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Abstract

Iterative Learning Control (ILC) is renowned for its capability to achieve precise tracking
control for systems with repetitive actions at a fixed time interval. However, pursuing the
dual objective of high-precision tracking and rapid convergence is a persistent challenge in
the field of learning control. To address this problem, a novel ILC method is designed for
a class of discrete-time linear systems subject to non-repetitive disturbances in this paper.
Particularly, the updating term in ILC is constructed inspired by the principle of sliding mode
control (SMC), which results in the learning process being divided into two distinct stages:
a rapid reaching stage and a slow sliding stage. As a result, a balance between convergence
speed and tracking performance can be ensured via the proposed ILC method. In addition, to
attenuate the effects of non-repetitive disturbances, the disturbance compensation mechanism
is integrated into the proposed ILC method. Moreover, the optimal value of the learning
gain can be determined using the predicted root mean square (RMS) errors of subsequent
iterations, eliminating the need for additional tuning actions. Finally, simulation examples
are provided to validate the effectiveness and superiority of the proposed new ILC method.

Note to Practitioners— For many mechanical components in mechatronic systems and
robotics, the motions are repeatable. Iterative learning control (ILC) is a well-established
technique ideally suited for enhancing the performance of such repetitive tasks without ex-
cessive requirements on sensor-feedback quality or control-loop bandwidth. However, most
existing ILC approaches in the literature primarily focus on improving convergence accu-
racy, while little attention is paid to convergence speed in the iteration domain, especially in
the presence of disturbances. This paper addresses the limitations of classical ILC schemes,
and draws inspiration from the sliding mode control (SMC) technique. To be specific, a
novel SMC-based ILC algorithm is proposed that allows to achieve a good balance between
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the fast convergence and precise tracking performance, especially in case of iteration vari-
ant disturbances. Also, it will be shown how the optimal learning gains can be determined.
Base on the examples of multi-axis gantry robot and injection molding process, simulations
support the theoretical results, and meanwhile show the effectiveness and advantage of the
proposed ILC strategy.

Iterative learning control (ILC), convergence, sliding mode control (SMC), non-repetitive dis-
turbances.

1 Introduction

Tracking control, a fundamental and significant topic within the control community [35, 10, 20],
primarily aims to ensure precise adherence of a considered system to a given reference command
[39, 26]. Presently, various advanced control techniques have been employed to achieve accurate
tracking control for various dynamical systems [22, 38]. Among these techniques, iterative learning
control (ILC) has emerged as one of the most powerful strategies, notably esteemed for its capacity
to attain high-precision tracking for systems that iteratively perform repetitive tasks [37, 18]. The
fundamental concept behind ILC is to continuously refine the current tracking performance of sys-
tems by leveraging information derived from previous iterations, encompassing tracking errors and
control inputs [1, 4]. Notably, different from other learning-type methods like adaptive control, fo-
cusing on dynamically adjusting control parameters to adapt to environmental changes, the feature
of ILC makes it computationally efficient and straightforward to be implemented, requiring less
system identification or modeling knowledge. Over the past decades, owing to its straightforward
implementation and superior performance, ILC has found successful applications in diverse fields,
including chemical processes [28], robotic manufacturing systems [5] and robotic rehabilitation [9].

The performance evaluation of ILC algorithms predominantly hinges on two key metrics: the
convergence error over time and the convergence speed across iterations. Various techniques have
been developed to enhance the former metric, aiming to reduce tracking errors [11, 31, 23]. For
instance, to bolster the robustness of the feedback system and ensure the convergence of the
iterative process, a robust ILC scheme was introduced in [27], leveraging Youla parameterization
and the µ-synthesis method. Additionally, efforts have been made to further enhance the tracking
performance of conventional ILC. In [13], an adaptive robust learning control method was proposed,
while in [29], a neural network learning adaptive robust control approach was employed. These
methods were respectively utilized to augment the disturbance rejection capability of the considered
systems.

Contrary to the considerable focus on enhancing tracking performance through ILC, limited
attention has been paid to the convergence speed of ILC, a factor equally critical for performance
improvement. In general, convergence rate within the iterative domain is typically quantified by
the number of iterations needed to attain the desired system performance. In [14], a gain-scheduled
current-cycle ILC approach was introduced for the piezoelectric position stage, showcasing superior
tracking performance in both accuracy and convergence speed. Additionally, recent work in [32]
addressed the tracking control problem within a finite iteration framework utilizing an ILC scheme.

However, it is important to note that the majority of existing results are established for de-
terministic systems. Practical applications inevitably involve random noise, including dynamic
disturbances and measurement errors [40, 41, 36], which can compromise robustness and decrease



convergence rate for uncertain systems [30]. This is primarily due to the fact that a comparatively
conservative learning strategy is usually adopted to prioritize tracking performance at the expense
of tracking error’s convergence.

Literature reviews indicate that some preliminary efforts addressing the above-mentioned issue
have been made, such as the utilization of an adaptive gain strategy in [6] and [15]. This approach
employs an adaptive gain-based method to mitigate the effects of measurable noise, thereby en-
hancing transient convergence performance in terms of iterations. More recent advancements have
been witnessed in the research conducted in [3, 2], where an enhanced ILC algorithm was in-
vestigated for a category of linear uncertain systems. Notably, Armstrong et al. introduced the
application of sliding mode control (SMC) to manipulate the error vector in the updating term of
ILC, deviating from a sole emphasis on the selection of gain parameters. Moreover, this approach
has achieved a trade-off between understanding the system model and achieving convergence speed
for systems affected by repetitive disturbances.

It is well-known that SMC is one of the most powerful control techniques to deal with system
uncertainties [8], providing robustness against parameter uncertainties and external disturbances.
In [19], a robust discrete terminal sliding mode repetitive controller was employed for positioning
systems to effectively eliminate the effects of the periodic uncertainties. Similarly, a design strategy
to synthesize a modified repetitive SMC was investigated in [17] for a class of discrete-time linear
systems subject to periodic exogenous disturbance and plant uncertainties. Actually, SMC has
garnered increasing attention due to its simplicity of implementation and rapid response capabili-
ties. However, it is imperative to note that the bound of tracking error is directly associated with
the bound of disturbances, potentially leading to tracking errors exceeding acceptable thresholds
when disturbances fluctuate significantly. Moreover, the direct extension of existing SMC-based
learning control methods to uncertain systems with unknown and non-repetitive disturbances has
been deemed infeasible. Consequently, our work aims to address this limitation by incorporating
considerations of non-repetitive disturbances to further enhance tracking performance through ILC
schemes.

To sum up, the tracking control problem is addressed in this paper for a class of discrete
linear time-invariant (LTI) systems subject to non-repetitive disturbances operating repetitively
over a finite time interval. Particularly, a novel ILC strategy combined with the SMC technique
is proposed and then developed to achieve both a high-precision tracking performance and fast
convergence speed. Moreover, a disturbance observer is constructed to obtain the disturbance
estimation, thereby achieving a better disturbance rejection. The contributions of this paper are
highlighted as follows:

1. A novel ILC law is proposed by integrating the tracking error inspired by the idea of SMC.
The resulting learning process can be divided into two steps: a “fast” reaching phase and a
“slow” sliding phase. Then a trade-off between tracking performance and convergence speed
can be achieved for the considered system.

2. In contrast to the traditional linear ILC methods which focus on selecting gain parameters,
our proposed approach calculates the optimal controller gain using predicted root mean
square error from the subsequent iteration, which eliminates the need for manual tuning of
gain parameters.

3. Different from the existing work, the developed ILC law incorporates the observer-based
disturbance estimation, leading to enhanced disturbance suppression and system robustness.



The rest of this paper is organized as follows. Section 2 presents preliminaries and the problem
formulation. Section 3 introduces the modified fast ILC laws for systems with disturbances and
provides main paper results on monotonic convergence and design procedures for learning gains.
The effectiveness of the proposed scheme is demonstrated in Section 4. Finally, Section 5 concludes
the paper.

Notations: R and Rn represent the set of real numbers and the n-dimensional Euclidean
space, respectively. In denotes the identity matrix of size n. The symbol “T” denotes matrix
transposition. The Euclidean vector norm is represented by ∥ · ∥. The notation diag{· · · } is used
to denote a block-diagonal matrix. For a square matrix A, ρ(A) denotes the spectral radius, defined
as ρ(A) = maxi |λi(A)|, where λi(A) represents the i-th eigenvalue of A. Matrices, unless explicitly
stated, are assumed to be compatible for algebraic operations.

2 Problem Formulation

Consider the following discrete-time linear time-invariant (LTI) single-input single-output (SISO)
system over a finite time interval [0, N − 1]:

x(t + 1, k) = Ax(t, k) + Buu(t, k) + Bττ(t, k),

y(t, k) = Cx(t, k),
(1)

where k ≥ 0 is the iteration number, x(t, k) ∈ Rm, u(t, k) ∈ R and y(t, k) ∈ R denote the system
state, input and output, respectively; τ(t, k) denotes the non-repetitive disturbances; A, Bu, Bτ

and C are known system matrices with appropriate dimensions.
Before proceeding, the following assumptions are given.

Assumption 1 After each iteration, the system (1) resets to the same initial value, i.e. x(0, k) =
x0, k ≥ 0, where x0 is a known vector.

Assumption 2 The non-repetitive disturbance τ(t, k) ( that is τ (t, k − 1) ̸= τ (t, k)), is assumed
to be bounded, that is, there exists a scalar aτ > 0 such that at any time t ∈ [0, N − 1] and the kth
iteration, the following inequality holds

∥τ(t, k)∥ ≤ aτ .

Assumption 3 The input-output coupling matrix CBu is of full row rank.

Remark 1 The main purpose of Assumption 1 is to simplify the following derivations. In fact, the
initial state can be any fixed value or randomly varying around a value for all iterations [33, 25].

Remark 2 Under Assumption 3, for any given tracking objective yd , there exist an input sequence
u such that the output tracking error converges.

Given the desired reference trajectory yd(t), the tracking error on iteration k is defined as

e(t, k) = yd(t) − y(t, k). (2)



As known, a commonly adopted ILC strategy is to construct the current iteration input as that
used on the previous iteration plus a correction term, i.e., a control law of the form

u(t, k + 1) = u(t, k) + ∆u(t, k), (3)

where ∆u(t, k) indicates the correction term to be designed. Next, if define the following lifted
vectors

uk = [u(0, k) u(1, k) · · ·u(N − 1, k)]T,

τ k = [τ(0, k) τ(1, k) · · · τ(N − 1, k)]T,

yk = [y(1, k) y(2, k) · · · y(N, k)]T,

yd = [y(1, d) y(2, d) · · · y(N, d)]T,

ek = [e(1, k) e(2, k) · · · e(N, k)]T

(4)

then system (1), tracking error (2) and control input (3) can be reformulated as

yk = Huk + ωk, (5)

and
uk+1 = uk + ∆uk,

ek = yd − yk,
(6)

with ωk = H0x0 + Hττ k,

H0 =
[

(CA)T (CA2)T · · · (CAN)T
]T

,

Hτ =


CBτ 0 · · · 0

CABτ CBτ
. . .

...
...

. . . . . . 0
CAN−1Bτ · · · CABτ CBτ

 ,

H =


CBu 0 · · · 0

CABu CBu
. . .

...
...

. . . . . . 0
CAN−1Bu · · · CABu CBu

 .

(7)

Consequently, the above representation can facilitate further analysis and control synthesis. More-
over, the design problem can now be formulated. Given system (1), let updating law (3) be applied.
The problem addressed in this paper is to select an appropriate ∆uk in (3) such that

• the output tracking error converges to zero as k → ∞, and

• better (when comparing alternatives) learning transient behavior is achieved.

3 SMC-based ILC scheme

In the sequel, a version of disturbance observer is constructed and the obtained disturbance es-
timates are integrated into the learning controller to achieve a better disturbance rejection and
tracking performance of the controlled system. Specifically, a disturbance observer based (DOB)
ILC algorithm is proposed via SMC technique to achieve a better convergence of the tracking
errors in the iteration domain.



3.1 Disturbance observer

Introducing θk = ωk − ωk+1 and considering (5) and (6), we have the following equation

ek+1 = ek −H∆uk + θk. (8)

Also, the below discrete-time disturbance observer [16] is adopted to estimate the actual distur-
bance, {

θ̂k = Kek − zk,

zk+1 = zk + K(−H∆uk + θ̂k),
(9)

where θ̂k = ω̂k − ω̂k+1, ω̂k and θ̂k denote the disturbance estimation and the difference of
successive disturbance estimations, respectively. zk is the observer state. The matrix K =
diag {k1, k2, . . . , kN}, where the diagonal elements ki, i = 1, . . . , N , represent the observer gains
and satisfies |1 − ki| < 1.

Remark 3 Without loss of generality, the initial values of disturbance observer (9) are set to be

z0 = zd0, ω̂0 = ωd0, where zd0 and ωd0 are known vectors. Then it is easy to derive θ̂0 is bounded,
i.e.

∥θ̂0∥ ⩽ ∥K∥ ∥e0 − zd0∥ ≜ κ. (10)

By recalling the definition of ωk and Assumption 2, we have ωk and θk are bounded, i.e., ∥ωk∥ ⩽
βW , ∥θk∥ = ∥ωk − ωk+1∥ ⩽ 2βW . Further, it derives

∥∆θk∥ = ∥θk+1 − θk∥ ⩽ 4βW ≜ βθ. (11)

Then the following lemma gives the result on the stability of the proposed disturbance observer.

Lemma 1 Consider the disturbance observer in (9) and define the estimation error as θ̃k =

θk − θ̂k. Then, the estimation error is bounded and satisfies

|θ̃jk |≤
βθ

1 − |µj|
, (12)

where θ̃jk is the j-th element of θ̃k. Also µj = 1 − kj, satisfies |µj| < 1, j = 1, 2, . . . , N .

Proof: The first step is to rewrite (9) as

θ̂k+1 = Kek+1 − zk+1

= K(ek −H∆uk + θk)

−(zk + K(−H∆uk + θ̂k))

= Kek + Kθk − zk −Kθ̂k

= θ̂k + Kθk −Kθ̂k

= (IN −K)θ̂k + Kθk,

which leads to

θ̃k+1 = (IN −K)θ̃k − θk + θk+1.



Next, let ∆θj
k = θj

k+1 − θj
k. Then, we get

θ̃
j

k+1 =µjθ̃
j

k + ∆θj
k

≤ |µj|k
∣∣∣θ̃j

0

∣∣∣ +
k∑

i=0

|µj|i
∣∣∆θj

k−i−1

∣∣ .
Since ∥θ̂0∥ ⩽ κ, ∥∆θk∥ ⩽ βθ, one has

θ̃
j

k+1 ≤κ |µj|k + βθ

k∑
i=0

|µj|i

≤(κ− βθ) |µj|k +
βθ

1 − |µj|
.

Nothing, finally, that |µj| < 1, j = 1, 2, . . . , N , we can conclude that |µj|k → 0 as k → ∞.

Therefore, the disturbance estimation error θ̃
j

k is finally bounded and this completes the proof.

3.2 SMC-based ILC law

In the following, we will focus on the design of an ILC law in the form of (3) by using the concept
of SMC. Typically, the design process of SMC involves two stages: constructing a sliding mode
surface with satisfactory performance, and designing an appropriate controller to guide the system
trajectories from an initial state to the predefined sliding mode surface, ensuring their continuous
sliding along the surface until reaching the origin [34, 24, 7]. Meanwhile, inspired by the advantages
of SMC technique in terms of robustness against parameter uncertainties and external disturbances,
the correction term ∆u(t, k) in ILC law (3) can be designed as follows:

∆u(t, k) =

{
∆1, |e(t, k)| ≥ ρ

∆2, |e(t, k)| < ρ
(13)

with

∆1 =γ tanh (|e(t + 1, k)|q) sigα(e(t + 1, k)) (14)

+ lθ̂(t, k), q = 1 − α,

∆2 =γe(t + 1, k) + lθ̂(t, k), (15)

where ρ denotes the size of the boundary layer, γ and l are the learning gain and the disturbance
compensation gain to be designed later, respectively. Also

sigα(e(t, k)) = |e(t, k)|α sgn(e(t, k)), 0 < α < 1

is a continuous non-smooth function.

Remark 4 It should be noted that in the presented ILC law (3) with the updating form (13),
u(t, k) can be regarded as the current control input, while ∆1 and ∆2 represent the innovation
terms. Clearly, information from the k-th iteration is utilized to update the (k+1)-th learning law.



Specifically, both x(t, k) and u(t, k) are acquired prior to the generation of control input u(t, k + 1)
at(k + 1)-th iteration, thereby allowing determination of the corresponding values of y(t, k) and
e(t, k). Subsequently, by employing the system equation (1), the complete information in lifted
form (4) can be derived at the k-th iteration, which includes the error signal e(t + 1, k).

Remark 5 From the correction term (13) in ILC law (3), one can see that the learning process
is similar to the fast-arrival and slow-slide phases of the SMC method. Particularly, beyond the
boundary layer, the updating term (14) is employed. Similar to the SMC reaching phase, this phase
aims for rapid convergence to the sliding manifold. Once entering the boundary layer, the learning
behavior is the same as the traditional ILC law as given in (15), which means that the sliding
manifold in this algorithm is a dynamic learning system. Besides, the introduction of disturbance
compensation term lθ̂(t, k) in (14) and (15) further ensures the system tracking accuracy.

3.3 Convergence Analysis

Next, the convergence analysis will be conducted in this subsection. The situation that the con-
trolled system enters the slow-slide phase is firstly analyzed. At this point, ILC law with correction
(15) is used, while it can be transformed to the lifted framework as follows

uk+1 = uk + Γek + Lθ̂k, (16)

where ek = yd − yk, yd = [yd(1, k) yd(2, k) · · · yd(N, k)]T. Γ and L is the constant diagonal
matrices whose diagonal elements are γ and l, respectively.

Then, by utilizing the proposed ILC law (3) with correction (15), the sufficient condition of
convergence for system (1) with disturbances is given in the following lemma.

Theorem 1 Assume that an ILC law (3) with correction term (13) and the disturbance observer
(9) are applied to the system (1) with disturbances. Then the resulting ILC dynamics achieves the
convergence of tracking errors if there exists a scalar γ satisfies

0 < ρ(I − γH) < 1. (17)

Proof: Substitute the control law in (16) into system (5), and one obtains

ek+1 =yd − yk+1

=ek −
(
yk+1 − yk

)
=ek −H (uk+1 − uk) − (ωk+1 − ωk)

=ek −HΓek −HLθ̂k + θk

=(I −HΓ)ek + HLθ̃k + (I −HL)θk.

(18)

Besides, by recalling the results of Lemma 1, we have θ̃k ⩽ β. Then it can be derived that

lim sup
k→∞

∥ek∥ ≤ ∥HL∥β + 2∥I −HL∥βW

1 − ∥I −HΓ∥
, (19)

which implies the convergence of tracking errors. This completes the proof.



Remark 6 Considering an ideal scenario with zero disturbance, i.e., θk = 0, the iterative dy-
namics of the tracking error can be derived as ek+1 = (I −HΓ)ek −HLθ̂k, showing that tracking
performance still relates to the disturbance estimation value. Meanwhile, based on the structure of
the proposed disturbance observer, it is evident that as k approaches infinity, θ̂k converges to zero,
ensuring that the tracking error converges to a bounded value. Indeed, the convergence of tracking
errors can be always guaranteed regardless of the presence of disturbances under the implementation
of the presented disturbance observer. In addition, from (19), it can be seen that the magnitude of
the tracking error is directly influenced by the observer gain L. Thus, tuning the value of L can
significantly enhance tracking performance. Consequently, the design of disturbance observers is
critical for ensuring robust performance under both ideal and disturbed conditions.

Next, the learning algorithm outside the boundary layer is addressed. Here, the ILC law has the
following form

u(t, k + 1) =u(t, k) + γ tanh (|e(t + 1, k)|q)
sigα(e(t + 1, k)) + lθ̂(t, k), (20)

and it can be reformulated in the lifted domain as

uk+1 =uk + Γ Tanh (|ek|q) Sigα(ek) + Lθ̂k, (21)

where Sigα(ek) = Aveα(ek) sgn(ek) with

Tanh (|ek|q) =diag{tanh(|e(0, k)|q), tanh(|e(1, k)|q),
· · · , tanh(|e(N − 1, k)|q)},

Ave(ek) =diag{|e(0, k)|, |e(1, k)|, · · · , |e(N − 1, k)|},
sgn(ek) = [sgn(e(0, k)) sgn(e(1, k)) · · · sgn(e(N − 1, k))]T .

In the following, the reach-ability condition during the fast reaching phase can be derived by
utilizing the Lyapunov function technique, which ensures that the tracking error can converge
monotonically to the boundary layer.

First, the sliding mode can be designed as s(k) = ∥ek∥2 since the root mean square error is
directly related to the scale of boundary layer. Then the following Lyapunov function is constructed

V (k) = s2(k) = eT
k ek, (22)

and one has

∆V (k) = V (k + 1) − V (k)

= s2(k + 1) − s2(k)

= eT
k+1ek+1 − eT

k ek

= 2eT
k ∆ek + ∥∆ek∥22 , (23)

where
∆ek = ek+1 − ek.



Also, by combining (5) with (21), it follows that

∆ek = −
(
yk+1 − yk

)
= −H (uk+1 − uk) − (ωk+1 − ωk)

= −HΓ Tanh (|ek|q) Sigα(ek) −HLθ̂(k)

+ θk

= −HΓ Tanh (|ek|q) Sigα(ek) + HLθ̃k (24)

+ (I −HL)θk.

By substituting (24) into (23), we have

∆V (k) = − 2eT
k [HΓ Tanh (|ek|q) Sigα(ek) −HLθ̃k

− (I −HL)θk] + ∥HΓ Tanh (|ek|q) Sigα(ek)

−HLθ̃k − (I −HL)θk∥22. (25)

Note that the tracking errors of the system is convergent if ∆V (k) < 0. That is, the system can be
driven toward the boundary layer monotonically until the condition is not feasible and the system
enters into the slow-sliding phase.

Remark 7 Based on the above discussion, the switching between fast reaching phase with ILC law
(21) and slow sliding phase with ILC law (16) is determined by the Lyapunov difference function
∆V (k). Correspondingly, if ∆V (k) < 0, the system will enter fast reaching phase and remains
stable. Otherwise, if ∆V (k) > 0, the system will switch to slow sliding phase. Therefore, rather
than setting a constant ρ, the boundary layer can be selected as ∆V (k). In this way, there is no
need to tune the parameters.

Thus, we are now in a position to state the following result.

Theorem 2 Assume that an ILC law (3) with correction term (13) is applied to the system (1).
Then the resulting ILC dynamics achieves the convergence of tracking errors if there exist a scalar
γ such that

1. the condition (17) in Lemma 1 holds,

2. γmax <
∥e0∥2
∥m∥2

, where m = H Tanh (|e0|q) Sigα(e0).

Proof: From the previous analysis, the convergence of tracking errors for the system (1) can be
achieved if ∆V (k) < 0. Besides, the system should be ensured to enter the fast reaching phase
and remain stable before switching to the slow sliding phase. To this end, the following inequality
must hold,

∆V (0) < 0. (26)

Then one has

∆V (0) = −2γeT
0 [H Tanh (|e0|q) Sigα(e0)

−HLθ̃0 − (I −HL)θ0]

+∥γH Tanh (|e0|q) Sigα(e0) −HLθ̃0

−(I −HL)θ0∥22
= mTmγ2 − 2nTmγ + nTn− θT

0 e0

= ∥mγ − n∥22 − ∥e0∥22 , (27)



with

m = H Tanh (|e0|q) Sigα(e0),

n = e0 + HLθ̃0 + (I −HL)θ0.

Note that the data from the first iteration are used in the calculation of ∆V (0). The iteration
k = 0 represents the initial run and the learning control has not been applied yet. This implies
that the inequality (26) is solved in an off-line manner. Apparently, it follows from (26)-(27) that

∥mγ − n∥22 < ∥e0∥22 . (28)

Furthermore, it should be noted that the parameter n encompasses the disturbance variable,
making it impossible to directly derive the range of γ from equation (28). Consequently, we
employ the following norm scaling technique to address this, resulting in

∥mγ − n∥22 ≤ (∥mγ∥2 + ∥n∥2)
2 < ∥e0∥22 , (29)

which directly leads to

∥mγ∥2 < ∥e0∥2 − ∥n∥2 . (30)

After some simple calculations, we obtain

γ <
∥e0∥2
∥m∥2

. (31)

Thus, if the controller gain γ satisfies (31), the system in (1) under ILC law of (3) and (13)
can enter fast reaching phase and the asymptotic convergence of tracking errors is also achieved.
Meanwhile, if ∆V (k) > 0, the ILC law switches to (16). Then based on Theorem 1, the considered
system is still stable.

In conclusion, based the above analysis, the convergence of tracking errors for system (1) under
the iterative learning controller (3) with updating law (13) has been achieved. This completes the
proof. It should be noted that although the bound of gain γ is provided in Theorem 2 when
the system (1) is within the fast reaching phase, an explicit way to calculate the gain parameters
γ and l is not provided yet. In the following, the method to obtain the gain parameters will be
explored. As the result, the proposed ILC scheme, where the gain parameters are calculated with
the provided design procedure, gives the significant improvement of tracking errors.

Theorem 3 Assume that an ILC law (3) with correction term (13) is applied to the system (1).
Then the resulting ILC dynamics achieves the convergence of tracking errors. Moreover, the optimal
values of gain γ and l in the proposed learning controller can be calculated by

γ∗ =
Π1

Π
, l∗ =

Π2

Π
, (32)

where

Π1 =

∣∣∣∣aTb bTb
aTc cTb

∣∣∣∣ , Π2 =

∣∣∣∣aTb aTa
cTb aTc

∣∣∣∣ , Π =

∣∣∣∣aTa aTb
aTb bTb

∣∣∣∣
a = −H Tanh (|e0|q) Sigα(e0), b = Hθ̂0,

c =ê0 + θ̂0.

As a result, a significant improvement of tracking errors can be achieved by using the proposed ILC
scheme with the optimal parameters above.



Proof: First, the largest rms error improvement between iterations k = 0 and k = 1 is considered,
which means how to minimize the predicted RMS error of iteration k = 1. From (24), it can be
given that

e1 =e0 − γH Tanh (|e0|q) Sigα(e0)

−HLθ̃0 − (I −HL)θ0. (33)

Due to the existence of non-repetitive disturbance, the predicted error of iteration k = 1 shown in
(33) is not available. To solve this problem, the prediction of error is adopted. Then we have

ê1 = yd − ŷ1

= ê0 + ŷ0 − ŷ1

= ê0 −H∆u0 + θ̂0

= ê0 −H[Γ Tanh (|e0|q) Sigα(e0) + Lθ̂0] + θ̂0

= ê0 − γH Tanh (|e0|q) Sigα(e0)

+ (I −HL)θ̂0.

(34)

Meanwhile, based on the disturbance observer (9), it can be derived that

θ̂0 = Ke0 − z0. (35)

Furthermore, the predicted rms error on iteration k = 1 is

∥e1∥2 =
√

ΦTΦ, (36)

where
Φ = ê0 − γH Tanh (|e0|q) Sigα(e0) + (I − lH)θ̂0.

Apparently, obtaining the minimum of ∥e1∥2 is equivalent to minimize ∥e1∥22. Next, for simplifying
the derivation, some notations are introduced as follows:

a = −H Tanh (|e0|q) Sigα(e0),

b = Hθ̂0,

c = ê0 + θ̂0.

Then the optimization problem can be reformulated as

Objective: min J(γ, l) = ∥e1∥22 = ΦTΦ, (37)

where
Φ = γa + lb + c.

The derivative of objective function in (37) is first calculated, while making the resulted function
equal to zero. So it can be derived that{∂J

∂γ
= 2aTaγ + 2aTbl + 2aTc = 0,

∂J
∂l

= 2aTbγ + 2bTbl + 2cTb = 0,
(38)



which is equivalent to [
aTa aTb
aTb bTb

] [
γ
l

]
=

[
−aTc
−cTb

]
. (39)

Because the following inequality holds when a ̸= b,

Π =

∣∣∣∣aTa aTb
aTb bTb

∣∣∣∣
=aTa · bTb− aTb · aTb ̸= 0. (40)

Thus, the equation set of (39) has a unique solution. By straightforward calculation, we have[
γ∗

l∗

]
=

[
aTa aTb
aTb bTb

]−1 [−aTc
−cTb

]
= − 1

Π

[
bTb · aTc− aTb · cTb
−aTb · aTc + aTa · cTb

]
.

Further, (γ∗, l∗) can be obtained in (32), which is also known as the stationary point of the equation
set in (38). Then we will prove that (γ∗, l∗) is the minimum point of the objective function (37).
To this end, the second partial derivative of (37) is taken, and we have

Jγγ =
∂2J

∂γ2
= 2aTa,

Jγl =JT
γl =

∂

∂l
(
∂J

∂γ
) = 2aTb,

Jll =
∂2J

∂l2
= 2bTb.

Moreover, we have

J2
γl − JγγJll =4(aTb) · (aTb) − 4(aTa) · (bTb)

=4[(aTb) · (aTb) − (aTa) · (bTb)].

According to the Cauchy-Schwarz inequality, it can be derived that

J2
γl − JγγJll < 0. (41)

Therefore, based on Jγγ > 0 and (41), it can be concluded that (γ∗, l∗) is the minimum point of
(37). This completes the proof.

4 Illustrate Example

In this section two numerical examples are provided to illustrate the effectiveness, robustness, and
advantages of the new results in this paper.



4.1 Example 1: Multi-axis gantry robot

First, an example of multi-axis gantry robot is used [21]. It is important to note that the robot is
Cartesian, which implies that the axes are dynamically decoupled and can be considered separately.
For the purpose of illustrating the superiority of the ILC algorithm, we focus on the state-space
model of the X-axis, which can be expressed as follows:

x(t + 1, k) = Ax(t, k) + Buu(t, k) + Bττ(t, k),

y(t, k) = Cx(t, k), (42)

with

A =



2.41 −0.86 0.85 −0.59 0.30 −0.19 0.32
4.00 0 0 0 0 0 0

0 1.00 0 0 0 0 0
0 0 1.00 0 0 0 0
0 0 0 1.00 0 0 0
0 0 0 0 0.50 0 0
0 0 0 0 0 0.25 0


,

Bu =



0.0313
0
0
0
0
0
0


, Bτ =



1
1
1
1
1
1
1


, CT =



0.0095
−0.0023
0.0048
−0.0027
0.0029
−0.0011
0.0029


.

Without loss of generality, the initial operating conditions are as follows:

x(0, k) = 0, u(t, 0) = 0,∀k ∈ N, t ∈ [0, 10].

Also, the desired reference trajectory is set to be yd(t) = 0.06 sin(2t − π/3). Besides, the Root
Mean Square (RMS) value of the tracking error defined by

RMS(ek) =

√√√√ 1

11

11∑
t=1

e2(t, k)

is adopted as a performance index to evaluate the tracking performance.
In simulations, two control strategies are also considered for comparisons: one is the traditional

linear iterative learning controller (LILC), such as a P-type ILC law with the following form

LILC : u(t, k + 1) = u(t, k) + k1e(t + 1, k),

the other is the fast learning controller proposed in [3].

4.1.1 Simulation Results with Nominal Model

In order to illustrate the effectiveness of the proposed method, the model without disturbance
is analysed firstly. Based on the results of Theorem 3, the controller gain can be obtained as:



γopt = 511.78, Note that the same selection of gain parameter is adopted in the phase of linear ILC
implementation.

Now the controlled dynamic is simulated over 500 iterations. The evolution of tracking errors of
considered methods are shown in Fig. 1. It can be seen that both tracking errors under the different
ILC control schemes converge to 0 as k converges to infinity. Furthermore, the proposed method
converges much faster than the other two methods in the initial phase, which is of great practical
importance as it implies potentially significant time/cost savings. Fig. 2 displays the reference
trajectories (represented by black dashed lines) and the real trajectories at the kth iteration (with
k = 2, 20, 100, 200). These trajectories are obtained under various ILC schemes, with the proposed
method depicted in red, the method outlined in [3] in blue, and the LILC scheme in green, as
indicated by the solid lines. It is clear that the output trajectory can effectively track the reference
trajectory as the number of iterations increases.
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Figure 1: RMS values of tracking errors.
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Figure 2: The output trajectories without disturbance.

4.1.2 Simulation Results with iteration-varying disturbance

The non-repetitive disturbances are taken to be

τ(t, k) = sin(0.05πt) + 2δv(t, k) + 0.5 cos(0.02πk),

where δv denote iteration-varying uncertainties, each element of which varies arbitrarily in the
interval [−0.05, 0.05]. Then it can be verified that Assumptions 1 is guaranteed.

First, the disturbance observer in (9) is adopted, and the observer gain is selected as K =
0.2 ⊗ InN . Fig. 3 gives the error of the difference in the estimation of successive disturbance over



the first 100 iterations, which implies the convergence of the disturbance observer. Accordingly,
the feasibility for subsequent trajectory compensation are guaranteed.
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Figure 3: The RMS errors of the disturbance estimation.

Then according to Theorem 3, it can be obtained that

γopt = 198.87 , lopt = −1435.87 .

The simulation results are presented in Figs. 4–6. The tracking error by using different ILC scheme
are depicted in Fig. 4. It is obvious that both the utilized method in [3] and the LILC method
generate large fluctuations after a few iterations.

In contrast, by using the compensation based on the disturbance observer, the proposed control
scheme can effectively attenuate the disturbance, thereby showing better tracking performance.
Fig. 5 presents the output trajectories without disturbance at the kth (k = 5, 50, 200, 500) iteration
under different ILC schemes. Obviously, when the number of iterations reaches 200, the proposed
controller can achieve a more accurate tracking compared with the other two methods. In other
words, it indicates that the proposed ILC scheme can still ensure a better convergence and tracking
performance in the presence of non-repetitive disturbance in contrast to the other ILC algorithms.
In addition, in order to further illustrate the superiority of the designed control law, the ILC
updating law with/without DOB is compared in Fig. 6, which implies that the use of DOB can
also enhance the tracking performance.
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Figure 4: RMS values of tracking errors with disturbances.

4.2 Example 2: Injection molding process

To further substantiate the efficacy of the proposed approach, other examination is conducted on
an injection molding process [12]. This procedure encompasses three primary phases: filling, pack-
ing/holding, and cooling. In the context of the packing stage, a pivotal process parameter under



0 2 4 6 8 10

-0.05

0

0.05

O
ut

pu
t

(a)  k=5

0 2 4 6 8 10

-0.05

0

0.05

(b)  k=50

0 2 4 6 8 10
Time point (t)

-0.05

0

0.05

O
ut

pu
t

(c)  k=200

0 2 4 6 8 10
Time point (t)

-0.05

0

0.05

(d)  k=500

Reference trajectory
Proposed method
Method in [25]
IILC

Figure 5: The output trajectories with disturbance.

0 1 2 3 4 5 6 7 8 9 10
Iteration (k)

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

R
M

S(
e k)

With DOB Without DOB

Figure 6: RMS values of tracking errors.

consideration is the nozzle pressure. Utilizing data from open-loop experiments, a mathematical
model characterizing the relationship between the nozzle pressure and the hydraulic control valve
opening was successfully determined as follows:

x(t+ 1, k) =

[
1.607 1
−0.6086 0

]
x(t, k) +

[
1.239
−0.9282

]
u(t, k)

+

[
1
0

]
w(t, k),

yk(t) =
[
1 0

]
xk(t).

where the disturbance w(t, k) is chosen as: w(t, k) = 5 sin (υ10.1t + υ20.2k), with υ1 and υ2 varying
arbitrarily in the interval [0, 1]. Moreover, the desired reference trajectory is taken as

yd(t) =


200, 0 ≤ t ≤ 100

200 + 5(t− 100), 100 < t ≤ 120

300, 120 < t ≤ 200

Building on the results derived from the proposed Theorem 3, when the system is free from
disturbances, the controller gain can be calculated as γopt = 0.0201. However, when disturbances
are present, the controller gain can be determined as follows:

γopt = 0.0188, lopt = −0.0027.

To illustrate the convergence behavior of the introduced methodology and contrast it with existing
approaches, Fig. 7 displays the RMS values of tracking errors. It is noteworthy that the proposed



method exhibits rapid convergence, regardless of the presence of disturbances. Notably, during the
initial fast-reaching phase, it ensures a monotonically decreasing convergence of tracking errors,
whereas the conventional linear ILC scheme only attains asymptotic convergence. Figs. 8–9 present
the actual output profiles in both disturbed and undisturbed scenarios at the 2nd, 20th, 50th, and
100th iterations, alongside the desired reference trajectory (the black dotted line). Evidently, the
tracking performance becomes satisfactory after a small number of iterations. The fluctuations
in the output profiles can be attributed to non-repetitive disturbances inherent in the system.
The convergence of the actual output profiles with the desired output profile serves as compelling
evidence for the effectiveness of the proposed approach.

Additionally, to further elucidate the universality of the presented control scheme, Fig. 10
depicts the RMS values of tracking errors with varying initial values. It is evident that while the
configuration of the designed parameters γopt and lopt is influenced by the initial value of track-
ing errors, it is noteworthy that the proposed method consistently exhibits a rapid convergence.
Moreover, as depicted in Fig. 10, a higher initial RMS value of the tracking error corresponds to
a superior final convergence accuracy. For instance, when the initial value is x0 = 60, resulting
in the largest initial error e0, the final error is minimized; Conversely, when the initial value is
x0 = −60, resulting in the smallest initial error e0, the final error is maximized.
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Figure 8: The output trajectories without disturbance.
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Figure 9: The output trajectories with disturbance.
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5 Conclusion

This paper addresses the tracking control problem by using ILC approach for discrete-time linear
SISO systems subject to non-repetitive disturbances. A novel fast ILC scheme, combined with
a disturbance observer, is proposed by integrating the principles of SMC. Sufficient conditions
for achieving monotonic convergence of the tracking errors are provided. Moreover, the optimal
values of the learning gain and the disturbance gain are determined by using information obtained
from the initial iterations, ensuring maximum improvement of the learning scheme with respect to
tracking error. Finally, the effectiveness of the proposed fast ILC method is validated through a
simulation example. Future work aims at extending the proposed ILC laws to nonlinear systems
with input and output constraints.
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