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The present work is a contribution to the study of the effects of temperature on vibrations and stability of 
laminated composite plates using the finite element method. Thus, a DMQP/ml bending finite element with 4 nodes 
and 3 degrees of freedom based on the first order shear theory is extended to consider the effects of temperature on 
vibration and stability of laminated composite plates. The effect of the dependence of material properties on 
temperature as well as the effect of the of thermal stresses on the natural frequencies of laminated plates are studied 
simultaneously. A parametric study was carried out to highlight the effect of certain parameters on the vibration 
behaviour of the laminated plates. The study showed that in most cases the natural frequencies of vibration decrease 
with the increase in temperature. On the other hand, if the temperature inflicted on the plate coincides with the 
critical buckling temperature, the natural frequencies tend towards zero. Moreover, based on experimental data, 
this paper presents a study of the effect of temperature on the vibration behaviour of a laminated T300/5208 
Graphite/Epoxy plate. The study showed that temperature significantly changes the properties of the materials as 
well as the vibration behaviour of the plate.  
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1. Introduction 

 
 Nowadays, composite technology has become trendy and has seen extraordinary expansion due to the 
remarkable advantages it offers, such as high resistance, high stiffness, long duration under fatigue, and low 
density [1, 2]. Therefore, their use is growing compared to traditional materials in basically all industrial domains, 
including aeronautics, aerospace, automotive, and civil engineering. Due to their intense use in various industrial 
fields, composite structures often work in very difficult environmental conditions, such as high temperatures, 
which can significantly influence their behaviour. In addition to the effect of temperature on the stability of 
composite structures, changes in temperature may affect their vibration behaviour. The first and obvious effect 
of temperature is the deterioration of material properties of the structure, which induces a change in the vibration 
behaviour of the composite structure [3, 4]. The second effect of temperature elevation is the development of 
thermal stresses, which can change the effective stiffness of the structure. This change in stiffness is not associated 
with the change in material properties but depends only on the state of stress [3-5]. 
 In the following sections, we will present a review of the literature on important works on the effect 
of temperature on the vibration behaviour of composite laminated plates. This review will cover studies that 
have investigated the two effects of temperature, i.e., the effect of thermal stresses and the effect of 
temperature-dependent properties, on the vibration behaviour of composite laminated plates. 
 Tauchert [5] reported that one of the first works considering the vibration of plates with temperature-
dependent properties is due to Fauconneau and Marangoni [6]. The authors studied the effect of linear 
temperature distribution on the vibration of simply supported isotropic plates using the Rayleigh-Ritz method. 
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Dhotarad and Ganesan [7, 8] examined the effect of temperature gradient on the dynamic free response of thin 
rectangular plates subjected to steady-state one-dimensional and two-dimensional temperature distributions. 
There are also other works in the literature on the effect of temperature gradient on the vibration behaviour of 
isotropic and orthotropic plates with varying thickness. Rao and Satyanarayana [9] studied the effect of 
temperature gradient on the fundamental frequencies of isotropic plates having a linearly varying thickness. 
Ganesan and Dhotarad [10] extended their work reported in [7] to the study of orthotropic plates having linearly 
varying thickness. Thereafter, Tomar and his colleagues [11-14] presented a series of works on the thermal 
effect on the vibration behaviour of rectangular and circular plates, as well as orthotropic plates having variable 
thicknesses and temperature-dependent properties. Adeniji-Fashola and Oyediran [15] investigated the thermal 
gradient effect on the vibration of prestressed rectangular plates. Gupta and his colleagues [16-19] presented 
several studies on the vibration of plates with linearly varying thickness in both directions. The authors 
considered the thermal gradient effect and the non-homogeneity to study the free vibration of orthotropic, 
viscoelastic, and trapezoidal plates. 
 Literature has given much attention to the effect of thermal stresses on the vibration behaviour of plates 
compared to the aforementioned effect. However, in this work, for the sake of brevity, only work on composite 
plates will be mentioned. Nevertheless, for further details on the vibration behaviour of isotropic plates under 
the effect of temperature, the reader may refer to the reviews [20-23]. 
 It appears in the literature that work on the effect of temperature on the dynamic behaviour of 
composite plates began in the early 90s. Jeng-Shian et al. [24] studied the thermal impact on the vibration 
behaviour of thin laminated plates using the finite element method in 1992. The authors used an eight-nodded 
Lagrangian finite element. In the same year, Huang and Tauchert [25] presented an analytical study on the 
dynamic behaviour of doubly curved cross-ply laminated panels subjected to rapid heating. Noor and Burton 
[26] used an analytic three-dimensional elasticity solution for the free vibration and buckling of thermally 
stressed angle-ply composite plates. The authors considered different lamination and material parameters 
under arbitrary symmetric variation of the temperature in the thickness direction. In 1993, Bhimaraddi and 
Chandrashekhara [27] analysed the nonlinear vibrations, buckling, and post-buckling behaviour of heated 
angle-ply laminated plates using a parabolic shear deformation theory. Galea and White [4] investigated the 
effect of temperature on the dynamic response of thin CFRP plates experimentally as well as by using the finite 
element method. The authors presented a parametric study on cross-ply and angle-ply laminated plates under 
different boundary conditions and temperature distributions. The finite element method was also used by 
Chang and Shyong [28] to study the thermal impact on the dynamic behaviour of cylindrical laminated shells 
using a high order shear deformation theory. 
 Thereafter, Liu and Huang [29] investigated the linear and nonlinear free vibration of cross-ply 
laminated plates subjected to a change in temperature using a first-order shear deformation finite element. Lee 
and Lee [30] investigated the vibration behaviour of thermally post-buckled anisotropic plates using first-order 
shear deformable plate theory. Similar studies were also found on the vibration behaviour of piezo-laminated 
composite plates embedded with shape memory alloy fibres subjected to thermal loads [31, 32]. 
 In 1999, Adams and Bert [33] examined the dynamic response of a simply supported symmetrically 
cross-ply laminated plate subjected to a thermal shock. Librescu and Lin [34] studied the static and dynamic 
nonlinear response of laminated plates and shells subjected to thermomechanical loading. Thereafter, 
Shen,Zheng and Huang [35] studied the dynamic response of shear deformable laminated plates exposed to 
thermomechanical loading and resting on a two-parameter elastic foundation. The authors used Reddy’s high 
order shear deformable plate theory with the inclusion of the plate-foundation interaction and thermal effects 
due to temperature rise. Thereafter, Shiau and Kuo [36] investigated the free vibration of thermally buckled 
composite sandwich plates using a high precision triangular finite element. Singha,Ramachandra and 
Bandyopadhyay [37] studied the vibration behaviour of thermally stressed composite skew plates in the pre- 
and post-buckling states using a four-nodded finite element based on the first-order shear deformation theory. 
 In 2007, Vangipuram and Ganesan [38] studied the free and damped vibration behaviour of sandwich 
plates having stiff-layers and an isotropic viscoelastic core under thermal loads. The authors used the classical 
plate theory for the stiff-layers and the Reddy’s theory for the core. The damped vibration was also considered 
by Jeyaraj et al. [39]. The authors studied the dynamic and acoustic behaviours of composite plates in a thermal 
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environment. Thereafter, Matsunaga [40] developed a new high order shear deformation theory to analyse the 
fundamental frequencies and the critical buckling temperature of angle-ply plates. In 2009, Lal and Singh [41] 
examined the thermal effect on the vibration behaviour of laminated plates having random material properties 
and thermal expansion coefficients. Afterwards, Chen et al. [42] studied the vibration and stability behaviours 
of thermally stressed composite plates with temperature-dependent-proprieties. The study focused on the effect 
of material properties dependence on the temperature and the number of layers on the critical buckling 
temperature and the free vibration of cross-ply laminated plates.  
 For further insights into the influence of temperature on the behaviour of laminated composite materials, 
readers may refer to the research conducted by Garg and Chalak [43]. Indeed, the authors have presented 
comprehensive numerical results derived from published articles, highlighting the significance of geometric 
parameters, material properties, and hygrothermal fields on the behaviour of laminated composite and sandwich 
structures under varying environmental conditions. They conducted a thorough critical review of the existing 
literature to predict the behaviour of these structures in hygrothermal conditions, categorizing the studies into static, 
vibration, buckling, postbuckling, and miscellaneous areas (including transient, dynamic, and impact studies). 
 The present study aims to investigate the impact of temperature on the vibration characteristics of 
laminated composite plates. In contrast to previous research, this study aims to simultaneously examine two 
temperature-related factors, namely: the influence of thermal stresses and the effect of temperature-dependent 
material properties on the vibration behaviour of laminated plates. Therefore, a finite element based on the 
"Discrete Mindlin Quadrilateral Plate Multilayer" model is extended to investigate the vibration response of 
laminated plates with temperature-dependent materials. furthermore, a parametric study is conducted to assess 
the influence of temperature-dependent properties, thermal stresses, anisotropy, boundary conditions, and 
geometric parameters. Furthermore, to enhance the overall understanding of laminated composite materials' 
behaviour under realistic conditions, a study is conducted on analysing the impact of temperature on the 
vibration behaviour of the widely used T300/5208 Graphite/Epoxy composite. Through analysing the 
variations in structural response across different temperature levels, valuable insights can be gained regarding 
the composite's performance and behaviour. 
 
2. Finite element formulation  
 
2.1. Formulation of laminated composite plate:  
 
 As the study aims to study thin and thick laminated composite plates, the displacements field based on 
the first order shear deformation theory (FSDT) is given by:  
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where , ,0 0 0u v w are the in-plane and transverse displacement components of the plate, respectively. xβ  and 

yβ  are the rotations of the normal to the mid-surface in two planes x z−  and y z− , respectively. The strain-
displacement relations based on Reissner-Mindlin hypothesis is with the von Karman nonlinearity can be 
determined as: 
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where { } { } { }, ,ε κ γ  are the mid-plane strain, plate curvature and transverse shear strain, respectively. 
 As in this paper the material properties are assumed to be dependent on the temperature, The stress-
strain relation of the composite laminated plate subjected to temperature rise TΔ is given by [44]:  
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where ijQ  are the transformed reduced stiffness and ijK are the shear correction factors. 
 The forces and the moments resultants are related to the mid-surface strains and to the curvatures by: 
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With [A], [B], [D] and [ ]C  the extensional, coupling and bending rigidity matrix, respectively, those can be 
defined by: 
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The thermal force and thermal moment resultants are defined as: 
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The total potential energy of laminated plate subjected to thermal loading can be expressed as: 
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The kinetic energy expression can be given by: 
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 A finite element called DQMP/ml Discrete Mindlin Quadrilateral Plate Multilayer is extended to the study 
of the effect of temperature on the vibration behaviour of laminated plates with temperature-depend-materials [45]. 
The DQMP/ml was developed by Sakami [46] to study the behaviour of multilayer plates. The present finite element 
is an extension to the multilayer case of the finite element DKMQ developed by Katili [47]. With a 4 nodes and 3 
degrees of freedom, the DQMP/ml is based on a variational model, called Displacement Discrete Mindlin (DDM), 
developed by Ayad [48]. For further details, the reader may refer to the literature [45, 46, 49, 50].  
 
2.1. Solution procedure 
 
 To study the effect of temperature on the vibration of laminated composite plates, one can proceed in 
two steps. The first step is to determine the critical buckling temperature of the laminated plate. This step helps 
determine the maximum temperature that can withstand the plate before losing its stability. Thus, it returns to 
solve the following generalized eigenvalue problem:  
 
  [ ] [ ]( ){ }GK K X 0+ λ =    (2.9) 
 
where [ ]{ } and [ ]GK X K  are the global stiffness matrix, the global displacement vector and the global 
geometric matrix, respectively. 
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As the materials proprieties are considered to be dependent on temperature. The Eq.(2.9) is solved by the 
iterative numerical procedure with the following steps [51]: 
 
(1) Assuming materials proprieties are constant, the thermal buckling load for the plates of temperature-

independent material is obtained. 
(2) Using the buckling temperature determined in the previous step, the temperature-dependent material 

properties may be decided, and the thermal buckling load is obtained again. 
(3) Step (2) is repeated until the thermal buckling temperature converges. 
 
After determining the critical buckling temperature, the second step comes to study the vibration behaviour of 
laminated plates with thermal stresses by resolving the following eigenvalue problem: 
 
  [ ] [ ]( ) [ ] { }2

GK K M X 0 + − ω =  .  (2.10) 

 
3. Numerical results 
 
 In the following section, the material properties are taken as: 
 
  ,  . ,  . ,  .1 2 12 13 2 23 2 12E E 40 G G 0 6 E G 0 5E 0 25= = = = ν = . 
 
In addition, the fundamental frequencies are expressed in terms of dimensionless quantities, defined by: 
 

  2
2

2
a

E h
ρω = ω . 

 
 Table 1 shows the effect of the temperature elevation on the fundamental frequencies of a square 
laminated composite plate. A three-layered simply supported laminated composite plate with a [ ]/ /0 90 0° ° °  
as stacking sequence was considered. The coefficients of thermal expansion were taken as follow:

. , .6 6
1 21 14 10 11 4 10− −α = × α = × . 

 
Tab.1. Temperature and side-to-thickness ratio effect on the fundamental frequencies of a [ ]/ /0 90 0° ° ° simply 
            supported laminated plate. 
 

TΔ  a/h  present Lal and Singh [41] Shen et al.[35] 

 0 C°  
20  17.604 17.523 17.483 
10  14.750 14.710 14.702 
5  10.198 10.245 10.263 

      

 100 C°  
20  16.912 17.171 17.172 
10  14.547 14.636 14.597 
5  10.126 10.232 10.226 

      

 200 C°  
20  16.190 16.812 16.853 
10  14.342 14.562 14.490 
5  10.053 10.219 10.188 
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 The results were obtained for three side-to-thickness ratios ( /a h 20= , 10 and 5) and three sets of 
thermal loading conditions ( TΔ = 0 C°, 10 C° and 200 C°). The Tab.1 gathers the results obtained by the 
present formulation and those found by a nine-nodded FSDT finite element [41] as well as with an analytical 
solution based on the HSDT [35]. It can be noticed that frequencies decrease with the increasing of the 
temperature for the three sets of side-to-thickness ratios.  
 
3.1. Effect of the anisotropy ratio 
 
 Table 2 shows the fundamentals frequencies of square laminated composite plate subjected to 
temperature changes. A four-layered laminated plate with a [ ]/0 90 s° ° as stacking sequence was considered. 

The plate is assumed to have a thermal expansion ratio . 6
2 11 4 10−α = × and four thermal expansion ratios 

. , . , . and . .1 2 0 05 0 1 0 2 0 3α α = −  
 The obtained results were compared with those found by Liu and Huang [29] with an FSDT 
isoparametric eight-nodded finite element for three state of temperature ( 5T 0CΔ = − ° , 0 C° and 50 C°). From 
table 2, it can be seen that the fundamentals frequencies increase and decrease with the temperature depending 
on the value of the thermal expansion ratio 1 2α α . 
 From Tabs 1 and 2, It can be seen that the results found by the present finite element are in very good 
agreement with those from the literature. 
 
Tab.2. Effect of the temperature and the ratio of the coefficients of thermal expansion on the natural frequencies 
           of a laminated plate. 
 

1 2α α    -50 C° 0 C° 50 C° 
 Present  15.135 15.149 15.164 
-0.05 Liu and Huang [29]  15.136 15.150 15.164 
      
 Present  15.247 15.149 15.051 
0.1 Liu and Huang [29]  15.247 15.150 15.052 
      
 Present  15.321 15.149 14.976 
0.2 Liu and Huang [29]  15.320 15.150 14.978 
      
 Present  15.395 15.149 14.900 
0.3 Liu and Huang [29]  15.394 15.150 14.902 

 
3.2. Critical buckling temperature with temperature dependence (DT) 
 
 As aforementioned, a part of the study consists of finding the critical buckling temperature before 
starting the calculation of the fundamental frequencies of the plate. Therefore, it is necessary to verify the 
accuracy of the used element finite element in determining the critical buckling temperature with/ without 
temperature-dependent-properties. For so doing, a square simply supported [ ]/0 90 s° °  laminated plate was 
considered with side-to-thickness ratio /a h 30= . The material proprieties were considered to be in linear 
function of temperature as follow [52]:  
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where  

  ( ) ( )
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 Table 3 gathers the results obtained by the present element and those found by an Hermitian Layer-
wise finite element [52] as well as the HSDT of Shen [53]. From the table, it can be seen that the obtained 
results are in excellent agreement with those from the literature in case of temperature- dependent-proprieties 
(TDP) or temperature-independent-proprieties (TIP). 
 
Tab.3. Critical buckling temperature for a simply supported laminate plate with / without temperature dependence. 
 

  TIP TDP TIP/TDP 
 Present 0.667 0.523 1.275 
[ ]/ s0 90  HSDT [53] 0.667 0.525 1.270 
 Layer-wise [52] 0.640 0.496 1.290 

 
3.3. Parametric study 
 
 The purpose of the parametric study is to consider, simultaneously, two effects generated by the change 
in temperature on the fundamental frequencies of laminated plates, namely:  

1) The effect of temperature-dependent-proprieties (TDP). 
2) The effect of thermal stresses. 

Unless indicated, we consider the following: 
- The material proprieties and their changing function with the temperature are considered. 
- The fundamental frequencies are expressed in terms of dimensionless quantities, defined by: 

 

  2
2

2
a

E h
ρω = ω . 

 
3.3.1. Effect of the temperature-dependent-proprieties 
 
 To study the effect of the temperature-dependent-proprieties, a square cross-ply laminated plate with 
a [ ]/0 90 s° °  as stacking sequence was considered. Three types of boundary conditions (SS, CC, CS) and a 
side-to-thickness ( /a h 30= ) were taken. In this study, several types of thermal load defined according to the 
critical buckling temperature were applied, namely: /0 crT T  = 0, 0.25, 0.5, 0.75 and 1. 
 Table 4 shows the effect of the temperature on the fundamental frequencies with temperature-
dependent-proprieties (TDP) and without (TIP). From Tab.4, it is well seen that the fundamental frequencies 
decrease with the increasing in the temperature for the three boundary conditions. It is also noticed that the 
consideration of the dependence of temperature reduces the frequencies. This is probably because of the 
reduction in material properties which induces a reduction in stiffness. 
 It is very interesting to note that if the applied temperature is equal to the critical buckling temperature 
of the plate, the fundamental frequencies tend to zero. Indeed, this was observed for the case of sandwich plates 
[34, 36], and for the case of isotropic plates [54, 55]).  
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Table 4. Effects of temperature on the natural frequencies of laminated composite plates. 
 
B.C.  /0 crT T      
  0 0.25 0.5 0.75 1 

SS TIP 17.7533 15.3762 12.5534 8.8776 0 
TDP 17.7533 15.3293 12.4418 8.7191 0.049 

       

CC 
TIP 32.7673 28.7123 23.7985 17.1787 0 
TDP 32.7673 28.1296 22.5678 15.5566 0.13796 
      

CS TIP 29.7318 26.8093 23.5074 19.6379 0 
TDP 29.7318 26.2821 22.3152 17.6898 0.1192 

 
3.3.2. Effect of the aspect ratio (a/b) 
 
 In this section, the effect of the aspect ratio ( /a b ) on the fundamental frequencies of laminated plates 
subjected to temperature elevation was considered. Two types of stratification /2 20 90 s° ° 

   et /2 290 0 s° ° 
   were 

taken with a side-to-thickness ratio /a h 10= . 
 In the solution procedure previously described, it was established to first calculate the critical buckling 
temperature. However, it should be noted that the relations describing the variation of the material proprieties 
with the temperature are not suitable for high values. To better explain, let’s take the relation of the longitudinal 
Young modulus ( )1E T : 

  


( ) ( )1 10 11E T E 1 E T
η

= + . 
 
From the relation, it can be observed that if 1η ≤ −  we obtain ( )1E T 0≤  which is irrational. Thus, if the critical 
buckling temperature begets an ( )1E T 0≤ , then the solution diverges. As our concern is, only, not to exceed 
the critical buckling temperature, we decided to express it in the following form [42]: 
 
  * 4

cr 2T T 10= α . 
 
 Figure 1 shows the effect of aspect ratio and the temperature on the fundamental frequencies of a 
simply supported cross-ply laminated plates. Three types of thermal loading were considered, namely:

* , . ,T T 0 0 5 1= . From the Fig.1, it can be seen that the fundamental frequencies decrease with the increasing 

of the aspect ratio (a/b) and the temperature for both stacking sequences. It is also observed that the /2 20 90 s° ° 
 

gives higher natural frequencies. It can be explained by the fact that the /2 20 90 s° ° 
  s has higher flexural rigidity 

than the /2 290 0 s° ° 
   in the direction of elongation of the plate.  

 
3.3.3. Effects of temperature on the natural frequencies of vibration of laminated plates in T300 / 5208 
 
 In the previously reported studies, it was assumed that the material properties are a linear function of 
temperature. Besides, this suggestion was considered as such by many authors [23, 42, 51, 52, 56]. Although, 
it is well known that most of the components of a composite structure do not present the same behaviour with 
the temperature [57, 58]. Therefore, in order to be closer to practical cases, it is better to study structures with 
a well-defined material. 
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Fig.1. Effects of aspect ratio ( /a b ) and temperature on the natural frequencies of vibration of simply 
           supported plates (SS). 
 
 There have been several experimental studies in the literature on the temperature-dependent-
proprieties of the T300/5208 graphite/epoxy [57, 58]. The aim of these studies was to determine the elastic 
constants, ultimate strengths and thermal expansion behaviour of T300/5208 graphite/epoxy laminates at low 
and elevated temperatures. In this section, the work of Hyer et al. [59] is considered, where they studied 
specimens made from Thornel (Union Carbide) T300 graphite fibres and Narmco 5208 epoxy resin. The elastic 
constants and thermal expansion were determined in a temperature range from 116 K (-157.15°C) to 394 K 
(120.85°C) with a room temperature of 301 K (27.85°C). The Fig.2 shows the results of Hyer et al. [59] in 
graphical form, where experimental data points and least square fit were presented for the following properties: 

, ,1 2 12E E G  and 1α . From the Fig.2, it is well seen that the properties do not exhibit the same behaviour with 
the temperature. The coefficients of the least squares fit are presented in Tab.5. 
 In the following, the effect of temperature on the fundamental frequencies of T300/5208 
graphite/epoxy laminated plate using Hyer et al. [59] coefficients were considered. A square laminated plate 
with a side-to-thickness ratio ( )/a h 10=  and [ ]s±θ  stacking sequence was considered. Based on the results 
of Hyer et al. [59], five (5) types of thermal loadings were chosen, namely: 133.15 K (-140°C), 213.15 K  
(-60°C), 301 K (27.85°C), 333.15 K (60°C) and 368.15 K (95°C). The material properties assumed independent 
temperature are given as follows: ( ) ( ).  / ,  . ,  .  ( ),  .  3 6

23 21 58 Kg m 0 28 G 3 35 GPa 26 5 10 C−ρ = ν = = α = ° . 

 Figure 3 shows the effect of the temperature on the fundamental frequencies of simply supported 
T300/5208 graphite/epoxy laminated plate for different orientation angles. From the Fig.3, it is seen that the 
fundamental frequencies decrease with increasing of the temperature until the ambient temperature. However, 
when exceeding room temperature, a slight decrease in frequencies with temperature is noted for the angles 0° 
to 60°, whereas with 75° and 90° the frequencies increase with increasing of the temperature. This may be due 
to the negative value of the axial thermal expansion of the T300/5208 in this range of temperature. With a 
negative coefficient of thermal expansion, the plate generates tensile forces rather than compression, which 
increases the rigidity of the plate and thus increases the fundamental frequencies [45, 60-62]. 
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Fig.2. Elastic properties and coefficient of thermal expansion of T300 / 5208 as a function of temperature [59]. 
          a) Longitudinal modulus of elasticity ( 1E ), b) Transverse modulus of elasticity ( 2E ), 
          c) Shear modulus ( 12G ), d) coefficient of longitudinal expansion ( 1α ). 
 
Tab.5. Temperature dependence coefficients for each property in Celsius. 
 

Propriety*  0C  1C  2C  3C  

 ( )1E GPa  
K  182 -0.272 

. 45 18 10−×  0  
C°  .146 35  .0 0109  

 ( )2E GPa  
K  147 .0 169−  

. 31 16 10−×  0  
C°  .14 21  -0.803 

 ( )12G GPa  
K  7.46 .0 021  

. 52 73 10−− ×  0  
C°  .3 64  6.52×10-3 

)/(1
610 C− °α   

K  -110 . .0 212− . . 30 586 10−× 0.686×10-5 

C°  .4 275  18 -0.810×10-2 . 40 106 10−×

* 2 3
0 1 2 3P C C T C T C T= + + +  where P is the property of interest and (T ) is temperature 
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Fig.3. Effect of temperature and orientation angle on the natural frequencies of vibration of a plate laminated 
          in T300 / 5208 simply supported (SS). 
 
4. Conclusion 
 
 In this paper, a finite element based on the first order shear deformation theory, was used towards the 
study of the effect of temperature on the vibration and the stability of thick laminated plates under a uniform 
temperature distribution. Two effects are considered simultaneously, namely: The effect of the dependence of 
material properties on temperature rise, and the effect of thermal stresses. The comparison of the results 
obtained with reference solutions, determined analytically, and those obtained by other finite element models 
available in the literature, showed the performance and precision of the proposed numerical model. In addition, 
the parametric study has shown, the effect of different parameters on the natural frequencies of a laminated 
plate, such as the thickness ratio, the boundary conditions, the aspect ratio, the anisotropy ratio and the stacking 
sequence. The study has shown that in most cases the natural frequencies of vibration decrease with the 
increase in temperature. On the other hand, if the temperature inflicted on the plate coincides with the critical 
buckling temperature, the natural frequencies tend towards zero. In addition, a study was presented on the 
behaviour of laminated composite plates made of Graphite / Epoxy T300 / 5208. Based on the experimental 
work of Hyer et al. [59], the study showed that in the general case the natural frequencies of vibration decrease 
with the increase of the temperature. However, with some angles of orientation, if the material has a negative 
coefficient of thermal expansion, the natural frequencies of vibration increase with the increase in temperature. 
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Nomenclature 
 
 ,a b  – plate dimensions along x and y axes respectively. 

[ ] [ ] [ ] [ ], , ,A D B C  – extensional, bending, coupling and transverse shear matrixes respectively. 

 C°  – temperature in Celsius. 
 ,1 2E E  – longitudinal and transverse modulus of elasticity. 

 , ,12 13 23G G G  – shear moduli of a lamina with respect to 1, 2 and 3 axes. 

 K  – temperature in Kelvin. 

 [ ] [ ] { }, ,GK K X  – global stiffness matrix, global geometry matrix and global displacement vector. 

 ijK  – shear correction factors. 

 [ ]M  – global mass matrix. 

 ijQ  – transformed reduced stiffness. 

 crT  – critical buckling temperature. 

 0T  – thermal load. 

 TΔ  – temperature rise. 
 , ,0 0 0u v w  – membrane and out of plane displacements of the plate. 

 V – kinetic energy expression. 
 , ,x y z  – system of coordinate axes. 

 υ  – Poisson ratio. 
 ,1 2α α  – coefficient of longitudinal and transverse expansion. 

 ,  ,  x y xyα α α  – transformed thermal expansion coefficient. 

 ,x yβ β  – rotations of the normal to the mid-surface in two planes x-z and y-z. 

 { } { } { }, ,ε κ γ  – mid-plane strain, plate curvature and transverse shear strain. 

 λ  – eigen value. 
 Π  – total potential energy of laminated plate. 
 ρ  – density. 

 ω  – natural frequency. 
 Ω  – fundamental frequencies. 
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