Struktura obiektu

Autor:

Bartecki, Krzysztof

Współtwórca:

Korbicz, Józef (1951- ) - red. ; Uciński, Dariusz - red.

Tytuł:

A general transfer function representation for a class of hyperbolic distributed parameter systems

Tytuł publikacji grupowej:

AMCS, Volume 23 (2013)

Temat i słowa kluczowe:

distributed parameter system ; hyperbolic systems ; partial differential equations ; transfer function ; heat exchanger

Abstract:

Results of transfer function analysis for a class of distributed parameter systems described by dissipative hyperbolic partial differential equations defined on a one-dimensional spatial domain are presented. For the case of two boundary inputs, the closed-form expressions for the individual elements of the 2×2 transfer function matrix are derived both in the exponential and in the hyperbolic form, based on the decoupled canonical representation of the system. ; Some important properties of the transfer functions considered are pointed out based on the existing results of semigroup theory. The influence of the location of the boundary inputs on the transfer function representation is demonstrated. The pole-zero as well as frequency response analyses are also performed. The discussion is illustrated with a practical example of a shell and tube heat exchanger operating in parallel- and countercurrent-flow modes.

Wydawca:

Zielona Góra: Uniwersytet Zielonogórski

Data wydania:

2013

Typ zasobu:

artykuł

DOI:

10.2478/amcs-2013-0022

Strony:

291-307

Źródło:

AMCS, volume 23, number 2 (2013) ; kliknij tutaj, żeby przejść

Jezyk:

eng

Prawa do dysponowania publikacją:

Biblioteka Uniwersytetu Zielonogórskiego