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This study presents a neural network (NN)-based approach for optimising material composition in multi-layered 
functionally graded (FG) plates to minimise steady-state thermal stress. The focus is on the metal-ceramic 
composition across the thickness of heat-resistant FG plates, with the volume fractions of the ceramic constituent 
in each layer treated as design variables. A fully-connected NN, configured with an open-source Bayesian 
optimisation framework, is employed to predict the maximum in-plane thermal stress for various combinations of 
design variables. The optimal distribution of material composition is determined by applying a backpropagation 
algorithm to the NN. Numerical computations on ten- and twelve-layered FG plates demonstrate the usefulness of 
this approach in designing FG materials. NNs trained with 8000 samples enable the successful acquisition of valid 
optimal solutions within a practical timeframe. 
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1. Introduction 
 

 Functionally graded materials (FGMs) are composite materials in which the composition and/or structure 
vary along specific direction(s) in a continuous or stepwise manner [1]. Among FGMs, those composed of metal 
and ceramic, known as FGMs for thermal stress relaxation, are designed to withstand large temperature drops. 
Generally, the performance of FGMs heavily depends on their material composition profiles, thus making the 
profile optimisation crucial for maximising desired functions, such as thermal stress reduction. 
 Optimal design methods for FG structures have been extensively reviewed, focusing on structural 
shape [2] and chronological order [3]. Gradient-based approaches, such as sequential quadratic programming 
[4-6], and metaheuristic approaches including differential evolution [7], genetic algorithm [8-12], particle 
swarm optimisation [13-18], and others [18-21] have been commonly employed for FGM composition 
optimisation. Additionally, there is a growing interest in utilising neural networks (NNs) for surrogate 
modelling to enhance the efficiency of the optimisation [22-27]. 
 On the other hand, Ootao et al. [28-31] proposed a simple NN-based optimisation technique for FGM 
composition in the late 90s, which integrates both the analysis and optimisation processes into a single 
framework, eliminating the need for separate preparation of an analyser and optimiser. However, this approach 
assumed power-law type functions for spatially varying material composition, which was found to be overly 
restrictive in representing the material gradation in certain cases [4]. This assumption may have been 
influenced by the limited computing power at the time, which constrained the number of design variables that 
could be accommodated by specifying the function form. 
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 Advancements in computing power and deep NN technology have prompted a re-evaluation of the 
FGM composition optimisation problem. This study aims to overcome the previous limitations and leverage 
recent technological developments for optimal material design in multi-layered FG plates. The choice of multi-
layered FGMs here is driven by practical and interpretive considerations. Technically, achieving a 
continuously varying material composition is challenging due to manufacturing constraints, such as limitations 
in material handling and processing accuracy [32]. Furthermore, advanced thermal barrier coatings often take 
the form of multi-layered FGM [33]. The discrete nature of multi-layered FGMs also enhances interpretability, 
making the optimisation results clearer and more applicable. Importantly, the optimisation results for multi-
layered FGMs can provide a basis for designing compositionally continuous FGMs; the stepwise distribution 
can be smoothed to approximate continuous gradation, thus bridging practical constraints with the goal of 
seamless material variation. 
 This study applies a NN-based optimisation method, building on the work of Ootao et al. [28], and 
utilises a deep NN with a structure tuned via Bayesian optimisation. Numerical examples include ten- and 
twelve-layered FG plates made of nickel and alumina [13, 22, 34] and carbon and silicon carbide [14]. Unlike 
previous approaches, this method does not impose restrictions on material gradation profiles, allowing for 
more flexible representation and accurate optimisation of FGM composition. The objective is to minimise the 
absolute value of in-plane thermal stress under a steady temperature field. 
 
2. Thermoelastic analysis 
 
2.1. Temperature field 
 
 As an analytical model, let us consider a multi-layered FG plate with a thickness of h and infinite 
lengths along the x- and y-directions, as illustrated in Fig.1. In the FG plate, the thermal conductivity λ , 
Young’s modulus E, thermal expansion coefficient α  and Poisson’s ratio ν  vary in a stepwise manner along 
the thickness (or z-axis) direction, depending on the composition profile in the same direction. The plate 
surfaces at z 0=  and z h=  are subjected to known temperatures 0T  and Tn, respectively. These thermal 
boundary conditions represent typical operational scenarios for FG plate structures (e.g. thermal barrier 
coatings) exposed to high and relatively stable temperatures, as found in aerospace applications, gas turbines 
and industrial furnaces. 
 

 
 

Fig.1. Analytical model of functionally graded infinite plate and coordinate system. 
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 Assuming one-dimensional steady heat conduction across the plate thickness, the interface temperature 
iT  at ( ) ,  , , –iz a i 1 2 n 1= = …  can be obtained as follows: 
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No thermal contact resistance is considered at the mating surfaces, as the bonding between layers is assumed 
to be perfect. The temperature distribution in each layer is given as a linear function that connects the 
temperatures at both interfaces, resulting in a continuous multi-linear temperature profile throughout the plate. 
 
2.2. Thermal stress field 
 
 Consider the thermal stress field in a traction-free plate where the temperature varies only along the 
thickness direction (Fig.1). The plate is assumed to have an arbitrary planform with a constant thickness h. 
Both the length and width of the plate are considered sufficiently large compared to its thickness, classifying 
it as a thin plate. Stress components zz xz yx zyσ = σ = σ = σ  are assumed to be zero, which is a reasonable 
approximation for this analysis. In the case of an arbitrarily non-homogeneous plate across the thickness, the 
in-plane thermal stresses can be evaluated using an analytical solution derived by Sugano [35]. Therefore, the 
non-zero thermal stress components in the multi-layered FG plate under consideration, with surfaces free of 
tractions, are expressed as follows: 
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 Equation (2.2a) was derived through a two-step process: (i) first, by determining the form of stress 
components necessary to satisfy the compatibility equations expressed in terms of stress components; and (ii) 
second, by identifying two unknown constants to ensure that the resultant force and moment (per unit length) 
produced by xxσ  and yyσ  are zero over the edges of the plate. According to Saint-Venant’s principle, this 
ensures that Eq.(2.2a) provides an accurate approximation for traction-free edges at distances from these edges 
greater than approximately one plate thickness. 
 Since all the shear stress components and zzσ  are zero, the absolute value of each of xxσ  and yyσ  is 
consistent with the von Mises stress, an important scalar measure of the stress tensor. For the generality of 
analysis, dimensionless stresses are introduced as { }, { , } / ( )xx yy xx yy m mE tσ σ = σ σ α Δ , where mE  and mα  
denote the Young’s modulus and thermal expansion coefficient of the non-ceramic phase, respectively, and 

tΔ  is a reference temperature difference. 
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3. Volume fraction optimisation using a deep neural network 
 
3.1. Formulation of the optimisation problem 
  
 The goal here is to determine the optimal volume fraction of ceramic in each layer of multi-layered 
FGMs, including metal-ceramic and carbon-ceramic compositions. As such, the optimisation problem, along 
with the necessary constraint conditions, can be expressed in the following form: 
 
  Design variables        V , 
 
  Minimise                   ( )f V , (3.1) 
 
  Subject to                  ,   , , ,i0 V 1 i 1 2 n≤ ≤ = … ,     ,  ,  , , –i i 1V V i 1 2 n 1+≤ = … , 
 
where [ ], , ,1 2 nV V V= …V  represents the vector of the ceramic volume fractions in the respective layers, and 

( )f V  denotes the objective function to be minimised. In this study, the objective function is defined as the 

maximum absolute value of xxσ  evaluated throughout the thickness [13, 22, 34], i.e. 
 

  
[ , ]

( ) max ( )xx
z 0 h

f z
∈

= σV . (3.2) 

 
3.2. Building a deep neural network 
 
 A NN predictor (or analyser) for the maximum thermal stress in the n-layered FG plate, represented 
by Eq.(3.2), is constructed using a fully-connected NN with M hidden layers, as illustrated in Fig.2. The input 
layer contains n+1 neurons for the input of features V and an additional bias. Each hidden layer can have a 
variable number of neurons, denoted as iN 1+  for the ith hidden layer, where “+1” represents the inclusion of 
one bias in the layer. The output layer comprises a single neuron that generates the predicted value of the 
maximum thermal stress. 
 

 
 

Fig.2. Structure of fully-connected deep neural network with bias neurons. 
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 A dataset consisting of 12000 pairs of randomly generated V (excluding fixed values of 1V 0=  and 

nV 1= ) and their corresponding maximum absolute value of xxσ , evaluated using Eqs (2.1) and (2.2), is 
prepared. Details of the dataset are provided in Tab.1. Subsequently, the dataset is split into 8000 data pairs 
for training, 2000 for validation and 2000 for testing. 
 
Table 1. Details of dataset used for training, validating and testing the neural network. 
 

 
 
 In the training phase of the NN, the mean squared error (MSE) of mini-batch version is employed as 
a metric to assess the prediction error. Specifically, the MSE between the target values and predicted values of 

( )f V  serves as the loss function. To update the network weights and bias values, Adaptive Moment 
Estimation, commonly referred to as Adam, is utilised. The specific Adam configuration parameters are 
detailed in Tab.2. Additionally, the rectified linear unit (ReLU) is employed as the activation function in all 
the hidden layers of the network. The network undergoes mini-batch training for up to 3000 epochs. The 
normalisation of input data is not necessary because all components of V fall within the range from 0 to 1. 
 
Table 2. Adam configuration parameters for neural network training. 
 

 
 
3.3. Structure tuning of the neural network 
 
 In this study, the tuning of the NN structure is conducted using Bayesian optimisation. This process 
aims to optimise the hyperparameters that define the architecture of the NN to achieve optimal performance. 
To facilitate this, we utilise the Tree-structured Parzen Estimator (TPE) algorithm [36], which is provided by 
Optuna [37] – an open-source hyperparameter optimisation framework for machine learning. TPE is a 
Bayesian optimisation algorithm that efficiently explores the solution space of possible NN structures and 
identifies the configuration that yields optimal results. Optuna provides a user-friendly interface for defining 
hyperparameter search spaces and also offers extensive documentation and community support, thus 
facilitating integration into the workflow. 
 Specific hyperparameters targeted for tuning are M and ( ),  , ,iN i 1 2 M= … , which denote the number 
of hidden layers and the number of neurons for each hidden layer (excluding bias neuron), respectively, as 
shown in Fig.2. Constraints are imposed as 1 M 7≤ ≤  and i10 N 50≤ ≤ , in increments of 10. These constraints 
help manage the trade-offs between thorough exploration of the solution space and computational burden 
required for the tuning. During the tuning process, Optuna conducts 200 trials, each comprising 100 epochs, 
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to thoroughly explore the space of possible NN structures. Thus, the objective value of Optuna is the MSE 
calculated for the validation dataset after the completion of 100-epoch training. 
 Additionally, we also employ Optuna to determine the optimal mini-batch size from a predefined set 
of options, including 32, 64, 96 and 128. This ensures identification of the mini-batch size, another 
hyperparameter, that best suits the dataset characteristics and maximises training efficiency. 
 
3.4. Optimisation calculation 
 
 Once the training of the NN is completed, the optimal volume fractions of ceramic in the respective 
layers are estimated through a backpropagation algorithm while keeping all network weights and bias values 
fixed [28, 38]. This approach was selected for its efficiency and effectiveness in gradient-based optimisation 
tasks, allowing precise adjustment of the volume fractions with minimal computational cost. Thus, this 
streamlines the workflow and simplifies the optimisation process. The following provides a concise description 
of the optimisation procedure. 
(1) With a vector ,  ,  ,  ...,  ,  ini ini ini

2 3 1
ini

n0 V V V 1−=  
 V  as input, the forward propagation is initiated from the 

input layer of the trained NN. During the propagation to the output layer, the internal states of neurons 
k
ju  are recorded, where the superscript k denotes the layer number ranging from 1 to M+2 (as shown in 

the bottom of Fig.2), and the subscript j represents the neuron number in each layer. 
(2) Recursive calculations are employed based on the following equations from k equals M to 1, which allow 

us to obtain the values of ,  ,  ...,  1 1 1
1 2 nδ δ δ : 
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where ε  is a small positive constant, and function F(·) represents the derivative of the activation function. 
In this study, F(·) is equivalent to the unit step function because ReLU is used as the activation function 
in all hidden layers. Moreover, ,

,
k 1 k
j iW +  denotes the weight of the connection between the ith neuron of 
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layer number k and the jth neuron of layer number ( )k 1+ . The symbol p in kW  represents the number 

of neurons (excluding the bias neuron) for layer number ( )k 1+ , and the symbol q represents that for 

layer number k; thus, kW  is a variable-sized matrix depending on the value of k. 
(3) The amounts of correction 1

iδ  are added to ini
iV  for ,  ,..., –i 2 3 n 1=  to update the input, i.e. 

 
 new 1

i i iV V← + δ ,     ,  ,..., –i 2 3 n 1= , (3.4) 
 
while 1V  and nV  remain fixed at 0 and 1, respectively. 

(4) The updated input ,  ,  ,  ...,  ,  new newe new
2 3 1

n w
n0 V V V 1− 

 =V  is provided to the input layer, and forward 

propagation to the output layer is executed, resulting in the update of the internal states of neurons. 
(5) Steps (2)-(4) are repeated until a termination condition is met. 

 
 This algorithm serves as the optimiser of the present approach. It should be noted that during step (3), 
if the addition of correction amounts results in the values of new

iV  exceeding 1, they are constrained to a 

maximum value of 1. Similarly, if the addition of correction amounts causes the values of new
iV  to fall below 

0, they are adjusted to a minimum value of 0. 
 
4. Numerical results and discussion 
 
4.1. Uniformly cooled multi-layered FG plate 
 
4.1.1. Ni-Al2O3 heat-resisting FG plate 
 
 In the first numerical example, the optimisation of ceramic volume fraction distribution aims to 
minimise the residual thermal stress of a uniformly cooled Ni-Al2O3 FGM [13, 22, 34]. The FGM is a twelve-
layered FG plate with a thickness of 10 mm. The first layer is pure Ni, while the twelfth layer consists of pure 
Al2O3, each with a thickness of 1 mm. Therefore, n 12=  and ( )/ – / .1 12 11a h a a h 0 1= =  in Fig.1. The 
remaining ten layers have a uniform thickness of 0.08 in dimensionless units. This FG plate is subjected to a 
uniform temperature drop from 300 K to 100 K ( )–  t 200 KΔ = . 
 Table 3 presents thermoelastic material data for Ni and Al2O3 [34]. The modified rule of mixture 
method is used to estimate the effective material properties, facilitating a direct comparison in optimisation 
results with previous work [34]. Further information regarding these estimates can be found in [39]. 
 
Table 3. Material properties of nickel and alumina [34]. 
 

 
 
 First, the NN structure is optimised using Optuna with selectable mini-batch sizes. The structure tuning 
process yields a network structure such that M 4=  and { } { }, , , ,  ,  ,  1 2 3 4N N N N 50 50 40 30=  for a mini-batch 
size of 32. Next, the MSE loss from the NN is evaluated during training over 3000 epochs on both training and 
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validation datasets. Figure 3 illustrates the dual learning curves obtained through 5-fold cross-validation. After 
3000 epochs of training, the validation loss decreases to approximately –55 10× . Moreover, despite the 
absence of dropout or regularisation techniques, the simple NN demonstrates no signs of overfitting. 
 

 
 
Fig.3. Training and validation learning curves averaged over 5-fold cross-validation for neural network with 
          ( )50 50 40 30− − −  hidden layer structure, for a mini-batch size of 32. 

 
 However, as the numbers of neurons in half of the hidden layers have already reached the 
predetermined maximum value of 50 , it is reasonable to anticipate that expanding the exploration space by 
increasing the upper limit could potentially result in improved network structures. Consequently, an extended 
structure tuning process is conducted by raising the upper limit to 100, yielding a larger-scale structure with 
M 4=  and { } { }, , , ,  ,  ,  1 2 3 4N N N N 60 100 90 70=  for a mini-batch size of 64. 
 Figure 4 shows the dual learning curves produced from this updated NN. As compared to the learning 
curves of the previous NN with a hidden layer structure of 50-50-40-30, the validation loss is reduced by half.  
 

 
 
Fig.4. Training and validation learning curves averaged over 5-fold cross-validation for neural network with           
( )60 100 90 70− − −  hidden layer structure, for a mini-batch size of 64. 
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 Figure 5 illustrates the actual values of maximum thermal stress for the test dataset alongside those 
predicted by the NN model. The close clustering of data points around the ideal line reflects the network's 
capacity to generalise well beyond the training set, as supported by the near-perfect R² value. 
 

 
 

Fig.5. Comparison of actual and predicted maximum thermal stress values for the test dataset. 
 

 
 Subsequently, the optimisation calculation described in Section 3.4 is conducted using the trained NN. 
In this computation, two different values of ε , namely .0 01ε =  and 0.1, are adopted, and the maximum 
number of iterations is limited to 1000. The initial volume fraction vector iniV  is set to 

[ ],  . ,  . ,  ,  . ,  ini 0 0 5 0 5 0 5 1= …V  based on Cho et al. [34]. 
 The initial and optimised distributions of the volume fraction and the corresponding thermal stress 
profiles are compared in Fig.6 and Fig.7, respectively. Both figures include the optimisation results previously  
 

 
 

Fig.6. Comparison of initial and optimal distributions 
of the alumina volume fraction along the z-axis.

 
Fig.7. Comparison of in-plane thermal stress 

distributions along the z-axis. 
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presented by Cho et al. [34]. Because of the stepwise discontinuous volume fractions, the stress distributions 
exhibit sharp jumps at all interfaces between layers. Although optimisation results do not perfectly match 
previous results in terms of both volume fraction and thermal stress distributions, a remarkable similarity is 
observed. This discrepancy arises because the analytical model used by Cho et al. is based on a semi-infinite 
plate, whereas the model here considers an infinite plate. Their model assumes a finite plate length along the 
x-direction, specifically equal to 100 mm, which is ten times larger than the thickness. However, the 
distributions are remarkably similar, validating the optimisation results. 
 
4.1.2. C/SiC FGM coating of C/C composite 
 
 In contrast to the previous example, which involved a linear variation in ceramic volume fraction, this 
section addresses a different FGM composition optimisation problem. The optimal ceramic volume fraction 
distribution is expected to exhibit a sharp increase at a specific location, followed by a change characterised 
by a power-law type function of the position coordinate. The focus is on minimising the residual thermal stress 
induced in a C/SiC FGM coating applied to carbon/carbon (C/C) composites, following Xu et al. [14]. 
 Consider a C/SiC FGM coating consisting of 11 layers, deposited on a 20-mm-thick C/C composite 
substrate. The total thickness of the coating is 2.881 mm, with the outermost layer being a 1-mm-thick pure 
SiC layer. Therefore,  n 12=  layers including the substrate, where / .1a h 0 874=  and ( )– / .12 11a a h 0 044=  
in Fig.1. The remaining ten layers have a uniform thickness of 0.0082 in dimensionless units. This C/C 
composite coated with a C/SiC FGM undergoes cooling from a sintering temperature of 1573 K to room 
temperature ( ) 298 K  under a uniform temperature field ( )–  t 1275 KΔ = . 
 Table 4 presents material properties of the constituents [14]. In Xu et al. study [14], the FGM coating 
system is assumed to be a strip in a plane stress state in depth (i.e. the y-direction in Fig.1 of the present paper); 
thus, the Poisson’s ratios of the constituents are not provided. However, for quantitative comparisons of 
numerical results, we assume an arbitrary constant Poisson’s ratio and convert thermal stress values for a planar 
coating in a plane strain state, as illustrated in Fig.1, into those for the strip-like coating [40]. The effective 
material properties are estimated using the linear rule of mixture to ensure consistency with the estimation 
method employed in [14]. 
 

 
 

Fig.8. Training and validation learning curves averaged over 5-fold cross-validation for neural network with 
( )80 80 70− −  hidden layer structure, for a mini-batch size of 32. 
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Fig.9. Comparison of actual and predicted maximum thermal stress values for the test dataset. 
 

Table 4. Material properties of carbon and SiC [14]. 
 

 
 

 
 

Fig.10. Comparison of optimised distributions of the SiC volume fraction obtained by two different 
optimisation approaches and resulting thermal stresses. 

 
 Similar to Section 4.1.1, first, the optimal NN structure and mini-batch size are determined using Optuna. 
Because all target values in the datasets exceed 1, these values are normalised by dividing each by their maximum 
value ( ).33 1=  to ensure numerical stability. The structure tuning process results in a network architecture of 

M 6=  with { } { }, , , , , ,  ,  ,  ,  ,  1 2 3 4 5 6N N N N N N 50 30 40 50 50 40=  for a mini-batch size of 32. Additionally, 
increasing the upper limit of the number of neurons per hidden layer up to 100 yields a more compact structure 
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of M 3=  with { } { }, , ,  ,  1 2 3N N N 80 80 70=  for the same mini-batch size. Learning curves from the NN and 
prediction accuracy results after training for 3000 epochs are illustrated in Figs 8 and 9, respectively. 
 Subsequently, the optimisation calculation described in Section 3.4 is performed using the trained NN. 
Figure 10 compares our optimised distribution of SiC volume fraction with that of Xu et al. [14], obtained using a 
particle swarm optimisation algorithm. Thermal stresses resulting from both distributions are also depicted on the 
secondary Y-axis. Xu et al. assumed a power-law type function for the SiC volume fraction in the FGM coating 
and determined the optimal power index to be 0.0739. Although they did not present the stress distribution in the 
FGM coating system, they reported a maximum stress of 175 MPa. In contrast, our optimised volume fraction 
distribution results in a peak stress below 175 MPa, indicating a potentially superior distribution. This serves as a 
clear example that power-law type functions may overly restrict the representation of material gradation. 
 
4.2. Multi-layered FG plate subjected to a temperature gradient 
 
 In this numerical example, the optimisation of ceramic volume fraction distribution aims to minimise 
the thermal stress of a Ni-Al2O3 FG plate heated on one surface. The FG plate consists of ten layers of equal 
thickness, with the first layer being pure Ni and the 10th layer being pure Al2O3, i.e. n 10= , 

( ) ( )/ – / – / .1 2 1 10 9a h a a h a a h 0 1= =…= =  in Fig.1. 
 Table 5 presents the thermoelastic material data for Ni and Al2O3 [41] used in this numerical example. 
Effective material properties are estimated using the linear rule of mixture, primarily for simplicity. 
 
Table 5. Material properties of nickel and alumina [41]. 
 

 
 
Moreover, Fig.11 provides a histogram illustrating the maximum of the absolute xxσ  values corresponding to 
the 10000 randomly generated V for training and validating the NN. 
 

 
 

Fig.11. Histogram of max| |xxσ  for all samples included in the training and validation sets. 
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 Similar to the previous numerical examples, the NN structure is optimised using Optuna for four different 
mini-batch size options. The resulting network structure is M 4=  with { } { }, , , ,  ,  ,  1 2 3 4N N N N 50 50 50 40=  
for a mini-batch size of 96. Figure 12 depicts the dual learning curves obtained during the training process. 
The training progresses successfully without overfitting; however, a notable loss spike is observed in the 
validation loss, with loss values fluctuating by half an order of magnitude. 
 

 
 
Fig.12. Training and validation learning curves averaged over 5-fold cross-validation for neural network with 

( )50 50 50 40− − −  hidden layer structure, for a mini-batch size of 96. 
 
 Considering that the numbers of neurons in most of the hidden layers in the tuned NN have reached 
the pre-set upper limit of 50, it is plausible that the significant fluctuation in the validation loss may be 
attributed to the NN’s limited expressive power. To address this, a subsequent structure tuning is carried out 
using Optuna, with a raised upper limit of Ni set to 100. Through the structure tuning process, a more shallow 
NN is obtained such that M 3=  and { } { }, , ,  ,  1 2 3N N N 80 90 90=  for a mini-batch size of 64. 
 

 
 
Fig.13. Training and validation learning curves averaged over 5-fold cross-validation for neural network with 

( )80 90 90− −  hidden layer structure, for a mini-batch size of 64. 
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Fig.14. Comparison of actual and predicted maximum thermal stress values for the test dataset. 
 
 Figure 13 displays the dual learning curves generated by this NN. The validation loss closely 
approaches the train loss, and its spike is significantly reduced compared to that shown in Fig.12. Additionally, 
Fig.14 underscores the trained NN’s precision, with an R² of 0.9986 highlighting its accuracy in predicting the 
maximum thermal stress for FG plates with unseen data of V. The close correlation between predicted and 
actual stresses confirms the model’s reliability for the subsequent optimisation process based on it. 
 The optimisation calculation using this NN produces the optimal distribution of Al2O3 volume fraction 
and the corresponding thermal stress distribution, as shown in Figs 15 and 16, respectively. For consistency 
with the first example, iniV  is set as [ ],  . ,  . ,  ,  . ,  0 0 5 0 5 0 5 1… . The variation of the objective function 
throughout the iteration during the optimisation process is illustrated in Fig.17. The optimal V shown in Fig.15 
represents a plausible solution leading to the most significant reduction in thermal stress.  
 

 
Fig.15. Comparison of initial and optimal 

distributions of the alumina volume fraction 
along the thickness direction (z-axis)

 
Fig.16. Comparison of in-plane thermal stress 

distributions along the thickness direction
(z-axis) in dimensionless units. 
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This is supported by the fact that the dimensionless xx maxσ  value for the optimal V is 0.0206, as shown in 
Fig.16, whereas the minimum among those corresponding to the 10000 preliminarily generated V is 0.0250, 
as shown in Fig.11. This indicates an approximately 18% decrease in dimensionless xx maxσ  value. 
 In the numerical computation described above, training the NN over 3000 epochs takes 14 minutes in 
the Google Colaboratory computation environment, utilising a GPU (NVIDIA Tesla T4) with 16 GB RAM. 
Furthermore, the optimisation calculation using the trained NN requires around 22 minutes for 1000 iterations. 
However, incorporating a convergence criterion in the termination condition can reduce the computational cost 
to approximately 30%, by the look of the convergence observed at around 300 iterations, as shown in Fig.17. 
 

 
 

Fig.17. Convergence of objective function over iterations for .01ε= . 
 
5. Conclusions 
 
 This study applied a NN-based optimisation method, which builds upon the pioneering work of Ootao 
et al. [28], to determine optimal material composition distributions for minimising steady-state thermal stresses 
in multi-layered heat-resistant FG plates. The approach treats the volume fractions of the ceramic constituent 
in each layer as design variables, enabling a precise optimisation process. By applying a backpropagation 
algorithm to a NN predictor, the optimal set of volume fractions is efficiently identified to reduce the maximum 
in-plane thermal stress. 
 A key novelty of this study lies in the use of Optuna, an open-source hyperparameter optimisation tool 
powered by the TPE, a Bayesian optimisation algorithm. This advanced framework facilitates the 
determination of hyperparameters associated with the NN structure, thereby enhancing the efficiency and 
effectiveness of the optimisation process. 
 Numerical computations conducted on ten- and twelve-layered FG plates subjected to temperature 
changes demonstrate the practical applicability of the presented optimisation approach. The NN model, trained 
on a dataset of 8000 samples, consistently yields valid optimal solutions for optimisation problems involving 
around ten design variables within a reasonable timeframe on a GPU. Network structure tuning with Optuna 
indicates that NNs with up to 100 neurons per hidden layer are suitable for solving material composition 
optimisation problems of this scale, provided that 8000 samples are used for NN training. 
 Implementing the NN-based algorithms is relatively straightforward in a Python environment and 
incurs minimal costs, as many libraries and tools are available for free. This ease of implementation and cost-
effectiveness makes the NN-based approach a practical choice for optimisation problems. 
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Nomenclature 
 

 a – interface position 
 E – Young’s modulus 
 f – objective function 
 F – derivative of activation function 
 h – thickness 
 i – index w.r.t. layer number 
 j – index w.r.t. neuron number 
 k – index w.r.t. network layer number 
 M – number of hidden layers 
 n – number of layers 
 N – number of neurons 
 R2 – coefficient of determination 
 T – temperature 
 u – internal state of neuron 
 V – ceramic volume fraction 
 V – vector of ceramic volume fractions 
 W – connection weight between different neurons 
 x – length direction coordinate 
 y – width direction coordinate 
 z – thickness direction coordinate 

 α  – thermal expansion coefficient 

 δ – correction amount 

 tΔ  – reference temperature difference 

 ε  – small positive constant 

 λ – thermal conductivity 

 ν  – Poisson’s ratio 

 σ  – stress 

 σ – dimensionless stress 
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