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The time dependent Couette flow (CF) of a conducting fluid formed between two concentric tubes with variable 
electric potential and accelerated motion of the outer cylinder is investigated. The governing electric field potential 
as well as the momentum equivalences are gotten from Poisson-Boltzmann and Navier Stokes Eqs respectively. As 
a promising tool for solving time-dependent problems, the Laplace-transform technique is employed to get 
analytical solution for electric field and velocity profile in Laplace realm. By employing the Riemann sum 
approximation (RSA) simulation, the results are obtained numerically in time-domain. During the graphical and 
numerical simulation of obtained results, it is found that the magnitude of electrokinetic effect as well as Debye-
Hückel parameter play important role in flow formation and mass flow rate in the horizontal annulus. Further, 
velocity, mass flow rate, and skin-friction decrease with increase in Debye-Hückel parameter at all-time regardless 
of the mode of application of magnetic field. In addition, mass flowrate can be enhanced with increasing Hartmann 
number when the magnetic-field is fixed relative to the moving cylinder.  
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1. Introduction 

 
 Electrokinetics refer to the study of electrically driven mechanical motion of charged particles or fluid. 
This phenomenon was first observed by Reuss in 1808, in the electrophoresis of clay particles [1]. This study 
continues to gain attention owing to its applications in water supply, medical science and electro-mechanical 
devices. One of the most significant application is the design of micropumping devices used in drug delivery, 
fuel supply and biochemical reactive platform [2]. Generally, an electric double-layer (EDL) is induced when 
solid surfaces which usually acquire a negative electric charge comes in contact with a fluid containing 
dissociated salt [3, 4]. This interaction generates an electric force near the wall, thereby provoking fluid motion, 
which subsequently transmitted to the bulk fluid by viscous forces [5].  
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 It is well-known that the basic factors controlling the flow-rate in electroosmotic pumping are: the 
strength of the externally applied electric field, the cross-sectional dimensions of the annulus, the microchannel 
surface charge density and the ion density/PH of the working fluid [6]. Although increasing the magnitude of 
externally applied electric field enhances flow-rate, but this can cause a huge increase in the temperature of 
the fluid and as a result increasing the Joule heating effect, which is not advantageous [4]. Therefore, other 
mechanism must be used to achieve high volume flow rate. A lot of efforts and researches both theoretically 
and experimentally have been conducted to solve the aforementioned problem [7-13]. Most of which have 
used pulsating force as a control mechanism for flow-rate. 
 The study of magnetohydrodynamics in annular geometry has rapidly become a research field due to 
its technological applications, such as drilling operation of oil and gas wells. By assuming that the magnetic 
lines of forces are fixed relative to the fluid, Katagiri [14] investigated the Couette flow formation of viscous, 
incompressible and electrically conducting fluid between two-infinite parallel plane walls subjected to 
transversely applied magnetic field and found that skin-friction increases with increase in Hartmann number. 
Later, Muhuri [15] extended the problem by imposing a uniform suction velocity on the walls and obtained 
that skin-friction is enhanced by increasing suction parameter. Singh and Kumar [16] on the other hand 
considered the same problem by assuming that the magnetic lines of force are fixed relative to the moving 
plate for both the impulsive and accelerated motion of the moving plates and concluded that the effect of 
magnetic field is to increase fluid velocity for both cases.  
 In annular geometry, the study of electrically conducting fluid was first carried out by Globe [17]. 
Since then, different articles have been credited to capture a more physical phenomena [18-22]. Jha and Apere 
[22], investigated the unsteady MHD Couette flow in an annuli by using the Riemann-sum approximation 
technique to obtain the results from Laplace domain to time domain. They deduced that skin-friction is a 
decreasing function of Hartmann number at the outer surface of the inner cylinder. Also, they did not analyse 
the role of magnetic field as well as accelerated motion of the boundary on volumetric flow-rate. Other recent 
related articles on electroosmotic flow and magnetic field can be seen in [23, 24]. 
 The novelty of the current work is the development of mathematical models to theoretically analyse 
the unsteady electrokinetic Couette flow in a horizontal annulus filled with electrically conducting fluid. One 
real-world application of this configuration can be found in the design and optimization of certain types of 
electromagnetic pumps. These pumps utilize the principles of MHD to move electrically conducting fluids, 
such as liquid metals or molten salts, without the need for any moving mechanical parts. Another physical 
application of start-up flow can be seen during the ignition of a rocket engine, the start-up flow plays a vital 
role in establishing the necessary conditions for efficient combustion and thrust generation. This entire article 
can be viewed as an extension of [22] by incorporating the electrokinetic effect due to its applications in 
micropumping devices. Further, we intend to investigate the role of magnetic field in transverse direction as 
well as accelerated motion of the cylinder surface on volumetric flow-rate and skin-friction, so as to serve as 
a control mechanism. The governing Eqs as well as the analytical solutions are presented in section two while 
the discussion of results and conclusions respectively follow in subsequent sections. 
 
2. Mathematical construction 
 
 A time dependent, fully developed, laminar flow of conducting fluid between two concentric tubes 
with variable electric potential is considered. The radiuses of the inside and outside cylinders are assumed to 
be 1r  and 2r  respectively. The inner cylinder is assumed fixed outside while the outer tube is assumed to be 

augmented with a velocity comparative to mη , where η  is time and m  is a positive integer. The flow is driven 
by combined external voltage gradient and accelerated motion of the outer cylinder. Electric potential , 1 2ζ ζ  
such that 2 1ζ > ζ  are applied on the surface of the inner tube and outer cylinder respectively (see Fig.1). The 
EDL follows Boltzmann distribution, so that the convection due to ion effects are insignificant. Also, the wall 
potentials are assumed small, so that Debye-Huckel linearization to be useable. All other physical 
thermodynamics parameters are assumed constant.  
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Electric field potential 
 
 Following assumptions above, the electrical potential is obtained as: 
 

  2 eρ
∇ φ = −

ε
. (2.1) 

 

 
 

Fig.1. Schematic diagram of the problem. 
 
The potential, φ  is due to combination of externally forced field Φ  and EDL potential .′ψ  Where eρ  is the 
net volume charge density of symmetric electrolyte and defined as [3]: 
 

  sinhe 0
zF2FzC
R T

ψ ρ
′

′
= −  

 
,     1i j k

r r z
∂ ∂ ∂∇ = + +
∂ ∂φ ∂ ′

 
. (2.2) 

 
For fully developed flow, the external potential gradient is in the axial direction only ( )rφ = φ  and ( ) :r′ψ = ′ψ  
 

  sinh02FzC1 zFr
r r r R T
 ∂ ∂ψ ψ   = 

′ ′
′   ∂ ∂ ε    

, (2.3) 

 
subject to the boundary condition: 
 
  ( )1 1r′ψ = ζ ,     ( )2 2r′ψ = ζ  (2.4) 
 
where , 1 2ζ ζ  are zeta-potential at the surfaces of the cylinders. 
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Since the wall potential are assumed low enough for Debye-Huckel linearization to be valid, Eqs (2.3) and 
(2.4) in dimensionless form become [12]: 
 

  
2

2
2

d 1 d 0
R dRdR

ψ ψ+ − κ ψ = , (2.5) 

 
  ( ) r1ψ = ζ ,     ( ) 1ψ λ = .  (2.6) 
 
Velocity profile 
 
 The momentum equation governing the flow formation of an electrically conducting fluid in a 
horizontal concentric cylinder is obtained from the Navier-Stokes equation in vectorial form as [20]: 
 

  ( ) 2
f e z

v v v p v E JXB
t ′

∂ ρ + ⋅∇ = −∇ + μ∇ + ρ + ∂ 
.  (2.7) 

 
Considering a time dependent magnetohydrodynamically fully developed flow in a concentric annulus, the 
above equation reduces to: 
 

  ,
22 2

m0
z2 2

Bu u 1 u d 1 du Ku E
r r r drr dr

′
′ ′′

   σ∂ ∂ ∂ ψ ψ = ν + − − η + ε +       ∂η ∂ ρ∂   
 (2.8) 

 
subject to the following initial and boundary conditions: 
 
  ( ),u r 0 0= ,     ( ),1u r 0η = ,     ( ), m

2u r u ′η ′= η   (2.9) 
 
where m′  is a positive integer (in this current article, we have taken m 1′ =  which corresponds to the 
accelerated motion case), K  is a constant which assumes value zero or one, is such that: 
 

  
 when  is fixed relative to the fluid,

 when   is fixed relative to the moving cylinder.

0

0

0 B
K

1 B


= 



  (2.10) 

 
Using the following dimensionless parameters on Eqs (2.8) and (2.9), we have [3, 4, 22]: 
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subject to: 
 
  ( ),U R 0 0= ,     ( ),U 1 t 0= ,     ( ),U t tλ = .  (2.13) 
 
Mathematical solution of the problem 
 
 It is important to note that the electric potential equation is obtained from the Poison equation and 
therefore only the steady state solution is possible. Hence the solution of (2.5 and 2.6) is obtained as: 
 
  ( ) ( ) ( )1 0 2 0R C I R C K Rψ = κ + κ ,  (2.14) 
 
where , 0 0I K  are Bessel’s functions and 1C  and 2C  are constants defined by: 
 

  ( ) ( )
( ) ( ) ( ) ( )

0 r 0
1

0 0 0 0

K K
C

I K I K
κ − ζ κλ

=
κλ κ − κ κλ

,     ( ) ( )
( ) ( ) ( ) ( )

r 0 0
2

0 0 0 0

I I
C

I K I K
ζ κλ − κ

=
κλ κ − κ κλ

.  (2.15) 

 
Using the Laplace transform (LT) approach, analytical solution of Eq.(2.12) with condition (2.13) can be obtained: 
 

  ( ) ( ) ( ) ( ), , , exp
0

L U Y t U Y S U Y t St dt
∞

  = = −   ,     S 0> ,  (2.16) 

 
Applying the Laplace transformation of Eq.(2.16) on Eqs (2.12) and (2.13), we obtained: 
 

  
( ) ( )2 2

1 0 2 02
2 2

G C I R C K Rd U 1 dU M KU M S
R dR SdR S

 κ + κ   + − − = − −  . (2.17) 

 
Subject to: 
 

 ( ),U 1 S 0= ,     ( ), 2
1U S

S
λ = .  (2.18) 

 
Equation (2.17) with conditions (2.18) are solved to obtain fluid velocity in terms of modified Bessel’s function as: 
 

  ( ) ( ) ( ) ( )
( ) ( )

( ),
2

1 0 2 0
3 0 4 0 2 2 2 2

G C I R C K RM KU R S C I R C K R
S S M S S M
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where:  ( ) ( ) ( ) ( )
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The transient skin frictions at the outer and inner tunes are respectively obtained as follow: 
 

  ( ) ( ) ( ) ( ) ( )
( )

, 2 1 1 2 1
3 1 4 1 2 2

R 1

G C I C KdU R S
C I C K

dR S S M=

κ  κ − κ  τ = = δ  δ − δ  +  + − κ
,  (2.21) 

 

  ( ) ( ) ( ) ( ) ( )
( )
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3 1 4 1 2 2

R
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dR S S M=λ

κ  λκ − λκ  τ = = δ  λδ − λδ  +  + − κ
.  (2.22) 

 
Also, the dimensionless transient mass flux is given by: 
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 + λ λκ − κ  − λ λκ − κ     κ κ + − κ κ


 (2.23) 

 
 The solutions obtained for flow formation from Eqs (2.19)-(2.23) are in Laplace domain. Due to the 
complexity of the solutions, we employed the Riemann-sum approximation technique [27-29] to transform 
from Laplace domain to time domain. In this technique, functions in the Laplace domain, ( ),U R S  can be 
reversed to time realm by single summation: 
 

  ( ) ( ) ( ), , ,   ,   
mt

n

n 1

e 1 inU R t U R Re U R 1 1 R
t 2 t

ε

=

′  π = ε + ε + − ≤ ≤ λ  
  

′ ′
 

  (2.24) 

 
where Re  denotes to the real part of i 1= − , m  is the number of terms used in the RSA and ε  is the real 
part of the Bromwich contour. The RSA for the inversion involves a single summation for the numerical 
process. Its correctness depends on the value of ′ε  and the error led by m . According to Tzou [28], the value 
of tε  that best satisfied the result is 4.7. 
 
3. Results and discussion 
 
 This work is dedicated to investigate the effect of electric potential and applied magnetic field on Couette 
flow formation of a conducting fluid in a horizontal annulus. Before establishing the role of various governing 
parameters, it is expedient to first check the accuracy of the solution obtained by comparing with published article 
in literature in the absence of externally applied electric field. Table 1 presents a numerical comparison between 
the present work velocity with those of Jha and Apere [22] in the absence of electrokinetic effect ( )G 0= . From 
this numerical computation, an excellent agreement is found. Table 2 on the other hand presents percentage 
change due to application of electrokinetic effect. It is found that percentage change due to electrokinetic effect 
are pronouncedly felt around the center of the annulus. 
 To evaluate the role of governing parameters such as Debye-Hückel parameter ( )κ , Hartmann number 

( )M , annular gap ( )λ , magnitude of electric potential ( )G  and dimensional time ( )t , we typically used the 
values of the physical parameters that have been utilized in previously published work in electroosomotic flows 
[26]. For computational purpose, in this research, 0 30≤ κ ≤  to analyse the physical situations ranging from thin 
to huge EDL, the zeta potentials at the walls are assumed over r0 1≤ ζ ≤ , and 0 M 5≤ ≤  for Hartmann number. 
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Table 1. Comparison of velocity profile obtained versus those obtained by Jha and Apere [22] for 
. , . , .M 2 0 t 5 0 2 0= = λ = . 

 
 K 0=  K 0=  

 R  Jha and Apere [22] Present work ( )G 0=  Jha and Apere [22] Present work ( )G 0=  
1.0 0.0000 0.0000 0.0000 0.0000 
1.2 0.7230 0.7230 1.9539 1.9539 
1.4 1.4484 1.4484 3.1635 3.1635 
1.6 2.3077 2.3077 3.9571 3.9571 
1.8 3.4363 3.4363 4.5281 4.5281 
2.0 5.0001 5.0001 5.0001 5.0001 

 
Table 2. Percentage change in flow formation due to EDL for . , . , . ,  . , .rM 2 0 t 5 0 2 0 0 1 1 0= = λ = κ = ζ = . 
 

 G 0=  G 1=  
 R  K 0=  K 1=  K 0=  K 1=  ( )% changeK 0=  ( ) % changeK 1=  

1.0 0.0000 0.0000 0.0000 0.0000 0.00 0.00 
1.2 0.7230 0.7230 0.7854 2.0163 8.63 3.19 
1.4 1.4484 1.4484 1.5354 3.2505 5.99 2.75 
1.6 2.3077 2.3077 2.3913 4.0407 3.62 2.12 
1.8 3.4363 3.4363 3.4916 4.5834 1.61 1.22 
2.0 5.0001 5.0001 5.0001 5.0001 0.00 0.00 

 
Electric potential 
 
 Figure 2 depicts the dimensionless electrostatic potential in the annulus as a role of ζ . The EDL 
potential is found to be higher at the walls owing to the applied external voltage at the surfaces of the cylinders.  
 

 
 

Fig.2. Electric potential for different values of ζr  at .2 0λ = , .3 0κ = . 
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Also, as the zeta potential at the outer surfaces of inner cylinder leaves asymmetric state, ( )ζr 0≠ , the electric 
potential in the annulus gradually changes form a linear function to a parabolic function. This scenario can be 
attributed to the zeta-potential supplied at the surfaces of the cylinders. Furthermore, the least electric potential 
is felt towards the centre of the annulus for the case of symmetric wall zeta potential. 
 
Velocity profile  
 
 This sub-section is devoted to presentation of velocity profile results for the current problem. The 
figure captions with ( )a  signifies that magnetic field is fixed relative to fluid ( )K 0=  and caption ( )b  
indicates when magnetic field is fixed relative to moving cylinder ( )K 1= .  
 Figures 3a and 3b examine the impact of dimensionless time ( )t  and Debye-Hückel parameter ( )κ  
on velocity profile in the annulus for the cases when magnetic field is fixed relative to fluid and moving 
cylinder respectively. Fluid motion is improved by dimensionless time but retarded with increase in κ  
throughout the annulus. This is because increasing κ , decreases the EDL length and therefore reduces the 
externally applied voltage gradient which should have increased the kinetic energy and hence leading to 
decrease in fluid velocity in the annulus. Conversely, due to the accelerated motion of the outer cylinder, a 
nonstop increase in velocity is inevitable. 
 

 
 
Fig.3a. Velocity profile for different values of κ  at different time t for . , . , .M 2 0 2 0 G 2 0= λ = = , 

ζ . ,r 1 0 K 0= = . 
 
 Figures 4a and 4b illustrate fluid velocity as a function of Hartmann number ( )M  and magnitude of 
electric potential ( )G  for K 0=  and K 1=  respectively in the horizontal annulus filled with electrically 
conducting fluid. It is obvious from these graphs that velocity increase as G  increases regardless of the mode 
of application of the magnetic field. This is credited to the point that rise in magnitude of EDL rises with the 
electric potential and therefore enhancing fluid motion. Then again, velocity declines with growth in M  when 
K 0=  and the reverse trend when K 1= . This is because for the case K 0= , the Lorentz force is acting 
perpendicularly to direction of flow formation and therefore slowing down fluid velocity. Conversely, the 
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Lorentz force when K 1=  is acting in such a way that it assist flow formation and therefore increasing velocity 
profile in the annulus. 
 

 
 
Fig.3b. Velocity profile for different values of κ  at different time t for . , . , . ,M 2 0 2 0 G 2 0= λ = =

ζ . ,r 1 0 K 1= = . 
 

 
 
Fig.4a. Velocity profile for different values of G and M for .3 0κ = , . , . ,2 0 t 3 0λ = = ζ . ,r 1 0 K 0= = . 
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Fig.4b. Velocity profile for different values of G and M for .3 0κ = , . , . ,2 0 t 3 0λ = = ζ . ,r 1 0 K 1= = . 
 
Skin-friction 
 
 This sub-section is dedicated to investigating the impact of electrokinetic effect and Hartmann number 
on time-dependent Couette flow in a horizontal annulus filled with electrically conducing fluid. The study of 
shear stress continues to gain significant attention due to its engineering and technological applications, such 
as; high speed jets, construction of bridges and dams.  
 

 
 
Fig.5a. Skin-friction at the outer surface of the inner cylinder for different values of t and M at . , . ,G 2 0 3 0= κ =

( )ζ . , .r 1 0 K 0 R 1 0= = = . 
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Fig.5b. Skin-friction at the outer surface of the inner cylinder for different values of t and M at . , . ,G 2 0 3 0= κ =
( )ζ . , .r 1 0 K 1 R 1 0= = = . 

 
 Figures 5a and 5b exhibit the joint role of magnetic field ( )M  and dimensionless time ( )t  on skin friction 
at the outer surface of inner cylinder for K 0=  and K 1=  respectively in the presence of EDL. Result indicates 
that skin-friction increases with time irrespective of the mode of application of magnetic field. On the other hand, 
skin-friction declines with surge in M  when magnetic field is fixed relative to the fluid and increases otherwise. A 
careful look at Fig.5a advises that skin friction can be reduced to nothing in the presence of very strong magnetic 
field ( )M → ∞ , whereas in Fig.5b, skin-friction can be reduced M 0→  at the starting time of flow formation. 
 

 
 
Fig.6a. Skin-friction at the inner surface of the outer cylinder for different values of t and M at . , . ,G 2 0 3 0= κ =

( )ζ . , .r 1 0 K 0 R 2 0= = = . 
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Fig.6b. Skin-friction at the inner surface of the outer cylinder for different values of t and M at . , . ,G 2 0 3 0= κ =

( )ζ . , .r 1 0 K 1 R 2 0= = = . 
 
 Figures 6a and 6b show skin-friction at the inner surface of the outer cylinder for different values of 
M  at different time for K 0=  and K 1=  respectively. The reverse trend of Figs. 5a and 5b is found in Figs 
6a and 6b where skin-friction increases with M  at K 0=  and decreases at K 1= . This difference in result is 
due to the direction of analysis, in fact, this can be tagged as another checkmate for accuracy test. 
 

 
 
Fig.7a. Skin-friction at the outer surface of the inner cylinder for different values of κ , G and ζr  at . ,M 2 0=

. ,t 3 0= ( ), . .K 0 2 0 R 1 0= λ = = . 
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Fig.7b. Skin-friction at the outer surface of the inner cylinder for different values of κ , G and ζr  at . ,M 2 0=

. ,t 3 0= ( ), . .K 1 2 0 R 1 0= λ = = . 
 

 
 
Fig.8a. Skin-friction at the inner surface of the outer cylinder for different values of κ , G and ζr  at . ,M 2 0=

. ,t 3 0= ( ), . .K 0 2 0 R 2 0= λ = = . 
 
 Figures 7a and 7b demonstrate the combined role of zeta potential ( )rζ  and magnitude of EDL ( )G  on skin 
friction at cylinder surface for the cases K 0=  and K 1=  respectively. From these figures, the impact of electrokinetic 
effect is to increase skin-friction at this surface of the cylinder regardless of the mode of application of magnetic field.  
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Fig.8b. Skin-friction at the inner surface of the outer cylinder for different values of κ , G and ζr  at . ,M 2 0=

. ,t 3 0= ( ). , . .K 1 0 2 0 R 2 0= λ = = . 
 
 As check on accuracy, it is gotten that skin friction is not dependent of κ  for G 0= . Another important 
note from this figure is that skin friction declines with rise in κ . This is expected because rise in κ  signifies a 
thin EDL and therefore reducing the collisions in the horizontal annulus and hence reducing the force at which 
the electrically conducting fluid hits the outer surface of the inner cylinder. Further, G 0=  signifies that the 
only force responsibility for drag effect is due to the accelerated movement of the cylinder, therefore lower 
relative to the combined effect of electrokinetics in the horizontal annulus. A watchful look at these figures 
recommends that as κ → ∞  (which corresponds to no EDL), electrokinetic effect plays no role in the overall 
skin friction at the outer surface of inner cylinder irrespective of its magnitude. The skin friction is established 
to be maximum on the outer surface of inner cylinder for the case of symmetric zeta potential and when .K 1=  
One can recommend that the accelerated motion of the inner surface of outer cylinder leads to a decline in 
skin-friction at this surface. 
 Figures 8a and 8b on the other hand present the skin friction at the inner surface of outer cylinder for 
K 0=  and K 1=  respectively. A reverse trend of Figs 7a and 7b is observed. This is expected since it is in 
opposite direction to the first analysis.  
 
Mass flow-rate 
 
 Another distinctive analysis in the study of microfludic is the computation of the total fluid passing 
through the horizontal annulus in the fully developed state. Figures 9a and 9b portray the mass flowrate for 
diverse values of M  at different time in the horizontal annulus for the cases when K 0=  and K 1=  
respectively. It is observed that the amount of fluid continues to increase with time. This may be attributed to 
the continuous acceleration of the inner surface of the outer cylinder. Then again, the mass flow rate is observed 
to be a decreasing function of Hartmann number ( )M  when K 0=  and a converse result when K 1= . It is 
easy to conclude that for K 0=  in the presence of strong magnetic field ( )M → ∞ , there may be stoppage of 
flow formation. This can be attributed to the Lorentz force acting perpendicularly to flow direction which 
would have been strong enough to stop flow formation as well as mass flow rate. 
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 Figure 10 displays the effect of degree of electrokinetics and κ  on mass flowrate in the horizontal 
annulus for the case of symmetric zeta potential. It is obtained that mass flowrate decreases with κ  regardless of 
the mode of application of magnetic field. In addition, there exists a corresponding increase in Q  with increase 
in G . As κ → ∞ , electrokinetic influence plays no role in the overall mass flow-rate regardless of the magnitude 
of the EDL, thereby corresponding to the results of absence of externally applied voltage ( )G 0= . 
 

 
 
Fig.9a. Mass flow-rate for different values of M and t at . ,2 0λ = .3 0κ = , . ,G 2 0 K 0= = , ζ .r 1 0= . 
 

 
 
Fig.9b. Mass flow-rate for different values of M and t at . ,2 0λ = .3 0κ = , . ,G 2 0 K 1= = , ζ .r 1 0= . 
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Fig.10. Mass flow-rate for different values of , Gκ  and K at .t 3 0= , ζ .r 1 0= , . , .M 2 0 2 0= λ = . 
 
4. Conclusion 
 
 The time-dependent Couette flow of a conducting fluid in a horizontal annulus with combined role of 
electrokinetic and accelerated motion of outer cylinder is considered in this article. The governing equations 
are presented and changed to their various dimensionless forms by means of fit dimensionless parameters. 
Using Laplace transform technique, analytical solutions for electric field and fluid velocity are obtained. Based 
on the graphical represented of the obtained solutions, the subsequent inferences are drawn: 

1. Velocity, mass flowrate and skin-friction decrease with increase in Debye-Hückel parameter at all-
time regardless of the mode of application of magnetic field. 

2. Rise in the magnitude of electrokinetic results to corresponding rise in fluid velocity, mass flowrate 
and skin-friction.  

3. Mass flow-rate is enhanced when magnetic field is fixed relative to the moving cylinder than when it 
is fixed relative to the fluid. 

4. The combined presence of strong magnetic field and Debye-Hückel parameter can lead to no flow and 
consequently zero skin-friction at the outer surface of inner cylinder. 

5. Magnetic field and accelerated motion of the outer cylinder can serve as control mechanisms to lower 
or enhance the mass flow rate. 

 
Nomenclature 
 
 0c  – concentration of ions in bulk fluid 

 B  – magnetic field induction vector 
 0B  – magnetic field strength 

 zE ′  – electrostatic intensity 

 F  – Faraday’s constant 
 g  – acceleration due to gravity 

 G  – dimensionless parameter 
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 J  – current density vector 
 M  – Hartmann number 
 m′  – positive integer 
 LT – Laplace transform  
 R  – dimensionless radial coordinate 
 R′  – universal gas constant 
 r  – dimensional radial coordinate 
 1r  – radius of inner cylinder 

 2r  – radius of outer cylinder 

 T  – temperature of the fluid 
 t  – dimensionless time 
 U  – dimensionless velocity 
 u  – dimensional velocity 
 u′  – constant reference velocity 
 v  – vectorial velocity profile 
 z  – valence number of ions in the solution 
 z′  – axial coordinate 
 ε  – fluid permittivity  
 ζ  – zeta − potential (electrokinetic potential of the wall in the double layer) 

 rζ  – 2
1

ζ
ζ  (dimensionless) 

 η  – dimensional time 

 κ  – Debye-Huckel parameter 

 λ  – annular gap 2

1

r
r

 
λ = 
 

 

 Dλ  – Debye length 

 μ  – fluid dynamic viscosity  

 ν  – kinematic viscosity 
 ρ  – fluid density  

 fρ  – fluid density 

 eρ  – charge density 

 σ  – electrical conductivity of the fluid 
 τ  – skin-friction 
 Φ  – externally imposed electrostatic potential 
 φ  – electrostatic potential  

 ψ  – dimensionless EDL potential 

 ′ψ  – dimensional EDL potential 

 
Subscripts 
 
 1  – value at the surface 1r r=  

 λ  – value at the surface 2r r=  
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