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Abstract

In practical applications, due to the limited communication bandwidth, the network con-
trol systems (NCSs) are prone to data dropouts when the load is high. In this paper, the
problem of quantized iterative learning control (ILC) based on encoding and decoding mech-
anism for such communication constrained systems is studied. By combining the encoding
and decoding mechanism with the uniform quantizer, the network burden and the impact
of quantization error on the tracking performance of the systems are significantly mitigated.
Meanwhile, data dropouts are represented as the Bernoulli random variable model, and an
ILC law based on gradient is designed. When data dropouts occur, the signals maintain
the value of the previous trial, otherwise the signals are updated. For this kind of learning
framework, the asymptotic zero-error tracking performance has been rigorously proven for
the uniform quantizer. To validate the proposed design, a joint motion of an industrial robot
in the horizontal plane is simulated as an example.

Iterative Learning Control, Communication Constrained Systems, Encoding and Decoding
Mechanism, Uniform Quantizer, Data Dropouts.

1 Introduction

Iterative learning control (ILC), as a control method with obvious advantages for repetitive control
systems, has been widely studied and applied since it was first applied to robot systems in Arimoto
et al. (1984). Compared with the traditional control methods which focus more on the time axis,
the basic principle of ILC is to improve the performance of the system by adding the previous
trials’ information to the current trial and constantly updating its information, so as to achieve
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the perfect tracking of the expected trajectory of the system output. Due to the repeatability of
ILC, it is widely used in many control systems in repetitive operation modes, such as chemical
batch processes (Shibani et al. (2023)), robot systems (Guan et al. (2023)), urban traffic network
systems (Ren et al. (2020)) and printer conveyor drive systems (Wang et al. (2020)), etc.

The development of communication technology promotes the combination of network and con-
trol systems, and networked control systems (NCSs) have become a focus of extensive research
and examination (Yang et al. (2020);Liu et al. (2021);Bahreini et al. (2022);Yu and Chen. (2023)).
Compared to traditional control systems, the network control mode offers several advantages,
which is easy to be maintained and connected, and has high efficiency. However, with the current
communication technology, given the diverse factors at play, including actual conditions and the
field environment, communication constraints can result in a loss of data transmission accuracy,
leading to challenges such as data dropouts, communication delays, and variations in trajectory
lengths. Therefore, ensuring the timeliness and reliability of network communication has become a
crucial research in NCSs area. Quantization discretizes the data, which can effectively reduce the
amount of data transmitted by the network. To name a few, in Li et al (2021), a new asynchronous
event-triggered communication strategy was proposed under the quantization of the transmission
signals, which effectively reduced the network communication burden of the communication chan-
nel. The observer-based quantized output feedback control for a class of nonlinear discrete-time
systems was studied in Chang and Jin (2022). All transmitted signals in the closed-loop sys-
tem were quantized by a dynamic quantizer to ensure the tracking performance of the quantized
closed-loop system. These studies prompt us to combine ILC with quantitative mechanisms.

Since Bu et al. (2015) first studied the quantization problem in ILC, quantization has long been
introduced into ILC. Quantization is bound to bring quantization error and reduce the accuracy
of data transmission, thus affecting control performance. To mitigate the impact of quantization
error on the control systems, Xu et al. (2017) used adaptive improvement of the logarithmic
quantizer to quantify the quantization error based on the sector boundary method, so as to achieve
accurate tracking performance. In Bu et al. (2017), the same quantizer was utilized to quantize
the input, output, and tracking error signals. Finally, the quantization of the input and output
signals is verified, so that the system tracking error converges to a bounded value. And the
boundary is influenced by the quantization density and the tracking trajectory. Moreover, the
quantization of tracking error makes zero-error tracking possible. It is noted that based on the
inherent characteristics of the logarithmic quantizer, zero-error convergence performance can be
achieved. However, is there any way to reduce the impact of quantization error for other quantizers?

In Gao et al. (2017), by using dynamic encoding/decoding technology and distributed event-
triggered strategy, a bit quantization scheme was proposed to achieve asymptotic consensus in
multi-agent systems that had limited communication rates. In Zhang and Shen. (2018), the quan-
tization scheme combining the encoding and decoding mechanism with the uniform quantizer was
introduced into the ILC. The output signals were quantized, encoded and transmitted, and then
the input signals were updated. Finally, it was verified that the desired trajectory can be accurately
tracked under this mechanism. Subsequently, Shen and Zhang. (2022) extended this method to
quantize signals on both the measurement side and the actuator side, which also can achieve zero-
error tracking. Under this mechanism, Zhang et al. (2022) proposed an E-DM-based quantized
data-driven ILC method. This method ensured the zero-error convergence of the iterative domain.
Therefore, studying signal quantization ILC law based on this mechanism can help improve system



performance. This paper also uses the method of combining quantizer with encoding and decoding
mechanism to carry out research.

With the application of ILC strategy in NCSs, the controller and the controlled object are
transmitted by the network. Due to the problems of long transmission distance, limited bandwidth,
and vulnerability to network interference and attack, the network often leads to data dropouts or
delay of data transmission. In practical applications, the impact of communication constraints
cannot be ignored. Therefore, the ILC design in this paper considers the tracking task in the
data dropouts environment. The research on unstable network control has attracted more and
more scholars’ attention. To name a few, Shen et al. (2016) analyzed the convergence of ILC in
linear stochastic systems under the general data dropouts environment. Data dropouts occurred
randomly on the measurement side and the actuator side. With the help of Markov model, a new
analysis method was developed, which independently updated the calculated input and the actual
input, to achieve tracking error convergence in the terms of mean square and almost certain sense.
Huang et al. (2019) studied the compensation problem for data dropouts in the time domain and
iterative domain, introduced an input error transfer matrix on the actuator side, and finally verified
that only compensation in the iterative domain can ensure that the output error converges to zero.
In the case of data dropouts and channel noise on both the measurement side and the actuator
side, an optimal input filter was developed to estimate the updated input of the controller, which
theoretically ensured the convergence performance of the filtering error covariance matrix in Huang
et al. (2022). The focus of this paper is whether the designed algorithm is effective for systems
with data dropouts. Therefore, similar to Shen and Xu. (2017); Tang and Sheng. (2018); Zhang
et al. (2019), data dropouts are described by random variables satisfying Bernoulli distributions
in this paper.

Motivated by the above previous studies, this paper designs an optimal ILC algorithm for
linear time-invariant systems with different data dropouts rates under input and output signals
quantization. By comparing two different quantization strategies, it is verified that the encoding
and decoding mechanism can effectively reduce the impact of quantization error, and realize the
monotonic convergence of tracking error in the sense of mathematical expectation. The influence
of different data dropouts rates on the convergence performance of the system is analyzed. By
taking a joint motion of an industrial robot in the horizontal plane as an example, the effectiveness
of the algorithm is verified.

In summary, this paper presents the following main contributions:

• Under the framework of the lifted system, the input and output signals are quantized by
combining the encoding and decoding mechanism with the uniform quantizer. The ILC law is
designed by using the gradient method to realize the accurate tracking of the desired trajectory.
This work promotes the study of ILC with data dropouts and signals quantization.

• Compared with the uniform quantizer directly quantifying system signals, the designed quan-
tized ILC law can effectively reduce the influence of quantization error on tracking performance
and achieve monotonic convergence under mathematical expectation.

The following sections outline the organization of this paper: Section “Problem Formulation”
gives the problem formulation of random data dropouts problem for linear discrete-time systems
and the quantized control strategies. In section “ILC Design”, the ILC laws of two control strategies
are given and the tracking error convergence is proved. In section “Simulation”, the simulations are
presented to demonstrate the effectiveness of the proposed algorithm. Following that, in section
“Conclusion”, a comprehensive summary of the entire study is provided.



2 Problem Formulation

Considering a single-input single-output linear discrete time-invariant systems as follows{
xk(t+ 1) = Axk(t) +Buk(t)
yk(t) = Cxk(t)

(1)

where the subscript k denotes the trial number, k = 0, 1, · · · ,∞; t ∈ [0, N ] is the time index and
N denotes the trial length; Denote by yk(t) ∈ R, uk(t) ∈ R, xk(t) ∈ Rn the output, input and
state of the system, severally; The parameter matrices of the system are composed of A, B, C
with corresponding dimensions. Assuming that CB ̸= 0 to ensure the system is controllable. The
initial state is assumed, not lose its generality, to be the same for each trial and xk(0) represents
the initial condition of the system at kth trial.

In practical applications, the state signals of the system is often complex or difficult to observe,
so the state quantization based ILC design has certain limitations. This paper only considers the
quantization of input and output signals. For the linear discrete-time system (1), the state space
model is transformed into super vector form by using lifting technique

yk+1 = Huk+1 + dk+1 (2)

where
uk = [uk(0), uk(1), · · · , uk(N − 1)]T (3)

yk = [yk(1), yk(2), · · · , yk(N)]T (4)

and H and dk represent the system model transfer matrix and the influence of initial conditions
respectively, i.e.,

H =


CB 0 · · · 0
CAB CB · · · 0

...
...

. . .
...

CAN−1B CAN−2B · · · CB

 (5)

dk =
[
CA,CA2, CA3, · · · , CAN

]T
xk(0) (6)

The control objective of the ILC is to design a control law uk+1 for the desired trajectory yd,
such that the output sequence of the system can converge to yd at k → ∞, and the actual tracking
error is set to ek = yd − yk. The following assumptions need to be introduced to facilitate the
design of ILC law.
Assumption 1. (Patan et al. (2020)) There exists an expected trajectory yd, whose state space
model in ILC is {

xd(t+ 1) = Axd(t) +Bud(t)

yd(t) = Cxd(t)
(7)

where ud(t) denotes the expected input, and the expected system state is represented by xd(t).
Assumption 2. (Patan et al. (2020)) Assuming no loss of generality, the initial conditions of
the system are the same as the expected initial conditions, which are set to

xk(0) = xd(0) = 0 (8)
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Figure 1: The block diagram of network control systems.

where xd(0) represents the initial expected state value of the system.

Since it is assumed xk(0) = 0, then dk = 0. System (2) can be converted to

yk+1 = Huk+1 (9)

The distribution of the NCSs is illustrated in Fig.1. The plant and the controller are transmitted
via the network. The desired trajectory is first sent to the system to generate tracking errors,
which are transmitted to the controller for iterative update. The output signals of the system are
transmitted to the controller through the network, and then the input signals generated by the
controller are transmitted back to the controlled system via the network to form a closed loop.
In order to reduce the network burden caused by communication constraints, this paper considers
the quantization of input and output signals. And a uniform quantizer in Choi and Yoo. (2020) is
used:

Q(m) =


0, −1 < m ≤ 1
2i, 2i− 1 < m ≤ 2i+ 1
2v, m > 2v − 1

−Q(−m), m ≤ −1

(10)

where i = 0, 1, · · · , v − 1, i ∈ Z+, denotes the quantization level, v denotes the maximum quan-
tization level. Denote by m the input of the quantizer, when the input of the quantizer satisfies
m ≤ 2v − 1, the input and output of the quantizer satisfy

η = q (m)−m (11)

where η represents the quantization error, satisfying |η| ≤ 1.

On account of the limited quantization ability of the uniform quantizer, the quantization error
will be brought. To mitigate the impact of quantization error on the system, an encoding and
decoding mechanism is employed to further improve the tracking performance of the system. Here
two quantization schemes are used: one is to directly quantize the input and output signals, and
the other is to combine the quantizer with the encoding and decoding mechanism to quantize
the input and output signals. Fig. 2 shows the block diagram of NCSs based on encoding and
decoding mechanism. The E1, D1 and E2, D2 blocks represent the input encoder and decoder,
the output encoder and decoder, respectively. The output signals are encoded by the encoder E2
and transmitted through the network to the decoder D2 for decoding, and then transmitted to the
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Figure 2: Network control system block diagram of the proposed ILC scheme.

controller to generate the input signals. The generated input signals are transmitted in the same
way as the output signals. The input encoder E1 and decoder D1 based on uniform quantizer are
designed as below 

ςu0 (t) = 0

suk+1(t) = Q(
uk+1(t)−ςuk (t)

bk
)

ςuk+1(t) = bks
u
k+1(t) + ςuk (t)

(12)

and {
û0(t) = 0
ûk+1(t) = bks

u
k+1(t) + ûk(t)

(13)

where ςuk (t), uk(t), s
u
k+1(t) represent the internal state, input and output of the encoder E1 respec-

tively, and bk = τ k denotes the regulatory sequence used to improve the tracking effect. ûk(t) is
the output of the decoder D1 and represents the measured input signals of the system.

The situation that the output signals are quantized by the quantizer and transmitted through
an unstable network is considered, and random data dropouts occur during transmission. Suppose
that encoder and decoder can detect whether the data is lost or not. Once the data dropouts
occur, the encoder and decoder respond immediately. Combining data dropouts to design the
output encoder E2 and decoder D2. Similarly, based on the uniform quantizer, the output encoder
E2 and decoder D2 are designed as follows

ςy0 (t) = 0

syk+1(t) = Q(
yk+1(t)−ςyk (t)

bk+1
)

ςyk+1(t) = bk+1wk+1(t)s
y
k+1(t) + ςyk (t)

(14)

and {
ŷ0(t) = 0
ŷk+1(t) = bk+1wk+1(t)s

y
k+1(t) + ŷk(t)

(15)

where ςyk (t), yk(t), s
y
k+1(t) represent the internal state, input and output of the encoder E2 respec-

tively. ŷk(t) is the output of the decoder and represents the measured output signal of the system.
wk+1(t) is used to determine whether the output signals are successfully transmitted. wk+1(t) = 1
means that the data is successfully transmitted, otherwise wk+1(t) = 0. Similar to Shen and Xu.
(2017), the Bernoulli variables are used to model the data dropouts. Without losing generality,

P {wk+1(t) = 1} = ωt, P {wk+1(t) = 0} = 1− ωt (16)



where 0 < ωt < 1, represents the probability of successful transmission of the output signals.
Remark 1. The data dropouts are independent on the iteration axis, then, limn→∞

1
n
[
∑n

k=1 ωk(t)] =
ωt. If ωt = 0, the data must be lost, indicating that the controller can not get any information
from the controlled system, thus, the algorithm can not be used to improve the performance of
the system. If ωt = 1, there is no data dropouts occurring. With the design of ILC law in the
case of data dropouts, we assume that 0 < ωt < 1. Moreover, for the time point t, the data
dropouts probability of different trials k is unknown and fixed. It can be obtained that wk+1(t) is
a time-related variable, that is, E {wk+1(t)} = ωt.

After the input signals are quantized, the actual system input sequence is replaced by ûk+1,
and the form of system (9) can be converted into

yk+1 = Hûk+1 (17)

The relationship between the actual input signals and the measured input signals is considered
before designing the control law. Substituting suk+1(t) in (12) into (13), it can be obtained that

ûk+1 (t) = bks
u
k+1 (t) + ûk (t)

= bkQ

(
uk+1 (t)− ςuk (t)

bk

)
+ ûk (t)

= bk

(
uk+1 (t)− ςuk (t)

bk
+ ηuk+1 (t)

)
+ ûk (t)

= uk+1 (t) + bkη
u
k+1 (t) + ûk (t)− ςuk (t)

(18)

where ηuk+1 = Q(
uk+1(t)−ςyk (t)

bk
)− uk+1(t)−ςuk (t)

bk
, denotes the quantization error of the input signals.

Lemma 1. The term ûk (t)− ςuk (t) in (18) satisfies ûk (t)− ςuk (t) = 0, ∀k.
Proof. The proof is shown in Zhang et al. (2014).

Combining (18) and Lemma 1, the relationship between the output of the system controller
and its measured value can be obtained as

ûk+1(t) = uk+1(t) + bkη
u
k+1(t) (19)

To facilitate the design of the system ILC update law, the system input sequence and the
generated input sequence are reconstructed as super vectors

ûk+1 = uk+1 + bkη
u
k+1 (20)

Similarly, the relationship between the actual output signals and the estimated output signals
can be derived

ŷk+1(t) = bk+1wk+1(t)s
y
k+1(t) + ŷk(t)

= bk+1wk+1(t)Q(
yk+1(t)− ςyk (t)

bk+1

) + ŷk(t)

= bk+1wk+1(t)η
y
k+1 (t) + wk+1(t)(yk+1(t)− ςyk (t)) + ŷk(t)

(21)

where ηyk+1 = Q(
yk+1(t)−ςyk (t)

bk+1
) − yk+1(t)−ςyk (t)

bk+1
denotes the quantization error of the output signals.

Then the system output sequence and the generated output sequence are reconstructed as super
vectors

ŷk+1 = Mk+1[yk+1 + bk+1η
y
k+1] + M̄k+1ŷk (22)

where Mk+1 = diag(wk+1(0), wk+1(1), · · · , wk+1(N − 1)), M̄k+1 = diag(1 − wk+1(0), · · · , 1 −
wk+1(N − 1)), thus, Mk+1 + M̄k+1 = I. As indicated by equation (22), when the data is lost, the
system maintains the value of the previous trial for transmission, otherwise the system is updated.



3 ILC Design

In this section, two ILC laws are proposed to achieve control objectives in data dropouts envi-
ronment. One is obtained by directly quantifying the signals by the uniform quantizer, and the
other is obtained by quantifying the signals based on the encoding and decoding mechanism. Both
of them are based on the gradient descent method and are obtained by minimizing the following
norm optimization cost function

J (uk) = ∥ek∥2 (23)

where ek = yd−yk is the tracking error at kth trial, and the induced norm ∥ek∥2 = eTk ek is defined.

The control law is obtained by minimizing the cost function (23) with respect to uk

uk+1 = uk − β
∂J(uk)

∂uk

(24)

where β is a positive scalar gain. The system tracking error is added to the ILC update law, and
it is iteratively reduced under the ILC framework to finally achieve accurate tracking.

3.1 Quantifying the Input and Output Signals Based on Encoding and
Decoding Mechanism

In order to consider the quantization error caused by quantization output and the impact of data
dropouts, the cost function (23) is modified as

J (uk) =
1

4
∥êk∥2 (25)

where êk = yd− ŷk, denotes the measured error caused by quantization, and it is obtained by (22).
To derive the ILC law, the following result is required.
Proposition 1. The ILC law is obtained by minimizing the cost function (25) with respect to uk

uk+1 = ûk + βHTMk(êk +Hbk−1η
u
k + bkη

y
k) (26)

Proof 1. By (22), it can be obtained that

êk = yd − ŷk = yd −Mk (yk + bkη
y
k)− M̄kŷk−1

= yd −Mk (Huk +Hbk−1η
u
k + bkη

y
k)− M̄kŷk−1

(27)

then, (25) is converted to

J (uk) =
1

4

∥∥yd −Mk (Huk +Hbk−1η
u
k + bkη

y
k)− M̄kŷk−1

∥∥2

≤ 1

4

(∥∥yd −MkHuk − M̄kŷk−1

∥∥+ ∥MkHbk−1η
u
k + bkMkη

y
k∥
)2

≤ 1

2

∥∥yd −MkHuk − M̄kŷk−1

∥∥2
+

1

2
∥MkHbk−1η

u
k + bkMkη

y
k∥

2

≤ 1

2

∥∥yd −MkHuk − M̄kŷk−1

∥∥2
+

1

2
∥HMk∥2Nbk−1 +

1

2
N ∥Mk∥2 bk

(28)



Algorithm 1. quantifying signals based on encoding and decoding mechanism
Step
1.

(Initialization) The initial input signals are u0 = 0; the initial output signals are y0 = 0;
the initial state value is x0 = 0, so the initial error of the system is e0 = yd − y0 = yd;
Γ represents the maximum number of trials; set k = 1.

Step
2.

(Optimization) Perform the following steps to obtain the input uk+1.

(a) using (12) to calculate suk and update ςuk ;
(b) applying suk to (13) to get the measurement input ûk;
(c) applying ûk to (17) to get the actual output yk;
(d) using (14) to calculate syk and update ςyk ;
(e) applying syk to (15) to get the measurement output ŷk;
(f) applying ŷk to (26) to update ILC law uk+1.

Step
3.

(Updating) Let k = k + 1 and repeat Step 2. until the end condition is satisfied.

therefore, a new cost function J1 (uk) can be obtained

J1 (uk) =
1

2

∥∥yd −MkHuk − M̄kŷk−1

∥∥2
+ εk (29)

where εk =
1
2τ

∥HMk∥2Nbk +
1
2
N ∥Mk∥2 bk is independent of uk.

The cost function is differentiated by uk to obtain

∂J1 (uk)

∂uk

= −HTMk

(
yd −MkHuk − M̄kŷk−1

)
= −HTMk (êk +MkHbk−1η

u
k +Mkbkη

y
k)

(30)

where MT
k = Mk is a diagonal matrix.

The ILC law is obtained from (30)

uk+1 = ûk + βHTMk (êk +Hbk−1η
u
k + bkη

y
k) (31)

which completes the proof.
Remark 2. Mk is a diagonal matrix of 0 − 1 Bernoulli binary variables with probability ωt,
where ωt represents the data dropouts rate. According to M̄k = I−Mk, it can be concluded that
MkM̄k = 0 and MkMk = Mk.

It can be seen from Algorithm 1 that the output signals yk are first quantized, encoded and
decoded to obtain the measured output signals ŷk, which are transmitted to the controller to
update the input signals uk+1, and then the input signals uk+1 are subjected to the same operation
to obtain the measured input signals ûk+1 to optimize the system performance. The process can
be expressed as yk → ŷk → uk+1 → ûk+1.

Through (31), it can be seen that the ILC law contains the product term of the quantization
error and the adjustment sequence bk. Selecting the appropriate adjustment sequence can make
the item asymptotically converge to zero. The controller continuously modifies the input signals
through the ILC control law to reduce the quantization error, which can ultimately realize zero-
error tracking. This is summarized by Theorem 1.



Theorem 1. Considering the system (17) with the ILC law (31) based on encoding and decoding
mechanism, the expected norm of the tracking error converges to zero if it satisfies∥∥I − βHHTP

∥∥ ≤ ρ1 < 1 (32)

where P = E {MK} = diag {ω0, ω1, . . . , ωN−1}, and ρ1 is a constant, then the learning gain step β
satisfies

0 < β <
2

∥HHT∥
(33)

Proof 2. See Appendix.

The analysis demonstrates that the proposed ILC law can achieve the convergence of the
system tracking error in the sense of the expected norm, that is, the proposed algorithm can
achieve accurate trajectory tracking.

3.2 Quantifying the Input and Output Signals Without Encoding and
Decoding Mechanism

This paper only focuses on the advantages of the output signals with the proposed design com-
pared with the direct quantization method in the data dropouts environment. Under the direct
quantization method, the relationship between the system output signals and the estimated output
signals can be derived to

ŷpk+1(t) = Q(yk+1(t)) = yk+1(t) + ηpk+1(t) (34)

where ηpk+1(t) = Q(yk+1(t))−yk+1(t), represents the direct quantization error of the system output
signals. The output signals of the system are quantized by the quantizer and transmitted to the
controller through an unstable network, and the estimated output signals (34) can be converted
into

ŷqk+1(t) = wk+1(t)ŷ
p
k+1(t) + (1− wk+1(t))ŷ

p
k(t) (35)

converting (35) into super vector

ŷqk+1 = Mk+1ŷ
p
k+1 + M̄k+1ŷ

p
k (36)

using the same method as the proposed ILC design, for quantifying signals directly, the cost
function is

Jp (uk) =
1

4
∥êpk∥

2 (37)

where êpk = yd − ŷqk denotes the quantization error of the output signals, ∥êpk∥
2 = (êpk)

T êpk.
Proposition 2. For the direct quantized output signal, the system ILC law is obtained by
minimizing the cost function (37) with respect to uk

uk+1 = ûk + βHTMk (ê
p
k +Hηpuk + ηpk) (38)



where ηpuk = Q(uk)− uk denotes the direct quantization error of the input signals.
Proof 3. By (34) and (36), it can be obtained

êpk = yd − ŷqk
= yd −Mkŷ

p
k − M̄kŷ

p
k−1

= yd −Mk(yk + ηpk)− M̄kŷ
p
k−1

= yd −Mk(Hûk + ηpk)− M̄kŷ
p
k−1

= yd −Mk(Huk +Hηpuk + ηpk)− M̄kŷ
p
k−1

(39)

then (37) is converted to

Jp (uk) =
1

4
∥êpk∥

2

=
1

4

∥∥yd −Mk(Huk +Hηpuk + ηpk)− M̄kŷ
p
k−1

∥∥2

≤ 1

4
(2

∥∥yd −MkHuk − M̄ŷpk−1

∥∥2
+ 2 ∥MkHηpuk +Mkη

p
k∥

2)

≤ 1

2

∥∥yd −MkHuk − M̄kŷ
p
k−1

∥∥2
+

1

2
∥MkH∥2N +

1

2
∥Mk∥2N

(40)

for (40), the partial derivative of uk is obtained

∂Jp(uk)

∂uk

= −HTMk(yd −MkHuk − M̄kŷ
p
k−1)

= −HTMk(ê
p
k +MkHηpuk +Mkη

p
k)

(41)

then it can be gained
uk+1 = ûk + βHTMk(ê

p
k +Hηpuk + ηpk) (42)

which completes the proof.
Through (42), it can be seen that the ILC law of the system contains the input and output

quantization error terms. Different from the ILC law in Algorithm 1, this control law does not
contain the adjustment sequence, which will eventually achieve the bounded convergence of the
tracking errors. This will be illustrated by the following Theorem 2.
Theorem 2. Considering system (15), the ILC law without encoding and decoding mechanism is
adopted, if it satisfies ∥∥I − βHHTP

∥∥ ≤ ρ2 < 1 (43)

where ρ2 is a constant, then the expected norm of tracking error achieves bounded convergence

lim
k→∞

∥E {ek+1}∥ =
b1

1− ρ2
(44)

where b1 = ∥H∥
√
N + β

√
N

∥∥HHT
∥∥ ∥H∥, and the learning gain step β satisfies

0 < β <
2

∥HHT∥
(45)

Proof 4. See Appendix.
Different from the ILC law combined with the encoding and decoding mechanism, the ILC law

directly quantifying the input and output signals makes the expected norm of the system tracking
error converge to a bounded value.



4 Simulation

In this section, the rationality and effectiveness of the proposed algorithm are verified by a joint
moving in the horizontal plane of the industrial SCARA robot SEIKOTT3000 in Zhang et al.
(2014). Controller-to-actuator and actuator-to-controller data are transmitted over a network with
communication bandwidth constraints. Therefore, to minimize the burden of network transmission,
the signals are quantified by a uniform quantizer before transmission. The nominal model of the
closed-loop joint is

Gp (s) =
948

s2 + 42s+ 948
(46)

discretize the above open-loop transfer function, set the sampling time to Ts = 0.01s, and the
discrete state space model matrices can be obtained as follows

A =

[
0.6213 −0.2381
0.2572 0.9589

]
, B =

[
0.0322
0.0055

]
, C =

[
0 7.4063

]
The design goal of this paper is to track the desired trajectory with a running time of t, t ∈ [0, 2]

in 30 trials. The desired trajectory adopted is

yd = 5sin(10πt/5) + sin(10πt/10) (47)

In the simulation, the “rand” function is used to generate a random sequence in each trial,
and the “if” statement is used to make the random variables of the random sequence satisfy the
Bernoulli binary distribution at each time point, but they are independent of each other. Without
loss of generality, the probability that the Bernoulli binary random variable is 1 at each time
point is set to be equal. In order to observe the robustness of the algorithm to continuous data
dropouts, we use the ’ for ’ statement to limit data loss between trials, mainly from two situations
: discontinuous data loss between adjacent trials and continuous data loss of up to three trials.

As assumed in Assumption 2, the initial state of the system is set as xk(0) = 0, and the
initial trial input signals of the system are set as u0(t) = 0, ∀t ∈ [0, 2]. Therefore, the performance
requirement of the system is to achieve complete tracking of the desired trajectory after finite trials
in finite time. The data dropouts rates in this paper are set as 0, 20% and 40%. It can be concluded
from Theorem 1 that when the data dropouts rate is 0, it is the upper limit of the selected controller
parameter, so the controller parameters is set as β = 0.46 and β < 2/

∥∥HHT
∥∥ = 1.9926 is satisfied.

The adjustment sequence bk is selected as (0.42)k, and the controlled system is simulated over 30
trials.

The simulation below has been divided into four parts for the verification. Firstly, we compare
the influence of data dropouts rate on tracking performance under different data dropouts rates.
Secondly, the two algorithms designed in this paper are compared by simulation to verify the su-
periority of the proposed design. Then, the simulation is carried out for different data dropouts
conditions to illustrate the influence of data dropouts on network communication. Finally, com-
pared with P-type ILC, the effectiveness of the proposed algorithm is verified.
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Figure 3: The first few and last trials actual output trajectories of the system with a data dropouts
rate of 20%.

In this paper, the output signals yk, ŷk of the controller and decoder are called the actual
output and the measured output of the system, respectively. Taking the data dropouts rate of
20% as an example to further reflect the effectiveness of the proposed algorithm. Fig. 3 shows
the actual output signals’ profiles of the designed ILC update law in the first few trials and the
30th trial. The irregular parabola in Fig. 3 is affected by data dropouts and the output gradually
tracks the desired trajectory yd along trials, indicating that in the system with data dropouts, the
quantization ILC update law based on the encoding and decoding scheme can achieve completely
tracking of yd.
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Figure 4: The actual output trajectories of the 5th trial of the system with different data dropouts
rates.
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Figure 5: The system tracking error comparison under the data dropouts rate of 0, 20% and 40%.



Theorem 1 only verifies the convergence under different data dropouts rates, but does not
verify the convergence speed. Considering the tracking effect of the system output on the desired
trajectory under different data dropouts rates, Fig. 4 shows the tracking effect of the 5th trial with
data dropouts rates of 0%, 20%, and 40% under the mechanism of discontinuous data dropouts
in adjacent trials, and it can be seen that all cases show a high degree of proximity to the desired
trajectory. By amplifying the local graph, we can obtain that the proposed algorithm is still
effective, but as the data dropouts rate increases, the convergence speed slows down.

Next, in order to consider the impact of different data dropouts rates on the tracking perfor-
mance of the system, we consider the tracking error simulation under these three data dropouts
rates which is shown in Fig. 5. Obviously, the tracking error lines converge to zero and the larger
the data dropouts rate, the slower the convergence speed of the algorithm.
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Figure 6: The comparison of the actual output trajectories of the two algorithms under the data
dropouts rate of 20%.
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Figure 7: The norm of the expected error of the two algorithms under the data dropouts rate of
20%.

We select the same learning gain β to compare the two quantization strategies, and the simu-
lation effect is shown in Fig. 6 and Fig. 7. Fig. 6 shows the actual output trajectories of the two
algorithms under the data dropouts rate of 20%. We can clearly see that the algorithm based on
the encoding and decoding mechanism has better convergence effect at the 30th trial. This point
can also be obtained in the tracking error lines shown in Fig. 7, indicating that direct quantization
of the signal without the encoding and decoding mechanism can only achieve bounded convergence,
which verifies our derivation process. Meanwhile, the performance index comparison profiles of the
two quantization strategies are drawn in Fig. 8, which are similar to the comparison profile results
of the tracking error. The effectiveness of the proposed algorithm is verified.
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Figure 8: The performance index profiles of two quantization strategies.
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Figure 9: The measured output trajectories of the 10th trial under different data dropouts condi-
tions.
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Figure 10: The tracking error lines under different data dropouts conditions.

According to the convergence analysis of Section “ILC Design”, we can get that the number of
continuous data dropouts has no effect on the convergence analysis. We will verify the influence of
the number of continuous data dropouts on the system through the simulation results. In general,
in the case of the same data dropouts rate, the more consecutive data dropouts times, the worse
the convergence. We have compared three data dropouts situations: no data dropouts, no data
dropouts at different adjacent trials and up to three consecutive data dropouts. When the data
dropouts rate is large, the generated random sequence is more likely to be lost multiple times in
a row. Fig. 9 and Fig. 10 show the measured output trajectories and tracking error lines of the
system under the data dropouts rate of 40%. It can be gotten that the convergence effect of up



to three consecutive data packet dropouts is significantly worse than other cases which verifies
our conjecture. Nevertheless, the proposed algorithm can still guarantee the convergence of the
system.
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Figure 11: The tracking error of the four schemes under the data dropouts rate of 20%.

Choosing the P-type ILC in Huang et al. (2019) for comparison. The P-type ILC with quantizers
and without quantizers is compared with the control law proposed in this paper. These methods
are carried out under the same data dropouts rate. Then, the tracking error profiles under the
proposed algorithm and the other three methods are shown in Fig. 11. It can be noted in Fig.
11 that the gradient-based ILC has faster convergence speed and better convergence accuracy.
Although the quantization has an impact on the tracking performance of the system, the proposed
algorithm can obtain an error profile that is approximately coincident with the ILC algorithm
without quantizers, indicating the effectiveness of the proposed algorithm.

5 Conclusion

In this paper, the zero-error tracking problem under conditions of data dropouts on the measure-
ment side is studied for networked control systems with limited transmission bandwidth. Under
the framework of ILC, two gradient-based ILC laws are designed. When the signals are directly
quantized, the tracking error in the sense of mathematical expectation is bounded convergence.
The second design is based on the encoding and decoding mechanism to quantify the signals. In
this case, the tracking error in the sense of mathematical expectation can be proved to converge
to zero, which proves the effectiveness of the algorithm designed in this paper. Simulation re-
sults indicate that the proposed scheme can effectively compensate the influence of random data
dropouts. Future research will focus on other impacts caused by communication constraints, such
as communication delay.
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8 Appendix

8.1 Proof of Theorem 1

Denote ek+1 = yd − yk+1 = yd −Hûk+1, From (22), it can be gained

êk+1 = Mk+1ek+1 −Mk+1bk+1η
y
k+1 + M̄k+1êk (48)

then, it can be concluded that

Mk+1ek+1 = êk+1 +Mk+1bk+1η
y
k+1 − M̄k+1êk (49)

from the control law (31) and (17), it can be obtained

ek+1 = ek +Hûk −Hûk+1

= ek +Hûk −H(uk+1 + bkη
u
k+1)

= ek +Hûk −Hbkη
u
k+1 −H

(
ûk + βHTMk(êk +Hbk−1η

u
k + bkη

y
k)
)

=
(
I − βHHTMk

)
ek − βHHTMkHbk−1η

u
k −Hbkη

u
k+1

(50)

due to Mk is a diagonal matrix composed of N random factors wk(t) independent of ek and uk.then
taking expectations on both sides of (50)

E {ek+1} =
(
I − βHHTP

)
E {ek} − βHHTPHbk−1η

u
k −Hbkη

u
k+1 (51)

since P is composed of ωt satisfying 0 < ωt < 1, we can obtain ∥P∥ < 1. By taking norms on both
sides of the last equation gives

∥E {ek+1}∥ ≤
∥∥I − βHHTP

∥∥ ∥E {ek}∥+
∥∥βHHTPHbk−1η

u
k

∥∥+
∥∥Hbkη

u
k+1

∥∥
≤

∥∥I − βHHTP
∥∥ ∥E {ek}∥+

∥∥βHHT
∥∥ ∥H∥

√
Nbk−1 + ∥H∥

√
Nbk

(52)

When the appropriate learning gain β is chosen such that
∥∥I − βHHTP

∥∥ ≤ ρ1 < 1 holds, and
the adjustment sequence bk = τ k, 0 < τ < 1 holds, then

∥E {ek+1}∥ ≤ ρ1 ∥E {ek}∥+ cbk (53)



where c =
√
N

(
∥βHHT∥∥H∥

τ
+ ∥H∥

)
. The recursive formula of the actual tracking error obtained

by the system after k trials is

∥E {ek+1}∥ ≤ ρk+1
1 ∥E {e0}∥+ c

k∑
i=0

ρi1bk−i

= ρk+1
1 ∥E {e0}∥+ c

k∑
i=0

ρi1τ
k−i

(54)

since limk→∞ ρk+1
1 = 0, limk→∞

∑k
i=0 ρ

i
1τ

k−i = 0, and c =
√
N

(
∥βHHT∥∥H∥

τ
+ ∥H∥

)
, it can be

further obtained
lim
k→∞

∥E {ek+1}∥ = 0 (55)

On the basis of
∥∥I − βHHTP

∥∥ ≤ ρ1 < 1, it can be gained

0 <
∥∥βHHTP

∥∥ < 2 (56)

since CB ̸= 0, it can be gotten that H is a positive definite matrix, and P is a bounded diagonal
matrix composed of ωt satisfying 0 < ωt < 1, then we can see that HHTP is also a positive definite
matrix. The final formula (56) can be converted to

0 < β <
2

∥HHTP∥
(57)

and
∥∥HHTP

∥∥ ≤
∥∥HHT

∥∥ ∥P∥ <
∥∥HHT

∥∥, we can further get

0 < β <
2

∥HHT∥
(58)

which completes the proof.

8.2 Proof of Theorem 2

By êpk+1 = yd − ŷqk+1, combining (34) and (36), it can be obtained

êpk+1 = yd − ŷqk+1

= yd −Mk+1ŷ
p
k+1 − M̄k+1ŷ

p
k

= yd −Mk+1(yk+1 + ηpk+1)− M̄k+1(y
p
k + ηpk)

= Mk+1ek+1 + M̄k+1ek −Mk+1η
p
k+1 − M̄k+1η

p
k

(59)

It can be derived from the control laws (38) and (17) that

ek+1 = ek +Hûk −Hûk+1

= ek +Hûk −H(uk+1 + ηpuk+1)

= ek +Hûk −H(ûk + βHTMk (ê
p
k +Hηpuk + ηpk) + ηpuk+1)

= ek −Hηpuk+1 − βHHTMk(Hηpuk + ηpk)

− βHHTMk(ek + M̄kek−1 − ηpk − M̄kη
p
k−1)

= (I − βHHTMk)ek −Hηpuk+1 − βHHTMkHηpuk

(60)



taking expectation on both sides of (60), it can be obtained

E {ek+1} = (I − βHHTP )E {ek} −HE
{
ηpuk+1

}
− βHHTPHE {ηpuk } (61)

and taking the norm on both sides of (61) gives

∥E {ek+1}∥ ≤
∥∥I − βHHTP

∥∥ ∥E {ek}∥+ ∥H∥
√
N + β

∥∥HHT
∥∥ ∥H∥

√
N (62)

next define
b1 = ∥H∥

√
N + β

∥∥HHT
∥∥ ∥H∥

√
N (63)

and then
∥E {ek+1}∥ ≤ ρ2 ∥E {ek}∥+ b1 (64)

The following inequality can be gotten after k trials of the last formula

∥E {ek+1}∥ ≤ ρk2 ∥E {e0}∥+
1− ρk+1

2

1− ρ2
b1 (65)

applying limk→∞ ρk2 = 0 to (62), we obtain

lim
k→∞

∥E {ek+1}∥ =
b1

1− ρ2
(66)

and the proof is completed.
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