Struktura obiektu

Autor:

Ray, Swagata ; De, Soumen ; Mandal, B.N.

Współtwórca:

Jurczak, Paweł - red.

Tytuł:

Water wave scattering by an infinite step in the presence of an ice-cover

Tytuł publikacji grupowej:

IJAME, volume 24 (2019)

Temat i słowa kluczowe:

water wave scattering ; ice-cover ; infinite step ; integral equation ; Galerkin approximation ; reflection coefficient ; transmission coefficients

Abstract:

The classical problem of water wave scattering by an infinite step in deep water with a free surface is extended here with an ice-cover modelled as a thin uniform elastic plate. The step exists between regions of finite and infinite depths and waves are incident either from the infinite or from the finite depth water region. Each problem is reduced to an integral equation involving the horizontal component of velocity across the cut above the step. ; The integral equation is solved numerically using the Galerkin approximation in terms of simple polynomial multiplied by an appropriate weight function whose form is dictated by the behaviour of the fluid velocity near the edge of the step. The reflection and transmission coefficients are obtained approximately and their numerical estimates are seen to satisfy the energy identity. These are also depicted graphically against thenon-dimensional frequency parameter for various ice-cover parameters in a number of figures. In the absence of ice-cover, the results for the free surface are recovered.

Wydawca:

Zielona Góra: Uniwersytet Zielonogórski

Data wydania:

2019

Typ zasobu:

artykuł

Format:

application/pdf

DOI:

10.2478/ijame-2019-0055

Strony:

157-168

Źródło:

IJAME, volume 24, number 4 (2019)

Jezyk:

eng

Licencja:

CC 4.0

Licencja CC BY-NC-ND 4.0:

kliknij tutaj, żeby przejść

Prawa do dysponowania publikacją:

Biblioteka Uniwersytetu Zielonogórskiego