Struktura obiektu
Autor:

Acuna, Carlos ; Arechavaleta, Gustavo ; Castelán, Mario

Współtwórca:

Campagner, Andrea - ed. ; Lenz, Oliver Urs - ed. ; Xia, Shuyin - ed.

Tytuł:

Probabilistic lane segmentation using a low-dimensional linear parametrization

Podtytuł:

.

Tytuł publikacji grupowej:

AMCS, volume 35 (2025)

Temat i słowa kluczowe:

lane detection ; Kalman filters ; dimensionality reduction

Abstract:

Lane detection is an important module for active safety systems since it increases safety and reduces traffic accidents caused by driver inattention. Illumination changes or occlusions make lane detection a challenging task, especially if the detection is performed from a single image. Consequently, this paper presents a probabilistic approach based on the Kalman filter, which uses information from previous image frames to estimate the lane that could not be detected in the current image frame, considering uncertainty in the prediction as well as in the detection. ; To this end, a principal component analysis of the segmented curvature is introduced with the purpose of dimensionality reduction, moving from a large dimensional pixel representation to a considerably reduced space representation. Furthermore, the proposed approach is compared with a fully connected pretrained CNN model for lane detection, demonstrating that the proposed method has a lower computational cost in addition to a smoother transition between lane estimates.

Wydawca:

Zielona Góra: Uniwersytet Zielonogórski

Data wydania:

2025

Typ zasobu:

artykuł

DOI:

10.61822/amcs-2025-0013

Strony:

179-189

Źródło:

AMCS, volume 35, number 1 (2025) ; kliknij tutaj, żeby przejść

Jezyk:

eng

Licencja CC BY 4.0:

kliknij tutaj, żeby przejść

Prawa do dysponowania publikacją:

Biblioteka Uniwersytetu Zielonogórskiego

×

Cytowanie

Styl cytowania: