Szemenyei, Marton ; Vajda, Ferenc
Współtwórca:Korbicz, Józef (1951- ) - red. ; Uciński, Dariusz - red.
Tytuł:Dimension reduction for objects composed of vector sets
Tytuł publikacji grupowej: Temat i słowa kluczowe:dimension reduction ; discriminant analysis ; object recognition ; registration
Abstract:Dimension reduction and feature selection are fundamental tools for machine learning and data mining. Most existing methods, however, assume that objects are represented by a single vectorial descriptor. In reality, some description methods assign unordered sets or graphs of vectors to a single object, where each vector is assumed to have the same number of dimensions, but is drawn from a different probability distribution. ; Moreover, some applications (such as pose estimation) may require the recognition of individual vectors (nodes) of an object. In such cases it is essential that the nodes within a single object remain distinguishable after dimension reduction. In this paper we propose new discriminant analysis methods that are able to satisfy two criteria at the same time: separating between classes and between the nodes of an object instance. We analyze and evaluate our methods on several different synthetic and real-world datasets.
Wydawca:Zielona Góra: Uniwersytet Zielonogórski
Data wydania: Typ zasobu: DOI: Strony: Źródło:AMCS, volume 27, number 1 (2017) ; kliknij tutaj, żeby przejść
Jezyk: Licencja CC BY 4.0: Prawa do dysponowania publikacją: