable the full potential of these designs
can be assessed. In general, these designs can be conservative, and further research is
needed to reduce this effect.
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