Struktura obiektu
Autor:

Simiński, Krzysztof

Współtwórca:

Korbicz, Józef (1951- ) - red. ; Uciński, Dariusz - red.

Tytuł:

GrNFS: A granular neuro-fuzzy system for regression in large volume data

Tytuł publikacji grupowej:

AMCS, volume 31 (2021)

Temat i słowa kluczowe:

granular computing ; neuro-fuzzy systems ; large volume data ; machine learning

Abstract:

Neuro-fuzzy systems have proved their ability to elaborate intelligible nonlinear models for presented data. However, their bottleneck is the volume of data. They have to read all data in order to produce a model. We apply the granular approach and propose a granular neuro-fuzzy system for large volume data. In our method the data are read by parts and granulated. In the next stage the fuzzy model is produced not on data but on granules. ; In the paper we introduce a novel type of granules: a fuzzy rule. In our system granules are represented by both regular data items and fuzzy rules. Fuzzy rules are a kind of data summaries. The experiments show that the proposed granular neuro-fuzzy system can produce intelligible models even for large volume datasets. The system outperforms the sampling techniques for large volume datasets.

Wydawca:

Zielona Góra: Uniwersytet Zielonogórski

Data wydania:

2021

Typ zasobu:

artykuł

DOI:

10.34768/amcs-2021-0030

Strony:

445-459

Źródło:

AMCS, volume 31, number 3 (2021) ; kliknij tutaj, żeby przejść

Jezyk:

eng

Licencja CC BY 4.0:

kliknij tutaj, żeby przejść

Prawa do dysponowania publikacją:

Biblioteka Uniwersytetu Zielonogórskiego

×

Cytowanie

Styl cytowania: