Struktura obiektu
Autor:

Jankowski, Norbert ; Linowiecki, Rafał

Współtwórca:

Kulczycki, Piotr - ed. ; Kacprzyk, Janusz - ed. ; Kóczy, László T. - ed. ; Mesiar, Radko - ed.

Tytuł:

A fast neural network learning algorithm with approximate singular value decomposition

Podtytuł:

.

Tytuł publikacji grupowej:

AMCS, volume 29 (2019)

Temat i słowa kluczowe:

Moore?Penrose pseudo-inverse learning ; radial basis function network ; extreme learning machines ; kernel methods ; machine learning ; Singular Value Decomposition (SVD) ; deep extreme learning ; principal component analysis (PCA)

Abstract:

The learning of neural networks is becoming more and more important. Researchers have constructed dozens of learning algorithms, but it is still necessary to develop faster, more flexible, or more accurate learning algorithms. With fast learning we can examine more learning scenarios for a given problem, especially in the case of meta-learning. In this article we focus on the construction of a much faster learning algorithm and its modifications, especially for nonlinear versions of neural networks. ; The main idea of this algorithm lies in the usage of fast approximation of the Moore - Penrose pseudo-inverse matrix. The complexity of the original singular value decomposition algorithm is O(mn2). We consider algorithms with a complexity of O(mnl), where l < n and l is often significantly smaller than n. Such learning algorithms can be applied to the learning of radial basis function networks, extreme learning machines or deep ELMs, principal component analysis or even missing data imputation.

Wydawca:

Zielona Góra: Uniwersytet Zielonogórski

Data wydania:

2019

Typ zasobu:

artykuł

DOI:

10.2478/amcs-2019-0043

Strony:

581-594

Źródło:

AMCS, volume 29, number 3 (2019) ; kliknij tutaj, żeby przejść

Jezyk:

eng

Licencja CC BY 4.0:

kliknij tutaj, żeby przejść

Prawa do dysponowania publikacją:

Biblioteka Uniwersytetu Zielonogórskiego

×

Cytowanie

Styl cytowania: