
IFAC PapersOnLine 56-2 (2023) 1901–1906

ScienceDirectScienceDirect

Available online at www.sciencedirect.com

2405-8963 Copyright © 2023 The Authors. This is an open access article under the CC BY-NC-ND license.
Peer review under responsibility of International Federation of Automatic Control.
10.1016/j.ifacol.2023.10.1079

10.1016/j.ifacol.2023.10.1079 2405-8963

Copyright © 2023 The Authors. This is an open access article under the CC BY-NC-ND license  
(https://creativecommons.org/licenses/by-nc-nd/4.0/)

Repetitive process based design of PD-type
iterative learning control laws for batch

processes with time-delays �

Robert Maniarski ∗ Wojciech Paszke ∗ Eric Rogers ∗∗

Hongfeng Tao ∗∗∗

∗ Institute of Automation, Electronic and Electrical Engineering,
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1. INTRODUCTION

Many industries, e.g., chemical, machinery manufactur-
ing, electronic technology, pharmaceutical engineering,
and agricultural products processing, use batch processing
control systems to obtain high-quality products with high
manufacturing efficiency. Therefore, the development of
advanced batch process control technologies and perfor-
mance assessment methods, see, e.g.,in (Lu et al., 2017;
Wang et al., 2009), can result in improved productivity
and quality in manufacturing-related industries.

Recent developments in batch process control technolo-
gies include using output information for each batch to
improve the control for the subsequent one. Given that
the processing time for each batch is finite and fixed, this
is an application area for ILC. See, e.g., (Bristow et al.,
2006; Wang et al., 2009) for early research results in this
application area. As in other ILC applications, a variable
is needed to specify the batch number and another to
describe the dynamics within a batch. In this paper, the
nonnegative integer k denotes the batch number, and t
describes the finite duration of the dynamics within a
batch. Moreover, the time taken to process a batch is
denoted by α < ∞.
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In batch processing, there are two directions of information
propagation, i.e., within each batch, where the duration is
finite, and from batch to batch. The dynamics are defined
over (k, t) = [0∞] × [0, α]. Hence the dynamics of ILC
applied to batch processing is a member of the class of
2D systems. In particular, the dynamics considered can
be written as a repetitive process, i.e., a distinct class
of 2D systems (Rogers et al., 2007). This setting allows
simultaneous design for batch-to-batch (k) and batch
dynamics (t).

The literature demonstrates that a P-type ILC law (where
the control signal is proportional to the previous batch
error only) can effectively control the average error in
tracking the reference. However, in many industrial pro-
cesses, this form of control may result in wasted pro-
duction. Therefore, it is necessary to improve the control
law to reduce the maximum error, where differential (D)-
type control can improve the dynamic characteristics of
the control system. e.g., reducing overshoot, shortening
regulation time, and enhancing control accuracy.

This paper focuses on the design of ILC laws that combine
P and D action, termed PD-type. The repetitive process
setting is used for analysis control, and the novel contri-
butions are as follows:

• the design of a PD-type ILC law in the frequency
domain for a class of linear differential systems with
time delays;

• batch-to-batch error convergence conditions as LMIs.
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Poland (e-mail: {r.maniarski, w.paszke}@iee.uz.zgora.pl)
∗∗ School of Electronics and Computer Science, University of

Southampton, Southampton SO17 1BJ, UK
(e-mail: etar@ecs.soton.ac.uk)

∗∗∗ Key Laboratory of Advanced Process Control for Light Industry of
Ministry of Education, Jiangnan University, Wuxi 214122,

P. R. China (e-mail: taohongfeng@hotmail.com)

Abstract: This paper uses linear matrix inequality techniques and the Kalman-Yakubovich-
Popov lemma to design an iterative learning control law for a class of batch processes with state
delays. The design procedure is based on the stability theory for repetitive processes, a class of
2D systems. A numerical example illustrates the new design and demonstrates that the design
has advantages compared to the existing alternatives.

Keywords: Iterative learning control, repetitive processes, batch processes, linear matrix
inequalities, systems with delays.

1. INTRODUCTION

Many industries, e.g., chemical, machinery manufactur-
ing, electronic technology, pharmaceutical engineering,
and agricultural products processing, use batch processing
control systems to obtain high-quality products with high
manufacturing efficiency. Therefore, the development of
advanced batch process control technologies and perfor-
mance assessment methods, see, e.g.,in (Lu et al., 2017;
Wang et al., 2009), can result in improved productivity
and quality in manufacturing-related industries.

Recent developments in batch process control technolo-
gies include using output information for each batch to
improve the control for the subsequent one. Given that
the processing time for each batch is finite and fixed, this
is an application area for ILC. See, e.g., (Bristow et al.,
2006; Wang et al., 2009) for early research results in this
application area. As in other ILC applications, a variable
is needed to specify the batch number and another to
describe the dynamics within a batch. In this paper, the
nonnegative integer k denotes the batch number, and t
describes the finite duration of the dynamics within a
batch. Moreover, the time taken to process a batch is
denoted by α < ∞.

� This research was funded in part by National Science Centre in
Poland, grant No. 2020/39/B/ST7/01487. For the purpose of Open
Access, the author has applied a CC-BY public copyright licence to
any Author Accepted Manuscript (AAM) version arising from this
submission.

In batch processing, there are two directions of information
propagation, i.e., within each batch, where the duration is
finite, and from batch to batch. The dynamics are defined
over (k, t) = [0∞] × [0, α]. Hence the dynamics of ILC
applied to batch processing is a member of the class of
2D systems. In particular, the dynamics considered can
be written as a repetitive process, i.e., a distinct class
of 2D systems (Rogers et al., 2007). This setting allows
simultaneous design for batch-to-batch (k) and batch
dynamics (t).

The literature demonstrates that a P-type ILC law (where
the control signal is proportional to the previous batch
error only) can effectively control the average error in
tracking the reference. However, in many industrial pro-
cesses, this form of control may result in wasted pro-
duction. Therefore, it is necessary to improve the control
law to reduce the maximum error, where differential (D)-
type control can improve the dynamic characteristics of
the control system. e.g., reducing overshoot, shortening
regulation time, and enhancing control accuracy.

This paper focuses on the design of ILC laws that combine
P and D action, termed PD-type. The repetitive process
setting is used for analysis control, and the novel contri-
butions are as follows:

• the design of a PD-type ILC law in the frequency
domain for a class of linear differential systems with
time delays;

• batch-to-batch error convergence conditions as LMIs.

Repetitive process based design of PD-type
iterative learning control laws for batch

processes with time-delays �

Robert Maniarski ∗ Wojciech Paszke ∗ Eric Rogers ∗∗

Hongfeng Tao ∗∗∗

∗ Institute of Automation, Electronic and Electrical Engineering,
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application area. As in other ILC applications, a variable
is needed to specify the batch number and another to
describe the dynamics within a batch. In this paper, the
nonnegative integer k denotes the batch number, and t
describes the finite duration of the dynamics within a
batch. Moreover, the time taken to process a batch is
denoted by α < ∞.
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Poland, grant No. 2020/39/B/ST7/01487. For the purpose of Open
Access, the author has applied a CC-BY public copyright licence to
any Author Accepted Manuscript (AAM) version arising from this
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In batch processing, there are two directions of information
propagation, i.e., within each batch, where the duration is
finite, and from batch to batch. The dynamics are defined
over (k, t) = [0∞] × [0, α]. Hence the dynamics of ILC
applied to batch processing is a member of the class of
2D systems. In particular, the dynamics considered can
be written as a repetitive process, i.e., a distinct class
of 2D systems (Rogers et al., 2007). This setting allows
simultaneous design for batch-to-batch (k) and batch
dynamics (t).

The literature demonstrates that a P-type ILC law (where
the control signal is proportional to the previous batch
error only) can effectively control the average error in
tracking the reference. However, in many industrial pro-
cesses, this form of control may result in wasted pro-
duction. Therefore, it is necessary to improve the control
law to reduce the maximum error, where differential (D)-
type control can improve the dynamic characteristics of
the control system. e.g., reducing overshoot, shortening
regulation time, and enhancing control accuracy.

This paper focuses on the design of ILC laws that combine
P and D action, termed PD-type. The repetitive process
setting is used for analysis control, and the novel contri-
butions are as follows:

• the design of a PD-type ILC law in the frequency
domain for a class of linear differential systems with
time delays;

• batch-to-batch error convergence conditions as LMIs.
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Notation: X ≺ Y (X � Y ) if the matrix X−Y is negative
definite (respectively, positive) matrix. 0 and I represent
compatibly dimensioned null and identity matrices, re-
spectively, A∗ denotes the complex conjugate transpose of
a matrix. Also, the symbol (�) denotes transposed elements
in a symmetric matrix. The symbol diag{X1, X2, · · · , Xn}
denotes a block diagonal matrix with compatibly dimen-
sioned diagonal blocks X1, X2, · · · , Xn and sym(Λ) de-
notes the matrix Λ+ΛT . Finally, for a square matrix, say
H, ρ(H) denotes the spectral radius, and ⊗ denotes the
Kronecker product.

The following result is used in the analysis of this paper.

Lemma 1. (Gahinet and Apkarian, 1994) Given a sym-
metric matrix Υ ∈ Rq×q and two matrices Λ, Σ of column
dimension q, there exists a matrix W such that the LMI

Υ + sym
{
ΛTWΣ

}
� 0,

holds if and only if the following two projection inequalities
with respect to W are satisfied:

Λ⊥T
ΥΛ⊥ � 0, Σ⊥T

ΥΣ⊥ � 0, (1)

where Λ⊥ and Σ⊥ are arbitrary matrices whose columns
form a basis of the null spaces of Λ and Σ, respectively.

2. PROBLEM DESCRIPTION

This paper considers ILC applied to batch processing, i.e.,
a sequence of objects (indexed by the nonnegative integer
k) where the processing of each of them occurs a finite
duration 0 ≤ t ≤ α, where the dynamics are modeled as

ẋk+1(t) = Axk+1(t) +Adxk+1 (t− d) +Buk+1(t),

yk+1(t) = Cxk+1(t),
(2)

where xk(t) ∈ Rn, yk(t) ∈ Rm and uk(p) ∈ Rl are the
state, output and input vectors, respectively. The time
delay d is an unknown constant that satisfies 0 < d ≤ d,
where d is a known upper bound. Since the initial state
of each batch is reset, it is assumed that xk(t) = x0,k,
t ∈ [−d, 0].

Let yd(t), 0 ≤ t ≤ α, be a known reference trajectory.
Then on batch k the error can be formed as

ek(t) = yd(t)− yk(t) (3)

and the control objective is to construct a control law that
forces convergence in k of the error sequence {ek(t)}k, i.e.,

lim
k→∞

||ek(t)|| = 0, 0 ≤ t ≤ α (4)

where || · || is the norm on the underlying function space;
in some practical applications, the convergence condition
must be relaxed to within a suitably chosen (small) neigh-
borhood of the origin. Moreover, it is also necessary to
ensure acceptable dynamics in t.

The ILC law considered in this paper has the structure

uk+1(t) = uk(t) + ∆uk+1(t), (5)

i.e., the control used for the previous batch plus a correc-
tion ∆uk+1(t) that can make use of previous batch data,
where the particular case considered is

∆uk+1(t)=K1ek(t)+K2ėk(t)+K3ek(t−d), (6)

where K1, K2 and K3 are gain matrices to be designed.
Hence the control objective is to determine K1, K2 and
K3 of (6) such that the control input sequence generated
by (5) over 0 ≤ t ≤ α minimizes the tracking errors to

achieve (4), and also ensure acceptable response in t, where
this latter requirement is applications specific.

Remark 1. The control law of (6) reduces to the standard
PD-type ILC law when K3 = 0.

Remark 2. The structure of (6) is simpler when compared
to the alternative given in (Tao et al., 2017) since it does
not include state feedback. Specifically, complete state
measurement may be difficult to implement; hence, the
new control law structure is better suited to many physical
applications.

3. REPETITIVE PROCESS BASED ILC DESIGN

Application of the control law (5)-(6) to (2) results in
controlled batch process dynamics described by

ẋk+1(t) =Axk+1(t)+Adxk+1 (t−d)+BK1ek(t)

+BK2ėk(t)+BK3ek(t−d)+Buk(t),

yk+1(t) =Cxk+1(t).

(7)

This model is a differential linear repetitive process with
a delay in the state vector. The stability theory of these
processes enables simultaneous control law design for error
convergence and regulation of the temporal dynamics.

The Laplace transform is applied to (7) to provide a basis
for frequency domain design. Note that this transform
requires that the input and output signals are defined
over an infinite time horizon and hence is not applicable
in the current case due to the finite batch length. See,
however, (Bristow et al., 2006; Rogers et al., 2007) for the
details of how to avoid the effects due to the finite batch
length. Applying this transform (where, e.g., the Laplace
transform of xk+1(t) is written as Xk+1(s)) gives

sXk+1(s) =AXk+1(s)+e−sdAdXk+1(s)

+BK1Ek(s)+sBK2Ek(s)

+e−sdBK3Ek(s)+BUk(s),

Yk+1(s) =CXk+1(s). (8)

Consequently

(sI−A−e−sdAd)Xk+1(s)=B
(
K1+sK2+e−sdK3

)
Ek(s)

+BUk(s),

Yk+1(s) =CXk+1(s)
(9)

and in case of Uk(s) = 0

Yk+1(s) =C(sI−A−e−sdAd)
−1

×B(K1+sK2+e−sdK3).

Using the above results, the transfer function matrix
coupling the previous trial error to the current trial output
is

H(s) =G(s)[(K1+sK2+e−sdK3)Ek(s)], (10)

where

G(s) = C(sI−A−e−sdAd)
−1B (11)

is the transfer function matrix coupling the current trial
input and output. Next, define

M(s, d) = sI−A−e−sdAd

and assume that M(s, d) is nonsingular, then
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where xk(t) ∈ Rn, yk(t) ∈ Rm and uk(p) ∈ Rl are the
state, output and input vectors, respectively. The time
delay d is an unknown constant that satisfies 0 < d ≤ d,
where d is a known upper bound. Since the initial state
of each batch is reset, it is assumed that xk(t) = x0,k,
t ∈ [−d, 0].

Let yd(t), 0 ≤ t ≤ α, be a known reference trajectory.
Then on batch k the error can be formed as

ek(t) = yd(t)− yk(t) (3)

and the control objective is to construct a control law that
forces convergence in k of the error sequence {ek(t)}k, i.e.,

lim
k→∞

||ek(t)|| = 0, 0 ≤ t ≤ α (4)

where || · || is the norm on the underlying function space;
in some practical applications, the convergence condition
must be relaxed to within a suitably chosen (small) neigh-
borhood of the origin. Moreover, it is also necessary to
ensure acceptable dynamics in t.

The ILC law considered in this paper has the structure
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where the particular case considered is
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where K1, K2 and K3 are gain matrices to be designed.
Hence the control objective is to determine K1, K2 and
K3 of (6) such that the control input sequence generated
by (5) over 0 ≤ t ≤ α minimizes the tracking errors to

achieve (4), and also ensure acceptable response in t, where
this latter requirement is applications specific.

Remark 1. The control law of (6) reduces to the standard
PD-type ILC law when K3 = 0.

Remark 2. The structure of (6) is simpler when compared
to the alternative given in (Tao et al., 2017) since it does
not include state feedback. Specifically, complete state
measurement may be difficult to implement; hence, the
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+BK2ėk(t)+BK3ek(t−d)+Buk(t),

yk+1(t) =Cxk+1(t).

(7)

This model is a differential linear repetitive process with
a delay in the state vector. The stability theory of these
processes enables simultaneous control law design for error
convergence and regulation of the temporal dynamics.

The Laplace transform is applied to (7) to provide a basis
for frequency domain design. Note that this transform
requires that the input and output signals are defined
over an infinite time horizon and hence is not applicable
in the current case due to the finite batch length. See,
however, (Bristow et al., 2006; Rogers et al., 2007) for the
details of how to avoid the effects due to the finite batch
length. Applying this transform (where, e.g., the Laplace
transform of xk+1(t) is written as Xk+1(s)) gives

sXk+1(s) =AXk+1(s)+e−sdAdXk+1(s)

+BK1Ek(s)+sBK2Ek(s)

+e−sdBK3Ek(s)+BUk(s),

Yk+1(s) =CXk+1(s). (8)

Consequently

(sI−A−e−sdAd)Xk+1(s)=B
(
K1+sK2+e−sdK3

)
Ek(s)

+BUk(s),

Yk+1(s) =CXk+1(s)
(9)

and in case of Uk(s) = 0

Yk+1(s) =C(sI−A−e−sdAd)
−1

×B(K1+sK2+e−sdK3).

Using the above results, the transfer function matrix
coupling the previous trial error to the current trial output
is

H(s) =G(s)[(K1+sK2+e−sdK3)Ek(s)], (10)

where

G(s) = C(sI−A−e−sdAd)
−1B (11)

is the transfer function matrix coupling the current trial
input and output. Next, define

M(s, d) = sI−A−e−sdAd

and assume that M(s, d) is nonsingular, then

M(s, d)M(s, d)−1=sM(s, d)−1

−
(
A+e−sdAd

)
M(s, d)−1

=I.

Rewriting this last equation as

sM(s, d)−1 = I+
(
A+e−sdAd

)
M(s, d)−1

gives

H(s)=CM(s, d)−1BK1+CBK2+CAM(s, d)−1BK2

+ e−sd(CAdM(s, d)−1BK2+CM(s, d)−1BK3).
(12)

Next, focus on (9) again and assume that Ek(s) = 0. Then,

Yk+1(s) = G(s)Uk(s),

where G(s) is defined in (11). The next step is to consider
the difference between successive batch errors since the
propagation of the error from batch to batch must be
analyzed, starting from

Ek+1(s)− Ek(s) = −G(s)(Uk+1(s)− Uk(s)). (13)

Hence
Ek+1(s) = (I −H(s))Ek(s) (14)

and therefore the tracking error converges as k → ∞ if all
eigenvalues of I −H(s) have modulus less than unity, i.e.,

ρ (I −H (jω)) < 1, ∀ω ∈ [0,∞). (15)

Also, the following condition in terms of matrix inequali-
ties (LMIs) is the necessary and sufficient for (15) to hold

(I−H (jω))
∗
P (jω) (I−H (jω))−P (jω)≺0, ∀ω ∈ [0,∞),

(16)
where P (jω) � 0. Unfortunately, the dependence P (jω)
on ω is unknown, making the above inequality very hard
to solve. Consequently, a constant P matrix over the entire
frequency range is used, and the repetitive process-based
analysis is applied.

3.1 Repetitive process based analysis

To formulate the ILC design problem in the repetitive
process setting, consider the term I − H(s), which can
be rewritten as

I −H(s) = G1(s) +G2(s) +G3(s), (17)

where

G1(s) =I − CBK2 − CM(s, d)−1BK1,

G2(s) =− C
(
A+e−sdAd

)
M(s, d)−1BK2,

G3(s) =− Ce−sdM(s, d)−1BK3.

(18)

Moreover (7) can be equivalently converted to the fol-
lowing three differential repetitive processes in a parallel
connection,

ẋk+1(t) =Axk+1(t) +Adxk+1(t− d) +B0vek(t),

ek+1(t) =Cvxk+1(t) + Cdvxk+1(t− d) +D0vek(t).(19)

where the subscript v denotes for the repetitive process
number, i.e. v = {1, 2, 3}. Note that the matrices A and
Ad are the same for all three processes. The remaining
matrices for the first process model (v = 1) are

B01 = BK1, C1 = −C, Cd1 = 0, D01 = (I−CBK2), (20)

for v = 2

B02 = BK2, C2 = −CA, Cd2 = −CAd, D02 = 0, (21)

and for v = 3

B03 = BK3, C3 = 0, Cd3 = −C,D03 = 0. (22)

Given (15), the condition for tracking error convergence
can be written as

ρ (G1 (jω)+G2 (jω)+G3 (jω)) < 1, ∀ω ∈ [0,∞). (23)

However, even if (15) or (23) hold, poor transients in
t occur even if convergence in k of the error sequence
{ek(t)}k in k occurs. (the dynamics in t occur over a
finite duration where even an unstable linear system can
only produce a bounded output in response to a bounded
input.)

Replacing the condition in (15) by

σ(I −H (jω)) < 1, ∀ω ∈ [0,∞), (24)

where σ(·) denotes the maximum singular value of its
matrix argument, preventing the problem above from
arising. Also

‖I −H (jω) ‖∞ � max
ω∈[0,∞)

σ (I −H (jω)) < 1 (25)

and this condition requires that the state matrix is stable.
This is an H∞ condition for batch-to-batch error conver-
gence and implies that

‖ek(t)‖2 ≤ ‖ (I −H (jω)) ‖k∞‖e0(t)‖2, (26)

where ‖ · ‖2 denotes the L2 and hence monotonic batch-
to-batch error convergence occurs.

The control synthesis problem is to design the closed-loop
transfer function matrices Gv(s), v = 1, 2, 3 such that


‖G1 (jω)‖∞ < 1− γa − γb,

‖G2 (jω)‖∞ < γa,

‖G3 (jω)‖∞ < γb,

(27)

where γa and γb are given scalars satisfying 0 < γa < 1
and 0 < γb < 1. Then,

‖I−H (jω)‖∞ = ‖G1 (jω)+G2 (jω)+G3 (jω)‖∞
≤‖G1 (jω)‖∞+‖G2 (jω)‖∞
+‖G3 (jω)‖∞<1.

Hence, when the system of inequalities


σ (G1 (jω)) < 1− γa − γb,

σ (G2 (jω)) < γa,

σ (G3 (jω)) < γb

(28)

hold monotonic batch-to-batch error convergence is en-
sured. The design problem is: given the batch process
model and scalars 0 < γa < 1 and 0 < γb < 1, determine
an ILC law of the form (5)-(6) such that the processes
described by (19)-(22) are stable along the batch (trial).

By the triangle inequality, (27) can be rewritten as

‖Gv (jω)‖∞ < γv, (29)

for v = 1, 2, 3, where γ1 = 1 − γa − γb, γ2 = γa and
γ3 = γb. The values of γa and γb must be selected based on
knowledge of the particular example under consideration.
The following theorem can now be established

Theorem 1. Suppose that an ILC law of the form (6) is
applied to systems described by (2) with specified reference
trajectory yd(t) over 0 ≤ t ≤ α. Then the resulting
controlled dynamics can be written in the form (19).
Moreover, this last representation is stable along the batch
for all delays d ∈

[
0, d

]
if and only if
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i) ρ(D0v) < 1,
ii) all eigenvalues of the matrix (A + e−jωdAd) have

strictly negative real parts ∀ω ∈ [0,∞) and d ∈
[
0, d

]
iii) the inequality (23) holds ∀ω ∈ [0,∞) and d ∈

[
0, d

]
.

The proof of this result follows from routine modifications
to that for the corresponding result in (Rogers et al., 2007)
for d = 0 (no time delay) (where a batch is termed a trial).
Hence the details are omitted. Moreover, the first condition
guarantees convergence in k, also known as asymptotic
stability. This condition places no constraint on the state
matrix and the dynamics in t. The obvious way to regulate
the dynamics in t is to impose the second condition in the
last result.

The second condition in Theorem 1 regulates the temporal
dynamics for each of the batches but, in general, is not
enough in all cases. An example to confirm this fact is given
in (Rogers et al., 2007) (for the delay-free case but extends
naturally to the current case). Instead, the third condition
in this last result, stability along the batch, is required.
This condition requires that the frequency content of yd
be attenuated at a geometric rate for all frequencies. Next,
control law design is considered, resulting in LMI-based
computations.

4. LMI-BASED DESIGN PROCEDURE

In this section, the main goal is to establish control law
design algorithms. The route is based on a version of the
KYP lemma and results in LMI-based computation of the
control law matrices. The new results in this paper are
based on a version of KYP lemma, which can directly
ensure the control performance specifications over the
entire frequency range and any delay value.

Lemma 2. Consider a differential linear repetitive pro-
cess described by (19)-(22) with corresponding transfer-
function matrix of (17). Suppose that scalars γv ∈ (0, 1)
for v = 1, 2, 3 are given. Then (16) holds if there exist
Hermitian matrices Pv(jω) � 0, v = 1, 2, 3, such that[

Gv(jω)
I

]∗[Pv(jω) 0
0 −γ2

vPv(jω)

][
Gv(jω)

I

]
≺0, (30)

∀ω[0,∞), where Gv, v = 1, 2, 3 are defined in (29).

The proof of this result follows by routine modification
of that for the delay-free case, see (Rogers et al., 2007),
and hence the details are omitted. Additionally, (30) holds
provided (28) or (29) are feasible for Pv(jω) = I, v =
1, 2, 3.

The following result is a version of Theorem 1 of (Zhang
and Yang, 2012) to the single delay case over the entire
frequency range (Ψ = 0). It gives an LMI-based sufficient
condition, dependent on the upper bounds of time delay
for an example to satisfy (29).

The following result is a version of Theorem 1 of (Zhang
and Yang, 2012) to the single delay case over the entire
frequency range (Ψ = 0). It gives an LMI-based sufficient
condition, dependent on the upper bounds of time delay,
for examples to satisfy (29).

Lemma 2. Let real symmetric matrices Πv of compatible
dimensions and any delay d satisfying 0 < d ≤ d̄ be

given. Also, consider the differential linear repetitive pro-
cesses described by (19)-(22) with corresponding transfer-
function matrix (17). Then the condition of (29) is satisfied
if there exist Pv � 0, Zv � 0 and symmetric matrices Xv,
such that[

A Ad B0v

I 0 0

]T (
Φ⊗ Pv+Ψ0 ⊗ d̄Zv

) [A Ad B0v

I 0 0

]

+

[
Cv Cdv D0v

0 0 I

]T
Πv

[
Cv Cdv D0v

0 0 I

]

+



Xv − d̄−1Zv d̄−1Zv 0

d̄−1Zv −Xv − d̄−1Zv 0
0 0 0


 ≺ 0,

(31)

holds for v = {1, 2, 3}, where

Φ =

[
0 I
I 0

]
,Ψ0 =

[
I 0
0 0

]
.

Moreover, the following frequency domain inequality holds
for the transfer function matrices defined in (18)


3∑
v=1

Gv (jω)

I



∗

Πv




3∑
v=1

Gv (jω)

I


≺0, ∀ω ∈ [0,∞). (32)

Remark 3. This last result requires that the matrices P
and Z are positive definite to guarantee that all eigenvalues
of the matrix (A + e−jωdAd) have strictly negative real
parts (Zhang and Yang, 2012). This requirement means
that condition ii) of Lemma 1 is immediately satisfied.

The inequality conditions given in Lemma 2 are not con-
vex and, therefore, cannot be solved using the numerical
solvers directly (e.g., Matlab packages as LMI Control
Toolbox or Sedumi). The following transformations con-
vert these conditions to a convex problem.

Firstly, by Lemma 2, the choice of Πv =

[
I 0
0 −γ2

vI

]
in (31)

is made. Then (32) implies that the conditions of (28) are
satisfied for entire frequency range, i.e. [0,∞). Next by
defining

Mv =




I 0
0 I
0 0
0 0


(

Φ⊗ Pv +Ψ0 ⊗ d̄Zv

)



I 0
0 I
0 0
0 0




T

+




0 0

CT
v 0

CT
dv 0

DT
0v I


Πv




0 0

CT
v 0

CT
dv 0

DT
0v I




T

+



0 0 0 0

0 Xv−d̄−1Zv d̄−1Zv 0

0 d̄−1Zv −Xv−d̄−1Zv 0
0 0 0 0


 ,

(33)

it follows that the inequalities of (31) can be rewritten as


A Ad B0v

I 0 0
0 I 0
0 0 I




T

Mv



A Ad B0v

I 0 0
0 I 0
0 0 I


 ≺ 0. (34)

Next, introduce positive scalars βv and select

Λ⊥
v =



A Ad B0v

I 0 0
0 I 0
0 0 I


 , Σ⊥

v =




I 0 0
−βvI 0 0
0 I 0
0 0 I


 ,

then by direct computation

Λv = [−I A Ad B0v ] , Σv = [ βvI I 0 0 ] . (35)
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naturally to the current case). Instead, the third condition
in this last result, stability along the batch, is required.
This condition requires that the frequency content of yd
be attenuated at a geometric rate for all frequencies. Next,
control law design is considered, resulting in LMI-based
computations.

4. LMI-BASED DESIGN PROCEDURE

In this section, the main goal is to establish control law
design algorithms. The route is based on a version of the
KYP lemma and results in LMI-based computation of the
control law matrices. The new results in this paper are
based on a version of KYP lemma, which can directly
ensure the control performance specifications over the
entire frequency range and any delay value.

Lemma 2. Consider a differential linear repetitive pro-
cess described by (19)-(22) with corresponding transfer-
function matrix of (17). Suppose that scalars γv ∈ (0, 1)
for v = 1, 2, 3 are given. Then (16) holds if there exist
Hermitian matrices Pv(jω) � 0, v = 1, 2, 3, such that[

Gv(jω)
I

]∗[Pv(jω) 0
0 −γ2

vPv(jω)

][
Gv(jω)

I

]
≺0, (30)

∀ω[0,∞), where Gv, v = 1, 2, 3 are defined in (29).

The proof of this result follows by routine modification
of that for the delay-free case, see (Rogers et al., 2007),
and hence the details are omitted. Additionally, (30) holds
provided (28) or (29) are feasible for Pv(jω) = I, v =
1, 2, 3.

The following result is a version of Theorem 1 of (Zhang
and Yang, 2012) to the single delay case over the entire
frequency range (Ψ = 0). It gives an LMI-based sufficient
condition, dependent on the upper bounds of time delay
for an example to satisfy (29).

The following result is a version of Theorem 1 of (Zhang
and Yang, 2012) to the single delay case over the entire
frequency range (Ψ = 0). It gives an LMI-based sufficient
condition, dependent on the upper bounds of time delay,
for examples to satisfy (29).

Lemma 2. Let real symmetric matrices Πv of compatible
dimensions and any delay d satisfying 0 < d ≤ d̄ be

given. Also, consider the differential linear repetitive pro-
cesses described by (19)-(22) with corresponding transfer-
function matrix (17). Then the condition of (29) is satisfied
if there exist Pv � 0, Zv � 0 and symmetric matrices Xv,
such that[

A Ad B0v

I 0 0

]T (
Φ⊗ Pv+Ψ0 ⊗ d̄Zv

) [A Ad B0v

I 0 0

]

+

[
Cv Cdv D0v

0 0 I

]T
Πv

[
Cv Cdv D0v

0 0 I

]

+



Xv − d̄−1Zv d̄−1Zv 0

d̄−1Zv −Xv − d̄−1Zv 0
0 0 0


 ≺ 0,

(31)

holds for v = {1, 2, 3}, where

Φ =

[
0 I
I 0

]
,Ψ0 =

[
I 0
0 0

]
.

Moreover, the following frequency domain inequality holds
for the transfer function matrices defined in (18)


3∑
v=1

Gv (jω)

I



∗

Πv




3∑
v=1

Gv (jω)

I


≺0, ∀ω ∈ [0,∞). (32)

Remark 3. This last result requires that the matrices P
and Z are positive definite to guarantee that all eigenvalues
of the matrix (A + e−jωdAd) have strictly negative real
parts (Zhang and Yang, 2012). This requirement means
that condition ii) of Lemma 1 is immediately satisfied.

The inequality conditions given in Lemma 2 are not con-
vex and, therefore, cannot be solved using the numerical
solvers directly (e.g., Matlab packages as LMI Control
Toolbox or Sedumi). The following transformations con-
vert these conditions to a convex problem.

Firstly, by Lemma 2, the choice of Πv =

[
I 0
0 −γ2

vI

]
in (31)

is made. Then (32) implies that the conditions of (28) are
satisfied for entire frequency range, i.e. [0,∞). Next by
defining

Mv =




I 0
0 I
0 0
0 0


(

Φ⊗ Pv +Ψ0 ⊗ d̄Zv

)



I 0
0 I
0 0
0 0




T

+




0 0

CT
v 0

CT
dv 0

DT
0v I


Πv




0 0

CT
v 0

CT
dv 0

DT
0v I




T

+



0 0 0 0

0 Xv−d̄−1Zv d̄−1Zv 0

0 d̄−1Zv −Xv−d̄−1Zv 0
0 0 0 0


 ,

(33)

it follows that the inequalities of (31) can be rewritten as


A Ad B0v

I 0 0
0 I 0
0 0 I




T

Mv



A Ad B0v

I 0 0
0 I 0
0 0 I


 ≺ 0. (34)

Next, introduce positive scalars βv and select

Λ⊥
v =



A Ad B0v

I 0 0
0 I 0
0 0 I


 , Σ⊥

v =




I 0 0
−βvI 0 0
0 I 0
0 0 I


 ,

then by direct computation

Λv = [−I A Ad B0v ] , Σv = [ βvI I 0 0 ] . (35)

Also,

(
Φ⊗ Pv+Ψ0 ⊗ d̄Zv

)
=

[
d̄Zv Pv

Pv 0

]
(36)

and

Σ⊥
v

TMΣv
⊥=



Σ1v −βvC

T
v Cdv−βvd̄Zv −βCT

v D0v

(�) CT
dvCdv−Xv−d̄−1Zv CT

dvD0v

(�) (�) DT
0vD0v−γvI


 ,

(37)
where Σ1v =−β2

v(d̄Zv−Xv−CT
v Cv)+ d̄Zv for v = 1, 2, 3.

Consequently, when the following inequalities (see (34)
and (37))

Λ⊥
v

TMvΛv
⊥ ≺ 0, Σ⊥

v

TMvΣv
⊥ ≺ 0

hold, Lemma 1 gives that there exists Wv such that

Mv + sym
{
ΛT
v WvΣv

}
≺ 0

is feasible for v = 1, 2, 3. Since products exist among
matrix variables, the last inequality is not in the LMI form.
The following result solves this problem and reformulates
the result of Lemma 2 into an LMI-based condition. This
paper’s main novel result is this theorem, enabling control
law design.

Theorem 1. Suppose that a batch process described by (2)
is required to repeatedly follow the given reference yd(t)
over 0 ≤ t ≤ α. Also, the let ILC law (6) be applied
and assume that delay d satisfying 0 < d ≤ d̄ is given.
Additionally, let Ŝ2 be a given matrix and γv, βv, be
given scalars where 0 < γv ≤ 1, βv > 0 for v =
1, 2, 3, resulting in dynamics described by (19)-(22) with
corresponding transfer-function matrix (17). Moreover the

condition of (29) is satisfied if there exist P̂v � 0, Ẑv � 0,

Ŝ1 � 0, Ŝ3 � 0, symmetric matrices Xv, N1, N2 and N3,
together with positive scalars γv > 0 such that




d̄Ẑv−sym{βvŜv} βvAŜv−ŜT
v +P̂v

(�) sym{AŜv}−d̄−1Ẑv+X̂v

(�) (�)
(�) (�)
(�) (�)

βvAdŜv βvBNv 0

AdŜv+d̄−1Ẑv BNv ŜT
v C

T
v

−X̂v−d̄−1Ẑv 0 ST
v C

T
dv

(�) −γ2
vI DT

0v
(�) 0 −I



≺ 0.

(38)

hold for v = {1, 2, 3}. Moreover, if these LMIs are feasible,
the corresponding matrices gain matrices K1, K2, and K3

in updating law (6) are given by

K1 = N1Ŝ
−1
1 , K2 = N2Ŝ

−1
2 ,K3 = N3Ŝ

−1
3 . (39)

Proof 1. Suppose that the LMI (38) is feasible. Then pre-
and post-multiply (38) by diag

{
S−T
v , S−T

v , S−T
v , I, I

}
and

its transpose to obtain




d̄Ŝ−T ẐvŜ
−1−sym{βvŜ

−T } Υ12

(�) Υ13

(�) (�)
(�) (�)
(�) (�)

βvŜ
−TAd βvŜ

−TB0vŜ 0

Ŝ−TAd+d̄−1Ŝ−T ẐvŜ
−1 Ŝ−TB0v CT

v

0 0 CT
dv

(�) −γ2
vI DT

0v
(�) 0 −I



≺ 0.

(40)

where

Υ12 =βvŜ
−TA−Ŝ−1+ Ŝ−TP̂ Ŝ−1

Υ13 =sym{Ŝ−TA}−d̄−1Ŝ−T ẐvŜ
−1+Ŝ−T X̂vŜ

−1

Next, introduce the following change of variables in (39)

S−1
v =Wv, Xv = S−T

v X̂vS
−1
v , Zv = S−T

v ẐvS
−1
v ,

Pv =S−T
v P̂vS

−1
v .

Application of Schur’s complement formula gives that (40)
holds if and only if

−sym{βvWv} βvW

T
v A−Wv βvW

T
v Ad βvW

T
v B0v

(�) sym{ATWv} WT
v Ad WT

v B0v

(�) (�) 0 0
(�) (�) (�) 0




+



d̄Zv Pv 0 0
(�) Υ22 CT

v Cdv+d̄−1Zv CT
dvD0v

(�) (�) Υ33 CT
dvD0v

(�) (�) (�) DT
0vD0v − γvI


 ≺ 0

holds where

Υ22=CT
v Cv−d̄−1Zv+Xv,Υ33=−Xv−d̄−1Zv+CT

dvCdv.

The above inequalities can be rewritten as

Mv + sym
{
ΛT
v WΣv

}
≺ 0, (41)

where Mv, Λv and Σv are defined in (33) and (35)
,respectively. Then, given Lemma 1, it follows that (41) is
feasible if and only if (31) hold and the proof is complete.

Remark 4. The matrix Ŝ2 in (38) cannot be declared as
the matrix variable since the term D01 (for v = 1) includes
K2 (orN2) and this controller gain matrix is not multiplied
by any matrix variable. Hence there is no possibility of
introducing any (linearizing) change of variables.

5. CASE STUDY

To illustrate the application of the new design, the results
of a numerical simulation on a two-stage chemical reactor
with delayed recycle streams are given and discussed. Both
of the reactors are isothermal continuous stirred tank
reactors (CSTR). A reactor recycle does not increase the
overall conversion and reduces the cost of a reaction and
hence is commonly used in industrial applications. The
input to be recycled has to be separated from the yields
and then travel through pipes. The total recycle time,
therefore, introduces delays in the state vector.

Following the detailed description in (Tao et al., 2017) the
resulting batch process model is of the form (2) with

A=

[
−2.5 0
1 −2.5

]
, Ad=

[
0 0.4
0 0

]
, B=

[
1 0
0 1

]
, C=

[
1 0
0 1

]
.
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Also, the time-delay range is 0 < d ≤ d̄ = 1, with d = 1 in
the simulation results. The state initial vector xk(0) and
the input vector uk(0) are assumed to be zero ∀k ≥ 0 and
the reference trajectories are (see also Fig. 1):

y1d(t) =




1

20
t, 0 ≤ t < 40,

2 +
1

120
(t− 40), 40 ≤ t < 100,

2.5 +
1

300
(t− 100), 100 ≤ t < 250,

3 250 ≤ t ≤ 300,

y2d(t) =




1
120 t, 0 ≤ t < 60 ,

0.5 + 1
60 (t− 60), 60 ≤ t < 120 ,
1.5, 120 ≤ t < 150 ,

1.5 + 1
100 (t− 150), 150 ≤ t < 250 ,
2.5, 250 ≤ t ≤ 300 .

To evaluate tracking performance from batch to batch, let
eik, i = 1, 2 denote the tracking errors of output i and
batch k. Then the convergence measure is the root mean
square (RMS):

RMS(ik) =
1

300

∫ 300

0

(yid(t)−yik(t))
2
dt,

The smaller the value of this quantity, the better the
tracking performance along the kth batch (i.e., in t).
Application of Theorem 1 for β1 = 0.1, β2 = 0.1, β3 = 1,

0 50 100 150 200 250 300

0

0.5

1

1.5

2

2.5

3

Fig. 1. The reference trajectories.

γ1 = 0.5, γ2 = 0.3, γ3 = 0.2 and Ŝ2 = diag{0.5, 0.5} gives

K1=

[
0.6680 0.1018
0.0745 0.6550

]
, K2=

[
0.3226 0.0116
0.0149 0.3389

]
,

K3 = 10−17 ·
[
0.0789 −0.0472
−0.0278 0.1332

]
.

In this case, K3 ≈ 0 has little influence on the resulting
performance (tracking error performance). The simulation
results are shown in Fig. 2, where the tracking effectiveness
of the ILC approach is assessed using the RMS output
tracking errors for the first 40 batches and confirms the
tracking errors’ convergence. Furthermore, from Figure 2,
it is seen that the developed design procedure yields rapid
tracking error reduction from batch to batch, which is
comparable with the design in (Tao et al., 2017). This
new result does not use state feedback and finite frequency
ranges.

0 5 10 15 20 25 30 35 40

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Fig. 2. The RMSE against batch number

6. CONCLUSIONS AND FURTHER RESEARCH

This paper has developed a new procedure for designing
ILC laws for differential batch processes with time de-
lays. The new design for PD-type control laws uses the
repetitive process setting and the KYP lemma sufficient
conditions for the convergence of the batch-to-batch error
in the form of LMIs. Finally, a numerical example demon-
strates the effectiveness of the new design. Future work will
address the inclusion of multiple delays and uncertainty
in the ILC design. Extending the theory to include distur-
bance attenuation is another possible topic for future work.
Also, adding the output feedback controller is another area
for potential future research.
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