Struktura obiektu

Autor:

Goel, Navdeep ; Singh, Kulbir

Współtwórca:

Korbicz, Józef (1951- ) - red. ; Uciński, Dariusz - red.

Tytuł:

A modified convolution and product theorem for the linear canonical transform derived by representation transformation in quantum mechanics

Tytuł publikacji grupowej:

AMCS, Volume 23 (2013)

Temat i słowa kluczowe:

linear canonical transform ; convolution and product theorem ; quantum mechanical representation

Abstract:

The Linear Canonical Transform (LCT) is a four parameter class of integral transform which plays an important role in many fields of signal processing. Well-known transforms such as the Fourier Transform (FT), the FRactional Fourier Transform (FRFT), and the FreSnel Transform (FST) can be seen as special cases of the linear canonical transform. Many properties of the LCT are currently known but the extension of FRFTs and FTs still needs more attention. ; This paper presents a modified convolution and product theorem in the LCT domain derived by a representation transformation in quantum mechanics, which seems a convenient and concise method. It is compared with the existing convolution theorem for the LCT and is found to be a better and befitting proposition. Further, an application of filtering is presented by using the derived results.

Wydawca:

Zielona Góra: Uniwersytet Zielonogórski

Data wydania:

2013

Typ zasobu:

artykuł

DOI:

10.2478/amcs-2013-0051

Strony:

685-695

Źródło:

AMCS, volume 23, number 3 (2013)

Jezyk:

eng

Prawa do dysponowania publikacją:

Biblioteka Uniwersytetu Zielonogórskiego