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The research in this article is carried out to study incompressible and unsteady free convective flow on a semi-
infinite isothermal vertical plate in a doubly stratified non-Darcian porous media with variable mass diffusivity and 
variable thermal conductivity. The governing non-linear partial differential equations of flow were calculated by 
applying an implicit finite difference scheme of the Crank-Nicolson type. Various parametric impacts on 
concentration profiles, temperature, velocity, as well as Sherwood number, Nusselt number, and skin friction, were 
examined and presented in graphs. It is examined that there exists a significant temperature decrease for high Darcy 
number in stratified fluids. Also, it is detected that the presence of stratification produces a considerable drop in 
skin friction while increasing the mass and heat transfer rate. Results from the present were compared to available 
solutions, and they matched up well.  
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1. Introduction 

 
 Analysis of heat and mass transmission in porous media and thermal stratification is crucial in 
engineering and industrial settings, both theoretically and practically. The formation of layers in a fluid with 
thermal stratification results from temperature gradients. Refrigeration and air conditioning, geothermal 
reservoirs, petroleum industries, boundary layer controls, packed-bed catalytic reactors, building insulation, 
and heat exchange between the soil and atmosphere are all good examples of where thermal stratification 
porous mechanisms have been put to use. For past decades, combined buoyancy impacts in the free convective 
flow problem have received great interest. The problem has been analyzed by various authors using various 
techniques. This analysis on free convective mass and flow transfer effects in innumerable industrial and 
environmental applications such as in nuclear power plants, food processing, geophysical flows, chemical 
catalytic reactors, and polymer production, etc. Gebhart and Pera [1] used similarity solution to analyze the 
nonlinear problem of combined buoyancy effects induced by vertical natural convective flow.  
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Numerical method of explicit finite difference scheme was used by Hellums and Churchill [2], Callahan and 
Marner [3], and Soundalgekar and Ganesan [4]. Later, in that line, several authors analyzed free convective 
fluid past vertical plate using various analytical and numerical techniques. In recent times, Abdul Kafoor Abdul 
Hakeem et al. [5] Investigated the radiation impacts on non-incompressible, free convective nanofluid flow by 
the method of Homotopy analysis employing a vertical plate. 
 Owing to the significant impact of convective free boundary layer flow in porous media, many authors 
widened the field and investigated the analysis of mass and heat transfer processes in porous medium. This is 
because of its diverse usage in industries and many ecological problems such as geothermal power plants, 
nuclear waste management, petroleum recovery, filtration processes, packed bed chemical reactors, etc. Non-
Darcian inertia effects are explored in terms of their significance and the scope of their applicability in light of 
the various effects incorporated in [6-8]. Bejan and Nield [9], and Pop and Ingham [10] pioneered the studies 
in porous media intensively. Most of the initial studies on porous media were analyzed based on Darcy's law 
which exists for lower velocities and small porosity. Cheng and Minkowycz [11] pioneered free convective 
flow embedded in a porous media past the vertical plate which has been enlarged by many researchers like 
Raptis et al. [12], Lai and Kulacki [13], etc. later. As Darcy's law fell short in conditions where the flow has 
high velocity near the wall (inertial effects) and flow with boundary effects, researchers accounted for those 
effects by Forchheimer's extension and Brinkman's extension respectively in the later studies. 
 The effects of fluid flow such as micropolar fluid, nanofluid, second-grade fluid, power-law fluid, etc., 
in porous media on a vertical plate were also explored in innumerable researches. A.J. Chamkha et al. [14] 
inspected power-law non-Newtonian fluid flow in the non-Darcian porous media past a vertical plate. Farhad 
Ali et al. [15] observed the effect of II-grade fluid on an oscillating isothermal vertical plate in porous media. 
Similarly, it is equally fascinating to analyze the outcomes in a porous medium if the fluid is stratified. This is 
because stratification is another crucial aspect to be considered in mass and heat transfer analysis in porous 
media. Fluid stratification takes place due to the difference in fluid temperature, concentration., or density. The 
impact of thermal stratification in porous media and a detailed survey on the same can be found in Nield and 
Bejan [9]. Researches shows that the impacts of thermal stratification on the process of heat removal in porous 
media are substantial and a significant heat transfer has been observed, considering the thermally stratified 
effects in a porous medium. A comprehensive understanding of stratification is required in designing a nuclear 
reactor system, failing which leads to extreme crisis in reactors. In the case of pressurized water reactors, 
stratification of corium and metallic components may cause significant heat transfer effects. In the case of still 
water like ponds and lakes, examining the stratification of concentration and temperature differences of oxygen 
and hydrogen is of immense importance as this has an impact on the progress rate of every cultivated species. 
Also, the attainment of high energy effectiveness can be attained with improved stratification by solar 
engineers. In an earlier period, Chen and Eichhorn [16] explored a natural convection of thermally stratified 
medium over a heated vertical surface with the non-similarity method. In addition to this Srinivasan and 
Angirasa [17,18] made use of the finite difference technique to estimate this same type of problem. 
 Subsequently, due to immense applications of stratification in porous medium in various fields such 
as geophysical flows, problems of power production, etc., studying the convective boundary layer flow in 
stratified Darcian or non-Darcian porous media has received considerable interest. Hung and Chen [19] 
examined the convective free flow in thermally stratified porous media over an impermeable vertical plate by 
considering the non-Darcy effects. Magyari et al. [20] studied the 1-D glow on an infinite vertical plate 
embedded in thermal-porous stratified media for unsteady heat transfer convection. Where a considerable 
amount of work was also done on studying the impacts of thermal stratification mass and heat transfer in a 
porous medium, very few studies have been done on how mass and thermal stratification impact the mass and 
heat flow in porous mediums. Shalini Gupta and Rathish Kumar [21] studied the effect of mass and thermal 
stratification in a natural non-Darcy convection flow from a wavy vertical wall to porous media. 
Srinivasacharya and Surendar [22] examined the mixed convective along a vertical plate embedded in a doubly 
stratified porous media. Maria Naegu [23] worked on the analysis of free convective flow due to constant mass 
and heat fluxes over a wavy vertical wall in a doubly stratified non-Darcy porous medium. 
 However, the preceding studies were done with the assumption that physical properties have constant 
thermal conductivity and mass diffusion, but practical situations require properties with variable 
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characteristics. Physical properties like thermal conductivity are prone to vary with temperature while mass 
diffusion coefficient varies with concentration. In the process of astonishing armor plate etc., it is essential to 
treat diffusivity as concentration-dependent because neglecting that dependency may not lead to the desired 
resultant product. Carl Wagner [24] investigated the problem of diffusion and studied that when the solid silver 
chloride is used as a solvent, due to the exchange of lead and silver ions this diffusion coefficient becomes 
proportional to the lead chloride’s concentration. Willbanksrt [25] analyzed a 1D diffusion problem in a semi-
infinite media with a linearly varying concentration in response to the diffusion coefficient.  
 In a similar behavior, the processes of refrigerating metallic plates in a cooling path and tinning of 
copper wires, etc. The temperature distributions are significantly dependent on the fluid properties. During 
such processes, as the material experiencing the treatment encounters a major change in its temperature, the 
change in its thermal conductivity may be significant. With this viewpoint, Ibrahim and Elbashbeshy [26] came 
up with a study on natural convection steady flow on a heated plate placed vertically by considering the thermal 
diffusivity and viscosity variations with changes in temperature values. Hassanien and Rashed [27] studied the 
mass diffusion, thermal conductivity, and variable viscosity, related to the non-Darcy-free convection on a 
cylinder placed horizontally in porous media. Natural convection through a non-isothermal vertical plate in a 
porous material saturated with a nanofluid is analyzed by Gorla and Chamkha [28]. Hamad et al. [29] examined 
mass and heat transfer effects within a porous plate by applying the thermal convection boundary condition 
and concentration-dependent diffusivity calculations while Hamad et al. [30] studied the mass and heat transfer 
effect, along boundary conditions of a porous plate with varying viscosities and variable thermal 
conductivities. Abdou [31] simulated the unsteady flow of the boundary layer when a stretch plate is in the 
porous media with thermal conductivity and viscosity dependent on temperature values. In a thermally 
stratified medium, the importance of oscillating mixed convective stratified fluid and heat transfer properties 
at various stages of a horizontal, non-conducting cylinder is addressed by Zia Ullah et al. [32]. Non-Newtonian 
fluid flow over an extensible Riga surface through a permeable medium is described by Yu-Ming Chu et al. [33]. 
Entropy generation, radiation, varying thermal conductivity, varying mass diffusivity, heat production, and 
convective circumstances are highlighted. The Cattaneo-Christov theory is used to analyze heat and mass flows.  
 In view of the significance of factors discussed above, besides examining the doubly stratified impacts 
in non-Darcy porous media, it is also interesting and realistic to consider the variable fluid properties like 
concentration and temperature depending on mass and thermal diffusivity respectively as they may play an 
important part in the mass and heat transfer process in doubly stratified porous media. Also, none of the former 
studies attempt to investigate the natural and unsteady convective flow on an isothermal vertical plate 
immersed in doubly stratified non-Darcian porous media having different thermal conductivity and variable 
mass diffusion. The analysis of the present work will aid in understanding the difficulties and complications 
in the problem of reactors and electrochemical processes. The effects of physical constraints on concentration, 
temperature, and velocity profiles with its skin friction values, Sherwood and Nusselt numbers were also 
analyzed and illustrated graphically. 
 
2. Mathematical analysis 
 
 The problem of, laminar free convective, unsteady, viscous, and incompressible 2D flow on a semi-
infinite vertical plate in a doubly stratified non-Darcian porous medium is taken for the present analysis. At 
the initial 't 0=  time, assume that the plate and the fluid were sustained at the same concentration and 
temperature. On ' ,t 0>  time the wC  is the concentration and wT  is the temperature of the plate. Concentration 
and temperature in the ambient of the medium are considered to linearly increase with height while at x 0= , 

,0T∞  and ,0C∞  are considered respectively. Except for the body force terms, the thermal conductivity of the 
fluid, and diffusivity in concentration, all the properties of the fluid are unchanged. The thermal conductivities 
and concentration diffusivities of fluid were considered to linearly vary with fluid temperature and 
concentration respectively. A vertical x-axis is for values of the plate, and a y-axis is the normal to the plate, 
as depicted in Fig.1.  
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Fig.1. Physical model diagram. 
 
 With the assumption stated above, equations of the boundary layer that governs the flow, applying the 
Boussinesq’s approximation (Herrmann Schlichting [34]) are given below: 
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Initial and boundary conditions are as follows: 
 
   ' ,t 0≤      ' ,t 0≤      ,u 0=      '

, ,xT T∞=      '
,xC C∞= , 

 
  ' ,t 0>      ' ,t 0≤      ,v 0=      ' ,wT T=      '

wC C=      at     y 0= , 
   (2.5) 
  ' ,t 0≤      ,u 0=      '

, ,0T T∞=      '
,0C C∞=      at     x 0= , 

 
   ,u 0→      '

, ,xT T∞→      '
,xC C∞→      as     y → ∞ .  

 
The non-dimensional quantities are defined as follows:  
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Here with the assumption that thermal conductivity varies linearly with temperature. Hence, these fluctuations 
in thermal conductivities in dimensionless temperature are written as (Elbashbeshy and Ibrahim [26]) 
 
  ( ),0k k 1 T= + β  (2.6) 
 
where 0k  is the constant thermal conductivity of free stream fluid and β is the thermal conductivity parameter. 
Similarly, assume that the mass diffusivity varies linearly with concentration and hence the variation of 
concentration diffusivity in dimensionless concentration is written in the form (Hamad et al. [29]); 
 
  ( ),0D D 1 bC= +  (2.7) 
 
where 0D  is the constant concentration diffusivity of the free stream fluid and b is a parameter for mass or 
concentration diffusivity. 
The dimensionless form of Eqs. (2.1) to (2.4) are attained as: 
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Consequently, the boundary conditions given in Eq.(2.5) “are reduced as follows, 
 
  ,t 0≤      ,U 0=      ,V 0=      ,T 0=      C 0= , 
   (2.12) 
  ,t 0>      U 0= ,     V 0= ,     ,TT 1 S X= −      MC 1 S X= −     at    Y 0= , 
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  ,U 0=      ,V 0=      ,T 0=      C 0=      at     X 0= , 
   (cont.2.12) 
  U 0→ ,     ,T 0→      C 0→      as     Y → ∞ .   
 
3. Numerical procedure 
 
 A Crank-Nicolson finite difference scheme with improved convergence speed and unconditional 
stability is applied for solving the non-linear, two-dimensional, coupled partial differential Eqs. (2.8)-(2.11) 
with boundary and initial conditions of Eq.(2.12).  
An integral region is taken as a rectangle considering the values, maxX 1=  and maxY 14=  sides, that 
correspond to it Y = ∞ . After investigations, the maxY  was considered to be 14 and so boundary conditions of 
Eq.(2.12), two at the end are satisfied. In Fig.2, the X, Y and t directions, grid sizes are chosen as .t 0 01Δ =

.X 0 05Δ = , and .Y 0 25Δ = . Assuming the grid nodes I on X, j on Y, and k on t directions.  
 

 
 

Fig.2. Discretization of domain. 
 
All the 1st and 2nd order partial derivatives corresponding to spatial and time coordinates mentioned in Eqs. 
(2.8)-(2.11) are approximated as follows. 
 Using the finite difference formula, the 1st-order derivatives w.r.t time are approximated by: 
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Δ
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With ψ signifying U, V, T, and C while i and j refer to the space coordinates, and k signifies time. The central 
finite formula is used to approximate the 1st order derivatives with respect to Y as: 
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The central finite formula is used to compute the 2nd-order derivatives with respect to X and Y;  
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respectively. The transformed difference Eqs. (2.8)-(2.11) obtained by finite difference method. There are 
tridiagonal systems on all the internal nodal points, for i-level particularly, the above difference equations were 
calculated with the Thomas algorithm same as that by Carnahan et al. [35]. The computations of C, T, U, and 
V were carried out on (k+1) time intervals, this process repeats till a steady state is achieved at every nodal 
point. In this repeated process the difference of computation values (U, T, C) on two consecutive time levels 
lower than 10-5 for each grid is assumed to be steady state. 
 This scheme is considered to be stable unconditionally as shown by Soundalgekar and Ganesan [4] by 
using the Von-Neumann technique. As XΔ , YΔ and tΔ  decreases to zero; ( )2 2O t X YΔ + Δ + Δ the local 
truncation error tends to zero and ensures the compatibility of this system. The convergence of this scheme is 
ensured by proving the compatibility and stability of this scheme. 
 
4. Skin friction, Sherwood and Nusselt number  
 
 Following is the dimensionless comparison of average and local values for “Sherwood Number, Nusselt 
Number, and skin friction.” Thus, the obtained non-dimensional values for the numbers: 
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Its non-dimensional form is estimated by: 
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 In Eqs. (2.17)-(2.22) the values are calculated by applying Newton-Cotes closed integration formulas 
and derivatives using a 5-pt. approximation formula 
 
5. Results and discussion 
 
 To acquire an explicit vision of the problem, the numerical observations are presented with graphical 
illustrations. Also, the influence of the variable β thermal conductivity parameter is analyzed for air in the 
current investigation. Since β is considered between 0 and 6 for air (Elbashbeshy and Ibrahim [26]), the current 
analysis also examined for , ,0 3 5β =  and 6. The variable concentration diffusivity parameter is inspected for 

, . , . , .b 0 0 2 0 4 0 5=  and 0.6. The influence of the inertial effect is examined for . , , .F 0 5 1 1 25=  and 2 and 
permeability for . ,Da 0 5 1=  and 2. Mass and Thermal stratification for the range, T0 S 1≤ ≤ , respectively 
(Shalini Gupta and Rathish Kumar [21]), the study has been conducted analyzing the impacts of mass and 
thermal stratification. It was chosen for air with the Prandtl number 0.73, while the Schmidt number is 0.2 
(hydrogen). This Schmidt number value exhibits a physically buoyant gas diffusion in the boundary layer 
convective flow at 250 C°  and one atmospheric pressure. In order to observe physical parameters in action, 
the temperature, concentration, and velocity of fluid flows are represented graphically. 
 The particular solution of the current results is related to the available findings in the literature, to 
ascertain the precision of the result. Treating the fluid properties are constant where the doubly stratified porous 
medium is not present, on . , . , Pr . ,N 0 1 Sc 0 94 0 7= = =  calculated velocity profiles were also compared to its 
available solution of Pera and Gebhart [1]. This comparison is illustrated in Fig.3. For , . ,SM 0 ST 0 004= =

, . and Pr . ,N 2 Sc 0 7 0 7= = =  under the same conditions of constant fluid properties when the non-Darcy 
porous medium is not used, resulting concentration and temperature profiles are compared to those from 
Angirasa and Srinivasan [18], as shown in Fig.4. The current analysis’s findings agree with the findings of 
earlier conducted methods as depicted in Figs 3 and 4.  

  

 
 

Fig.3. Velocity profiles comparison with Gebhart and Pera [1]. 
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Fig.4. A comparison of Srinivasan and Angirasa's temperature and concentration profiles [18]. 
 
 Figures 5 and 6 present the temperature and velocity profiles that were changed by ST, the thermal 
stratification parameter. Temperature and velocity profiles descend as the temperature stratification parameter is 
increased. Moreover, subsequent to a certain increment in ST, it is noticed that the dimensionless temperature 
attains negative values. The negative value attainment is because of an increase in thermal stratification inducing 
an increase in ambient temperatures with fixed height on a vertical location, the fluid present under is cooler as 
compared to the ambient temperature. Consequently, there is a downstream temperature defect and with ST on 
the rise, this defect also increases. These characteristics have also been noted and expressed by Yang et al. [36] 
earlier. The decrease in temperature suppresses the buoyant force and leads to a deceleration in the velocity. After 
a certain state, the flow reverses due to a large temperature gradient after the fall in flow persists for some distance 
from the plate towards the free stream (Fig.7) portrays that increasing levels of ST further raises the concentration. 
As a consequence of the decrement in temperature and velocity, its concentration level increases. 
 

 
 

Fig.5. Influence of ST and SM on velocity profiles. 
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 Figures 5 and 7 sketch an increment in SM (mass stratification parameter) that falls down the profiles 
of concentration and velocity. The rise in mass stratification linearly raises the ambient conc. with height, 
similar to the impact of thermal stratification. When a reduction in concentration gradient is considered as an 
increasing buoyancy flow, the decreased buoyancy reduces the concentration gradient and also lowers its 
velocity. Furthermore, wall concentration decreases compared to ambient for a high mass stratification, and 
thus a negative value is arrived. From Fig.6, it is apparent that the rise in SM escalates the temperature profiles. 
Thus, an increment in SM, falls down the cooler region, with negative temperatures, until the position of the 
cold region vanishes. 

 

 
Fig.6. Influence of ST and SM on temperature. 

 

 
Fig.7. Influence of ST and SM on concentration. 

 
 Figure 8 depicts that the velocity of the flow accelerates for high Darcy number Da. Physically, for 
large Darcy numbers, the permeability increases, and hence the porosity on the medium is augmented. Thus, 
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a rise in the fluid flow is observed. Due to this the fluid with a temperature less than the ambient comes up 
rapidly from below which increases the temperature gradient. Therefore, the temperature descends. Also, it is 
examined from Fig.9, that the temperature defect increases for higher Darcy numbers in stratified fluids. In a 
similar behavior, the species concentration declines for a high Darcy number as observed from Fig.10. 
  

 
 

Fig.8. Darcy and inertial effects on velocity. 
 

 
 

Fig.9. Darcy and inertial effects on temperature. 
  
 Figures 8 and 9 exhibit that an increment in Forchheimer number F decelerates the velocity and 
enhances the temperature. Physically, an increment in inertial effect in porous media represents that more 
resistance is generated to fluid motion which creates a drag and thereby impedes the flow velocity. This effect 
is observed when it is closer to the wall or when it is reversed away from the wall. As a consequence of the 
reduction in velocity the thermal boundary layer thickens. Figures 10 shows that higher Forchheimer drag 
decreases the concentration. 
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Fig.10. Darcy and inertial effects on concentration. 
 
 Figures 11 and 12 display temperature and velocity elevations along with β, the thermal conductivity 
parameter. It is evident that the fluid’s thermal conductivity is enhanced with the rise in thermal conductivity 
parameter. This in turn increases the fluid temperature as well as the velocity. However, after a certain distance, 
the velocity of the fluid flow takes a reverse act. Also, Fig.13 exhibits retardation in species concentration as 
a parameter of thermal conductivity β rises. It is prominent from the figures that considerable error is 
encountered by ignoring the effect of variable thermal conductivity. 

 

 
 

Fig.11. Impact of β and b on velocity profiles. 
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 Figure 11 represents that an increment in variable mass diffusivity parameter b drops the velocity 
initially and then rises. It is noted from Figs 12 and 13 that, decrement in mass diffusivity parameter b results 
in decreasing temperature and enhances concentration profiles. Further, the velocity and concentration descend 
significantly when there is no mass diffusivity parameter as per the observation. Consequently, it is essential 
to consider the fluid properties as variable as it may lead to inaccurate prediction in the study of flow behavior. 

 

 
 

Fig.12. Impact of β and b on temperature. 
 

 
 

Fig.13. Impact of β and b on concentration. 
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Fig.14. Local skin friction for variable Da, F, β, and b. 
 

Figure 14 and 15 depict the impact on wall shear stress of the parameters in both stratified and 
unstratified flow. It is discovered that an increment in either β or b or Da increases the local and average skin 
friction while a decrement is noted for an increment in Forchheimer number F. For a high Darcy number, a 
rise in permeability enhances the velocity of the flow which gives rise to shear stress along the wall. On the 
contrary, an enhancement in the Forchheimer number develops the drag effect which in turn impedes the flow 
and hence inhibits the shear stress between the plate and fluid. Besides, it is detected that the presence of 
stratification produces a considerable drop in skin friction. 
 

 
 

Fig.15. For different Da, F, β, and b the average skin friction. 



R.K. Suganthi et al.  173 

 

 
 

Fig.16. Local Nusselt number for different Da, F, β, and b. 
 

Figure 16 illustrates that a lift up in either variable mass diffusivity parameter or Darcy number promotes 
the level of heat transfer. And is evident from Fig.9, that for a high Darcy number the permeability of the 
medium rises leading to a large temperature gradient and thereby increasing the Nusselt number. Also, when 
there is an enhancement in F lowers the Nusselt number. Physically, this is apparent as a rise in the 
Forchheimer drag increases the temperature and thereby reduces the temperature gradient. Hence, a reduction 
in the rate of heat transfers.  

 

 
 

Fig.17. Local Sherwood number for different Da, F, β, and b. 
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 Fig.17, shows that the local mass transfer rate increases for the rise in either variable mass diffusivity 
parameter thermal conductivity parameter, or Darcy number while decreases for the Forchheimer number. 
However, an increment in the mass diffusivity parameter or thermal conductivity parameter increases both 
average and local mass and heat transfer rate significantly as noted from Figs. 16-19. The onset of this 
significant increment is from the initial regime of the flow nearer to the wall. Further, it is noted that in the 
absence of stratification, a decrease in local Sherwood and Nusselt number is observed. 

 

 
 

Fig.18. Effect of varying thermal conductivities on average Nusselt number. 
 

 
 

Fig.19. Effect of different mass diffusivities on average Sherwood number. 
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6. Conclusion 
 
 This analysis investigates an incompressible, transient, and free convective flow on a vertical plate in 
a non-Darcian doubly stratified media having varying mass diffusivity and changing thermal conductivity. The 
governing eqns. were calculated by using the Crank-Nicolson type finite difference scheme. Acquired results 
were compared with published results which were referred to in the literature. The impact of the physical 
parameter on average and local skin friction, Sherwood, and Nusselt numbers were discussed in the analysis. 
We validated the particular solutions presented in this paper by conducting a comparison with the methods 
presented in the paper published previously in the field. In comparison with the literature, our study results 
were in good agreement. We summarized our findings as follows:  
1. Forchheimer number, or mass stratification parameter, or high thermal stratification parameter drops the 

velocity. 
2. Thermal stratification lowers temperature and enhances concentration profiles, whereas mass stratification 

parameters and Forchheimer numbers have the opposite effect.  
3. Due to higher values of ST, the temperature defect arises and increases. The temperature defect increases 

for a higher Darcy number in stratified fluids.  
4. For a high Darcy number, velocity accelerates while temperature and concentration decelerate. 
5. The velocity escalates as the rise in thermal conductivity parameter, temperature, and retardation noted in 

species concentration whereas the reverse effect is observed for mass diffusivity parameter 
6. Non-Darcian effect on wall shear stress is low in stratified fluid while a reverse is noted on the rate of heat 

and mass transmission.  
7. An increment in the thermal conductivity or mass diffusivity parameter increases both the average and 

local heat transmission rate significantly. 
Future research will address the local thermal equilibrium of the porous media with the nanofluid in more detail. 
 
Nomenclature 
 
 b – parameter of mass diffusivity variable 

 'C  – fluid concentration  

 C  – dimensionless fluid concentration  
 D  – coefficient of mass diffusion  
 0D  – constant mass diffusivity of the free stream fluid 
 Da  – Darcy number 
 F  – dimensionless Forchheimer coefficient (or) number 
 chF  – Forchheimer coefficient 

 Gr  – thermal Grashof number 

 k  – thermal conductivity 
 0k  – constant thermal conductivity for free stream fluid 

 pK  – porous media permeability 

 N  – parameter of buoyancy ratio  
 XNu  – local Nusselt number 

 XNu  – average Nusselt number 
 Pr  – Prandtl number 
 Sc  – Schmidt number  
 XSh  – local Sherwood number 

 XSh  – average Sherwood number 



176  Variable thermal conductivity and mass diffusivity effects in … 

 TS  – thermal stratification parameter 

 MS  – mass stratification parameter 

 't  – time 
 t  – dimensionless time 
 T ′  – temperature of fluid 
 T  – temperature of dimensionless fluid  
 U  – dimensionless velocity component along the X-direction 
 u – velocity component along the plate 
 v  – velocity component normal to the plate 
 V – dimensionless velocity component along Y-direction 
 x – spatial coordinate along the plate 
 X – dimensionless spatial coordinate along the plate 
 y – spatial coordinate normal to the plate 
 Y – dimensionless spatial coordinate normal to the plate 
 
Greek symbols 
 
 α  – thermal diffusivity 
 β  – variable thermal conductivity parameter 

 Cβ  – volumetric coefficient of expansion with concentration 

 Tβ  – volumetric thermal expansion coefficient 

 ν  – kinematic viscosity 
 ρ  – density 

 Xτ  – average skin friction 

 Xτ  – local skin friction 

 
Subscripts 
 
 ∞  – free stream conditions 
 w – wall conditions 
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