Object structure
Creator:

Patalas-Maliszewska, Justyna ; Wiśniewski, Remigiusz ; Zhou, MengChu ; Topczak, Marcin ; Wojnakowski, Marcin

Contributor:

Korbicz, Józef (1951- ) - red. ; Uciński, Dariusz - red.

Title:

Applying additive manufacturing technologies to a supply chain: A Petri net-based decision model

Group publication title:

AMCS, volume 34 (2024)

Subject and Keywords:

additive manufacturing technology ; supply chain ; Petri nets ; reliability ; robustness ; decision support systems ; verification

Abstract:

Nowadays, applying additive manufacturing (AM) technologies into a supply chain (SC) permits realization of the so-called "demand chains" and transformation of conventional production to mass customization. However, integration of AM technologies within an SC indicates the need to support managers` decision about such an investment. Therefore, this work develops a Petri net-based decision support model that determines the changes in an SC by adopting AM and improving customer-perceived value (CPV), based on a case study regarding a real-life metal production process. ; The basis for building such a model is the supply chain operation reference model (SCOR), focusing on CPV, due to the need for redesigning the SC starting from the customer instead of the company. To achieve the research objective, this work introduces a novel verification methodology for a Petri net-based decision model. ; The research results show that applying the developed model, which is based on the selected characteristics of the production process and parameters describing the potential integration of AM within the SC, allows managers to perceive a scenario in the form of graphical models about positive or negative impacts of introducing AM into the SC. The managers find the Petri net-based decision support model presented in this paper a beneficial tool to support the implementation of changes in an SC and show the potential increase in customer satisfaction thanks to the integration of AM within an SC.

Publisher:

Zielona Góra: Uniwersytet Zielonogórski

Date:

2024

Resource Type:

artykuł

DOI:

10.61822/amcs-2024-0035

Pages:

513-525

Source:

AMCS, volume 34, number 3 (2024) ; click here to follow the link

Language:

eng

License CC BY 4.0:

click here to follow the link

Rights:

Biblioteka Uniwersytetu Zielonogórskiego

×

Citation

Citation style: