Autor:
Chiba, Ryoichi ; Kishida, Takuya ; Seki, Ryoto ; Sato, Seiya
Współtwórca:
Tytuł:
Tytuł publikacji grupowej:
Temat i słowa kluczowe:
neural networks ; optimal design ; functionally graded material ; thermal stresses ; material design ; multi-layered material
Abstract:
This study presents a neural network (NN)-based approach for optimising material composition in multi-layered functionally graded (FG) plates to minimise steady-state thermal stress. The focus is on the metal-ceramic composition across the thickness of heat-resistant FG plates, with the volume fractions of the ceramic constituent in each layer treated as design variables. A fully-connected NN, configured with an open-source Bayesian optimisation framework, is employed to predict the maximum in-plane thermal stress for various combinations of design variables. ; The optimal distribution of material composition is determined by applying a backpropagation algorithm to the NN. Numerical computations on ten- and twelve-layered FG plates demonstrate the usefulness of this approach in designing FG materials. NNs trained with 8000 samples enable the successful acquisition of valid optimal solutions within a practical timeframe.
Wydawca:
Zielona Góra: Uniwersytet Zielonogórski
Data wydania:
Typ zasobu:
Format:
DOI:
Strony:
Źródło:
IJAME, volume 29, number 4 (2024)