Struktura obiektu

Autor:

Savchenko, Andrey V. ; Belova, Natalya S.

Współtwórca:

Iacono, Mauro - ed. ; Kołodziej, Joanna - ed.

Tytuł:

Statistical testing of segment homogeneity in classification of piecewise-regular objects

Podtytuł:

.

Tytuł publikacji grupowej:

AMCS, Volume 25 (2015)

Temat i słowa kluczowe:

statistical pattern recognition ; classification ; testing of segment homogeneity ; probabilistic neural network

Abstract:

The paper is focused on the problem of multi-class classification of composite (piecewise-regular) objects (e.g., speech signals, complex images, etc.). We propose a mathematical model of composite object representation as a sequence of independent segments. Each segment is represented as a random sample of independent identically distributed feature vectors. ; Based on this model and a statistical approach, we reduce the task to a problem of composite hypothesis testing of segment homogeneity. Several nearest-neighbor criteria are implemented, and for some of them the well-known special cases (e.g., the Kullback-Leibler minimum information discrimination principle, the probabilistic neural network) are highlighted. It is experimentally shown that the proposed approach improves the accuracy when compared with contemporary classifiers.

Wydawca:

Zielona Góra: Uniwersytet Zielonogórski

Typ zasobu:

artykuł

DOI:

10.1515/amcs-2015-0065

Strony:

915-925

Źródło:

AMCS, volume 25, number 4 (2015) ; kliknij tutaj, żeby przejść

Jezyk:

eng

Prawa do dysponowania publikacją:

Biblioteka Uniwersytetu Zielonogórskiego