Chiba, Ryoichi ; Kishida, Takuya ; Seki, Ryoto ; Sato, Seiya
Współtwórca: Tytuł: Tytuł publikacji grupowej: Temat i słowa kluczowe:neural networks ; optimal design ; functionally graded material ; thermal stresses ; material design ; multi-layered material
Abstract:This study presents a neural network (NN)-based approach for optimising material composition in multi-layered functionally graded (FG) plates to minimise steady-state thermal stress. The focus is on the metal-ceramic composition across the thickness of heat-resistant FG plates, with the volume fractions of the ceramic constituent in each layer treated as design variables. A fully-connected NN, configured with an open-source Bayesian optimisation framework, is employed to predict the maximum in-plane thermal stress for various combinations of design variables. ; The optimal distribution of material composition is determined by applying a backpropagation algorithm to the NN. Numerical computations on ten- and twelve-layered FG plates demonstrate the usefulness of this approach in designing FG materials. NNs trained with 8000 samples enable the successful acquisition of valid optimal solutions within a practical timeframe.
Wydawca:Zielona Góra: Uniwersytet Zielonogórski
Data wydania: Typ zasobu: Format: DOI: Strony: Źródło:IJAME, volume 29, number 4 (2024)
Jezyk: Licencja: Licencja CC BY-NC-ND 4.0: Prawa do dysponowania publikacją: